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Lp – estimates of Solutions of Backward Doubly
Stochastic Differential Equations

Jasmina Djordjevića
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Abstract. This paper deals with a large class of nonhomogeneous backward doubly stochastic differential
equations which have a more general form of the forward Itô integrals. Terms under which the solutions of
these equations are bounded in the Lp-sense, p ≥ 2, under both the Lipschitz and non-Lipschitz conditions,
are given, i.e. Lp – stability for this general type of backward doubly stochastic differential equations is
established.

1. Introduction

It is well-known that the theory of backward stochastic differential equations (BSDEs for short) was
introduced and developed by Pardoux and Peng [22–24] in the 90s. They defined the notation of nonlinear
BSDE and proved the existence and uniqueness of adapted solutions in their fundamental paper [22].
Furthermore, it is shown in various papers that BSDEs give the probabilistic representation of solutions (at
least in the viscosity sense) for a large class of systems of semi-linear parabolic partial differential equations
(PDEs) (see [20],[24]). After that, BSDEs are widely used to describe numerous mathematical problems in
finance (see [8], [9], [25]), stochastic control and stochastic games (see [6], [7], [10], [11]), stochastic partial
differential equations (for short SPDEs, see [4], [12], [26]) etc. Consequently, all these applications incited
to introduce various types of BSDEs.

In paper [21], Pardoux and Peng introduced a new class of backward stochastic differential equations
– backward doubly stochastic differential equations, (BDSDEs for short), and, under certain conditions, they
provided a probabilistic interpretation for the solutions of a special class of quasilinear partial differential
equations. Precisely, they studied BDSDE

y(t) = ξ +

∫ T

t
f (s, y(s), z(s)) ds +

∫ T

t
1(s, y(s), z(s)) dB(s) −

∫ T

t
z(s) dW(s), (1)

where t ∈ [0,T] and the integral with respect to the Brownian motion B(t) is the ”backward” Itô integral,
while the integral with respect to the Brownian motion W(t) is the standard forward Itô integral, and both
the integrals are particular cases of the Itô-Skorohod integral (see [17]). The solution is a pair (y(t), z(t))
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of processes adapted to the past of the Brownian motions. Pardoux and Peng [21] gave the existence and
uniqueness result for Eq. (1) and produced a probabilistic representation of certain quasilinear stochastic
partial differential equations, under the Lipschitz conditions for the coefficients. Since then, many authors
tried to weaken the conditions for the functions f and 1 and to give more general results. For example, Lin
[14], Aman [1], Aman and Owo [2], N’zi and Owo [18, 19], Boufoussi, Casteren and Mrhardy [4], Ren, Lin
and Hu [26], Hu and Ren [12].

All previous papers deal with BDSDEs which have only the process z in the forward integral, i.e. the
forward integral has the form

∫ T

t z(s) dW(s). In their paper [13], Janković, Djordjević and Jovanović extended
this type of equations by adding the function dependent on the process y in the forward integral. More
precisely, for the equation

Y(t) = ξ +

∫ T

t
f (s,Y(s),Z(s)) ds +

∫ T

t
1(s,Y(s),Z(s)) dB(s) −

∫ T

t
[h(s,Y(s)) + Z(s)] dW(s), t ∈ [0,T], (2)

they proved the existence and uniqueness results under both the Lipschitz and non-lipschitz conditions,
comparison theorems and relations between the solutions of these equations and between the solutions
of the appropriate SPDEs. Even more, they studied the relation between the solution to Eq. (2) and the
following equation,

y(t) = ξ +

∫ T

t
f (s, y(s), z(s) − h(s, y(s))) ds +

∫ T

t
1(s, y(s), z(s) − h(s, y(s))) dB(s) −

∫ T

t
z(s) dW(s), t ∈ [0,T], (3)

which is a type of Eq. (1). Eq. (2) can be treated as an additively perturbed Eq. (1), where all perturbations
except the one in the forward integral, are zero. The function h in the forward integral can be treated
as the perturbation, so that Eq. (2) is called the nonhomogeneous BDSDE, with respect to the appropriate
homogenous Eq. (3).

Recently, in paper [5], Djordjević studied the existence, comparison problems, existence of the maximal
solution and the structure of the solution, i.e. the Kneser problem for Eq. (2), when the coefficients are
continuous.

In present paper, we extend the previous results of stability to nonhomogeneous BDSDE (2). The main
idea of this paper is to study the Lp-stability, p ≥ 2, for Eq. (2), under both the Lipschitz and non-Lipschitz
conditions. The paper is organized as follows: In Section 2, we introduce some notations and notions
about BDSDE (2). In Section 3, we give the Lp-stability for Eq. (2) under the Lipschitz conditions, while
Section 4 is dedicated to the main result of the paper – the Lp-stability under non-Lipschitz conditions for
the coefficients of the equation. Last two sections refer to conclusion marks and appendix about application
of known inequality.

2. Notation and Preliminary Results

First, we usually denote that | · | is the Euclidean norm in Rk and ||A|| =
√

trace(A>A) is the Frobenius
trace-norm for a matrix A in Rk×d, where A> is the transpose of A. We also generally assume that all
random variables and processes are defined on a probability space (Ω,F ,P) and that [0,T] is an arbitrarily
large fixed time duration. We assume that {Wt, t ∈ [0,T]} and {Bt, t ∈ [0,T]} are two mutually independent
standard Brownian motions with values in Rd and Rl, respectively. Denote that N is a class of P-null sets
of F . For every t ∈ [0,T], let us define

Ft := FW
t ∨ F

B
t,T ,

where, for any process ηt,F
η

s,t = σ{ηr−ηs, r ∈ [s, t]}∨N andF η
t = F

η
0,t. Since {FW

t , t ∈ [0,T]} and {F B
t,T, t ∈ [0,T]}

are increasing and decreasing filtrations, respectively, the collection {Ft, t ∈ [0,T]} is neither increasing nor
decreasing and, therefore, it does not constitute a filtration.

As usual, for any n ∈ N, let M2([0,T];Rn) be the set of (class of dP × dt a.e. equal) Rn-valued jointly
measurable stochastic processes {ϕt, t ∈ [0,T]} satisfying:
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(i) ||ϕ||M2 = E
∫ T

0 |ϕt|
2 dt < ∞;

(ii) ϕt is Ft-measurable for a.e. t ∈ [0,T].
Similarly, let S2([0,T];Rn) be the set of continuous Rn-valued stochastic processes satisfying:

(i) ||ϕ||S2 = E supt∈[0,T] |ϕt|
2 < ∞;

(ii) ϕt is Ft-measurable for any t ∈ [0,T].

Throughout the paper, the following basic assumption holds:
(H0) The terminal value is a random variable ξ ∈ L2(Ω,FT,P;Rk) and random functions f : Ω× [0,T]×Rk

×

Rk×d
→ Rk, 1 : Ω× [0,T]×Rk

×Rk×d
→ Rk×l, h : Ω× [0,T]×Rk

→ Rk×d are jointly measurable and such that
for any (y, z) ∈ Rk

×Rk×d,

f (·, y, z) ∈ M2([0,T];Rk),

1(·, y, z) ∈ M2([0,T];Rk×l),

h(·, y) ∈ M2([0,T];Rk×d).

Definition 2.1. A solution of Eq. (2) is a pair of Rk
× Rk×d-valued processes (Y,Z) = {(Yt,Zt), t ∈ [0,T]} ∈

S
2([0,T];Rk) ×M2([0,T];Rk×d) which satisfies Eq. (2).

Definition 2.2. A solution {(Yt,Zt), t ∈ [0,T]} of Eq. (2) is said to be unique, if for any other solution {(Ȳt, Z̄t), t ∈
[0,T]} it follows that P{Yt = Ȳt, t ∈ [0,T]} = 1 and E

∫ T

0 ||Zt − Z̄t||
2 dt = 0.

We need the so-called extension of Itô’s formula in our investigation.

Lemma 2.3 (Pardoux, Peng [21]). Let functions α ∈ S2([0,T];Rk), β ∈ M2([0,T];Rk), γ ∈ M2([0,T];Rk×l) and
δ ∈ M2([0,T];Rk×d) be such that

αt = α0 +

∫ t

0
βs ds +

∫ t

0
γs dBs +

∫ t

0
δs dWs, t ∈ [0,T].

Then,

|αt|
2 = |α0|

2 + 2
∫ t

0
α>s βs ds + 2

∫ t

0
α>s γs dBs + 2

∫ t

0
α>s δs dWs −

∫ t

0
||γs||

2 ds +

∫ t

0
||δs||

2 ds.

More generally, for Φ ∈ C2(Rk),

Φ(αt) = Φ(α0) +

∫ t

0
Φ′T(αs)βs ds +

∫ t

0
Φ′T(αs)γs dBs +

∫ t

0
Φ′T(αs)δs dWs

−
1
2

∫ t

0
trace[Φ′′(αs)γsγ

T
s ] ds +

1
2

∫ t

0
trace[Φ′′(αs)δsδ

T
s ] ds.

3. Lp-stability under Lipschitz Coefficients

Beside the problem of the existence and uniqueness of the solution to Eq. (2), the important topic is the
boundness of the Lp-moments of its solution. Before we present the main theorem, we will introduce some
additional assumptions and recall theorems of the existence and uniqueness of solutions of homogenous
and nonhomogeneous BDSDEs.

The following Lipschitz conditions are assumed in our study:

(H1) For f , 1 and h satisfying (H0), there exist constants K > 0 and 0 < α < 1 such that for every
(ω, t) ∈ Ω × [0,T] and (y1, z1), (y2, z2) ∈ Rk

×Rk×d,

| f (t, y1, z1) − f (t, y2, z2)|2 ≤ K
(
|y1 − y2|

2 + ||z1 − z2||
2
)
,

||1(t, y1, z1) − 1(t, y2, z2)||2 ≤ K|y1 − y2|
2 + α||z1 − z2||

2,

||h(t, y1) − h(t, y2)||2 ≤ K|y1 − y2|
2.
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The following propositions give the existence and uniqueness results for the homogenous and nonho-
mogeneous Eqs. (1) and (2).

Proposition 3.1 (Pardoux, Peng [21]). Let (H0) and (H1) hold for ξ, f and 1. Then, Eq. (1) has a unique solution
(y, z) ∈ S2([0,T];Rk) ×M2([0,T];Rk×d).

Proposition 3.2 (Janković, Djordjević, Jovanović [13]). Let (H0) and (H1) hold forξ, f , 1 and h and let {(yt, zt), t ∈
[0,T]} be the solution of Eq. (3). Then,

{(yt, zt − h(t, yt)), t ∈ [0,T]} ∈ S2([0,T];Rk) ×M2([0,T];Rk×d)

is the unique solution of Eq. (2).

Pardoux and Peng in [21] proved the boundness of the Lp-moments of Eq. (1) if the functions f and 1
satisfy the Lipschitz condition from (H1) and 1 satisfies the following additional condition:

A1. There exists constant K, such that for every (t, y, z) ∈ [0,T] ×Rk
×Rk×d,

1T(t, y, z)1(t, y, z) ≤ zTz + K(||1(t, 0, 0)||2 + |y|2)I,

where I is the unit matrix of order l.

Theorem 3.3 (Pardoux, Peng, [21]). Let all the conditions from Proposition 3.1 hold and assumption A1 be satisfied.
If p ≥ 2, ξ ∈ Lp(Ω,FT,P;Rd) and

E
∫ T

0
(| f (t, 0, 0)|p + ||1(t, 0, 0)||p) dt < ∞,

then for the solution {(y(t), z(t)), t ∈ [0,T]} of Eq. (1) the following holds,

E sup
0≤t≤T

|y(t)|p < ∞, E
(∫ T

0
||z(t)||2 dt

) p
2

< ∞. (4)

Using the previous result, it can be shown that Lp-moments of the solution of Eq. (2) are finite, if f , 1
and h satisfy Lipschitz conditions (H1).

Proposition 3.4. Let ξ, f , 1 and h satisfy (H0), (H1) and let assumption A1 holds. If ξ ∈ Lp(Ω,FT,P;Rd) for p ≥ 2
and

E
∫ T

0
(| f (t, 0, 0)|p + ||1(t, 0, 0)||p + ||h(t, 0)||p) dt < ∞, (5)

for the solution {(Y(t),Z(t)), t ∈ [0,T]} of Eq. (2) the following holds,

E sup
0≤t≤T

|Y(t)|p < ∞, E
(∫ T

0
||Z(t)||2 dt

) p
2

< ∞. (6)

Proof. Since all the conditions of Proposition 3.2 are satisfied, then there exist unique solutions {(y(t), z(t)), t ∈
[0,T]} and {(y(t), z(t) − h(t, y(t))), t ∈ [0,T]} ∈ S2([0,T];Rk) ×M2([0,T];Rk×d) of Eqs. (1) and (2), respectively,
where

Y(t) = y(t) a.s. for every t ∈ [0,T], E
∫ T

0
||h(t, y(t)) + Z(t) − z(t)||2 dt = 0. (7)

From (4) and (7), it follows that
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E( sup
0≤t≤T

|Y(t)|p) = E( sup
0≤t≤T

|y(t)|p) < ∞.

By applying the elementary inequality
(∑m

i=1 ai
)k
≤ (mk−1

∨ 1)
∑m

i=1 ak
i , ai ≥ 0, k ≥ 0, Hölder’s inequality

(E|XY| ≤ (E|X|p)1/p(E|Y|q)1/q, 1
p + 1

q = 1, p, q > 0) and (7), we have

E
(∫ T

0
||Z(t)||2 dt

) p
2

(8)

≤ 4
p
2 E

(∫ T

0
||Z(t) − z(t) + h(t, y(t))||2 dt +

∫ T

0
||z(t)||2 dt + K

∫ T

0
|y(t)|2 dt +

∫ T

0
||h(t, 0)||2 dt

) p
2

≤ 4
p
2 3

p
2−1E


(∫ T

0
||z(t)||2 dt

) p
2

+ (KT)
p
2 sup

0≤t≤T
|y(t)|p + T

p−2
p

(∫ T

0
||h(t, 0)||p

) 2
p
 .

From (4), (5) and (8), it follows that

E
(∫ T

0
||Z(t)||2 dt

) p
2

< ∞,

which completes the proof.

4. Lp-stability under Non-Lipschitz Coefficients

In the previous section, we concluded under Lipschitz conditions (H1) that the solution of Eq. (2) can be
represented with the help of the solution of Eq. (1). In the sequel, we recall that the same conclusions holds
under more general conditions, under the so-called non-Lipschitz coefficients. Analogously, we introduce
the non-Lipschitz conditions for the coefficients of Eq. (2):

(H2) For f , 1 and h satisfying (H0), there exist constants C > 0 and 0 < α < 1 such that for every
(ω, t) ∈ Ω × [0,T] and (y1, z1), (y2, z2) ∈ Rk

×Rk×d,

| f (t, y1, z1) − f (t, y2, z2)|2 ≤ ρ(t, |y1 − y2|
2) + C||z1 − z2||

2,

||1(t, y1, z1) − 1(t, y2, z2)||2 ≤ ρ(t, |y1 − y2|
2) + α||z1 − z2||

2,

||h(t, y1) − h(t, y2)||2 ≤ ρ(t, |y1 − y2|
2).

Here ρ : [0,T] × R+
→ R+ satisfies: For fixed t ∈ [0,T], ρ(t, ·) is a concave and non-decreasing function with

ρ(t, 0) ≡ 0; for fixed u,
∫ T

0 ρ(t,u) dt < ∞; for any M > 0, the ODE

u′ = −Mρ(t,u), u(T) = 0

has a unique solution u(t) ≡ 0, t ∈ [0,T].

Obviously, if ρ(t,u) ≡ Cu, the non-Lipschitz conditions (H2) are reduced to the Lipschitz conditions (H1).
The following propositions give the results of the existence and uniqueness of the homogenous and

nonhomogeneous BDSDEs under non-Lipschitz condition for the coefficients.

Proposition 4.1 (N’zi,Owo [18]). Let (H0) and (H2) hold for ξ, f and 1. Then, Eq. (1) has a unique solution
(y, z) ∈ S2([0,T];Rk) ×M2([0,T];Rk×d).

Proposition 4.2 (Janković, Djordjević, Jovanović [13]). Let (H0) and (H2) hold forξ, f , 1 and h and let {(yt, zt), t ∈
[0,T]} be the solution of Eq. (3). Then,

{(yt, zt − h(t, yt)), t ∈ [0,T]} ∈ S2([0,T];Rk) ×M2([0,T];Rk×d)

is the unique solution of Eq. (2).
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The estimate of the Lp-moments of the solution of Eq. (2) can be extended under weaker conditions for
f , 1 and h. In that goal, we introduce the following hypothesis.

(H3) For the functions f , 1 and h satisfying (H0), there exist constants C > 0 and 0 < α < 1 such that for
p ≥ 2, (ω, t) ∈ Ω × [0,T] and (y1, z1), (y2, z2) ∈ Rk

×Rk×d,

| f (t, y1, z1) − f (t, y2, z2)|2 ≤ min
{
ρ(|y1 − y2|

2), ρ
2
p (|y1 − y2|

p)
}

+ C||z1 − z2||
2,

||1(t, y1, z1) − 1(t, y2, z2)||2 ≤ min
{
ρ(|y1 − y2|

2), ρ
2
p (|y1 − y2|

p)
}

+ α||z1 − z2||
2,

||h(t, y1) − h(t, y2)||2 ≤ min
{
ρ(|y1 − y2|

2), ρ
2
p (|y1 − y2|

p)
}
,

where the function ρ : R+
→ R+ satisfies the conditions:

– ρ is continuous, nondecreasing and concave;
– ρ(0) = 0 and ρ(u) > 0 for every u > 0;

–
∫

0+
du
ρ(u) = ∞.

It should be noted that the hypothesis (H2) follows from the hypothesis (H3). Indeed, because of the
continuity of the function ρ, the solving of the Cauchy problem

u′ = −Mρ(u), u(T) = 0

is equivalent with the solving of the integral equation

u(t) = M
∫ T

t
ρ(u(s)) ds, t ∈ [0,T].

If
∫
∞

0+
du
ρ(u) = ∞, the equation u′ = −Mρ(u) has a unique solution u(t) ≡ 0, t ∈ [0,T]. This implies that the class

of the functions satisfying the hypothesis (H2) is more general than the the class of the functions satisfying
the hypothesis (H3). Even more, it should be noted that in the more general assumption (H2), function ρ
depends also on a time parameter t, (ρ is dependent of two parameters t and u, ρ : [0,T]×R+

→ R+) which
is not the case in the assumption (H3) where ρ depends only of u (ρ : R+

→ R+). By Proposition 4.1, it
follows that BDSDE (2) has a unique solution when ξ, f , 1 and h satisfy (H0) and (H3).

Following theorem gives the estimate of the Lp-moments of the solution of Eq. (2) under assumption
that f , 1 and h satisfy the non-Lipschitz conditions (H3) and under the additional condition for α, i.e.
α ∈

(
0, 1/2(p − 1)

)
.

Lemma 4.3. Let ξ, f , 1, h and p ≥ 2 satisfy (H3) for α ∈
(
0, 1/2(p − 1)

)
. If ξ ∈ Lp(Ω,FT,P;Rd) and

E
∫ T

0
(| f (t, 0, 0)|p + ||1(t, 0, 0)||p + ||h(t, 0)||p) dt < ∞, (9)

than the solution {(Y(t),Z(t)), t ∈ [0,T]} of Eq. (2) satisfies

sup
0≤t≤T

E|Y(t)|p + E
∫ T

0
|Y(t)|p−2

||Z(t)||2 dt < ∞.
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Proof. By applying Itô′s formula on |Y(t)|p, we have

|Y(t)|p = |ξ|p + p
∫ T

t
|Y(s)|p−2(Y(s))T f (s,Y(s),Z(s)) ds +

p
2

∫ T

t
|Y(s)|p−2

||1(s,Y(s),Z(s))||2 ds (10)

+
p(p − 2)

2

∫ T

t
|Y(s)|p−4

|(Y(s))T1(s,Y(s),Z(s))|2 ds + p
∫ T

t
|Y(s)|p−2(Y(s))T1(s,Y(s),Z(s)) dB(s)

−
p
2

∫ T

t
|Y(s)|p−2

||h(s,Y(s)) + Z(s)||2 ds −
p(p − 2)

2

∫ T

t
|Y(s)|p−4

|(Y(s))T[h(s,Y(s)) + Z(s)]|2 ds

− p
∫ T

t
|Y(s)|p−2(Y(s))T[h(s,Y(s)) + Z(s)] dW(s).

Taking expectation, we find that

E|Y(t)|p ≤ E|ξ|p + pE
∫ T

t
|Y(s)|p−2(Y(s))T f (s,Y(s),Z(s)) ds +

p(p − 1)
2

E
∫ T

t
|Y(s)|p−2

||1(s,Y(s),Z(s))||2 ds

−
p
2

E
∫ T

t
|Y(s)|p−2

||h(s,Y(s)) + Z(s)||2 ds,

≡ E|ξ|p + pI1 +
p(p − 1)

2
I2 +

p
2

I3. (11)

where I1, I2 and I3 are the appropriate integrals which must be estimated. By applying (H3) and elementary
inequalities: ±2ab ≤ a2

ε + b2ε, (a + b)2
≤ 2a2 + 2b2, ap−2b2

≤
p−2

p ap + 2
p bp, for ε1 > 0, we have

I1 = E
∫ T

t
|Y(s)|p−2(Y(s))T f (s,Y(s),Z(s)) ds (12)

≤
1

2ε1
E
∫ T

t
|Y(s)|pds + ε1E

∫ T

t
|Y(s)|p−2

| f (s,Y(s),Z(s)) − f (s, 0, 0)|2 ds + ε1E
∫ T

t
|Y(s)|p−2

| f (s, 0, 0)|2 ds

≤
1

2ε1
E
∫ T

t
|Y(s)|pds + ε1E

∫ T

t
|Y(s)|p−2ρ

2
p (|Y(s)|p) ds

+ ε1CE
∫ T

t
|Y(s)|p−2

||Z(s)||2 ds + ε1E
∫ T

t
|Y(s)|p−2

| f (s, 0, 0)|2 ds

≤

(
1

2ε1
+

2(p − 2)ε1

p

)
E
∫ T

t
|Y(s)|pds +

2ε1

p
E
∫ T

t
ρ(|Y(s)|p) ds

+
2ε1

p
E
∫ T

t
| f (s, 0, 0)|p ds + ε1CE

∫ T

t
|Y(s)|p−2

||Z(s)||2 ds.

Similarly,

I2 = E
∫ T

t
|Y(s)|p−2

||1(s,Y(s),Z(s))||2 ds (13)

≤ 2E
∫ T

t
|Y(s)|p−2ρ

2
p (|Y(s)|p) ds + 2αE

∫ T

t
|Y(s)|p−2

||Z(s)||2 ds + 2E
∫ T

t
|Y(s)|p−2

||1(s, 0, 0)||2 ds

≤
4(p − 2)

p
E
∫ T

t
|Y(s)|p ds +

4
p

E
∫ T

t
ρ(|Y(s)|p) ds + 2αE

∫ T

t
|Y(s)|p−2

||Z(s)||2 ds +
4
p

E
∫ T

t
||1(s, 0, 0)||p ds.
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Analogously, for ε2 > 0,

I3 ≤ −2E
∫ T

t
trace[|Y(s)|p−2(Z(s))Th(s,Y(s))] ds − E

∫ T

t
|Y(s)|p−2

||Z(s)||2 ds

≤
1
ε2

E
∫ T

t
|Y(s)|p−2

||h(s,Y(s)) − h(s, 0) + h(s, 0)||2 ds

+ ε2E
∫ T

t
|Y(s)|p−2

||Z(s)||2 ds − E
∫ T

t
|Y(s)|p−2

||Z(s)||2 ds

≤ (ε2 − 1)E
∫ T

t
|Y(s)|p−2

||Z(s)||2 ds +
2
ε2

E
∫ T

t
|Y(s)|p−2ρ

2
p (|Y(s)|p) ds +

2
ε2

E
∫ T

t
|Y(s)|p−2

||h(s, 0)||2 ds

≤ (ε2 − 1)E
∫ T

t
|Y(s)|p−2

||Z(s)||2 ds +
4(p − 2)

pε2
E
∫ T

t
|Y(s)|p ds

+
4

pε2
E
∫ T

t
ρ(|Y(s)|p) ds +

4
pε2

E
∫ T

t
||h(s, 0)||p ds. (14)

In view of the previous estimates, we find from the relations (12), (13) and (14) that

E|Y(t)|p ≤ E|ξ|p +

[
p

2ε1
+ 2(p − 2)ε1 + 2(p − 1)(p − 2) +

2(p − 2)
ε2

]
E
∫ T

t
|Y(s)|pds

+
[
2ε1 + 2(p − 1) +

2
ε2

]
E
∫ T

t
ρ(|Y(s)|p) ds (15)

+
[p
2

(ε2 − 1) + pε1C + p(p − 1)α
]

E
∫ T

t
|Y(s)|p−2

||Z(s)||2 ds

+ E
∫ T

t
[2ε1| f (s, 0, 0)|p + 2(p − 1)||1(s, 0, 0)||p +

2
ε2
||h(s, 0)||p] ds.

Let us denote that

c1 =
p

2ε1
+ 2(p − 2)ε1 + 2(p − 1)(p − 2) +

2(p − 2)
ε2

,

c2 = 2ε1 + 2(p − 1) +
2
ε2
,

c3 = p
[1
2
− (p − 1)α − ε1C −

ε2

2

]
,

c4 = E
∫ T

0

[
2ε1| f (t, 0, 0)|p + 2(p − 1)||1(t, 0, 0)||p +

2
ε2
||h(t, 0)||p

]
dt.

From (9), we have that c4 is a finite constant.
Applying previous notations for the constants, it follows from the inequality (15) that

E|Y(t)|p + c3E
∫ T

t
|Y(s)|p−2

||Z(s)||2 ds (16)

≤ E|ξ|p + c1E
∫ T

t
|Y(s)|pds + c2E

∫ T

t
ρ(|Y(s)|p) + c4.

Regarding that C > 0 and α ∈
(
0, 1/2(p − 1)

)
are the known constants, we can determine positive numbers

ε1 and ε2 such that c3 > 0. Applying Jensen’s inequality [16] on the concave function ρ, we find from (16)
that

E|Y(t)|p ≤ E|ξ|p + max{c1, c2}

∫ T

t
[E|Y(s)|pds + ρ(E|Y(s)|p)] ds + c4. (17)
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Applying Bihari’s inequality on (17) (see more about the application od Bihari’s inequality in 6. Ap-
pendix), it follows that

E|Y(t)|p ≤ G−1[G (E|ξ|p + c4) + max{c1, c2}(T − t)] < ∞, t ∈ [0,T], (18)

and from (16) and (18),

E
∫ T

0
|Y(s)|p−2

||Z(s)||2 ds ≤
1
c3

G−1[G (E(|ξ|p) + c4) + max{c1, c2}T]. (19)

From the last two estimates, it follows that

sup
0≤t≤T

E|Y(t)|p + E
∫ T

0
|Y(t)|p−2

||Z(t)||2 dt < ∞,

which completes the proof.

Following two theorems give a very important results for the solution of the Eq.(2), ie Lp estimate for
p ≥ 2.

Theorem 4.4. Let all assumptions of Lemma 4.3 hold and let {(Y(t),Z(t)), t ∈ [0,T]} be the solution of Eq. (2), than
process Y(t) satisfies

E sup
0≤t≤T

|Y(t)|p < ∞.

Proof. For chosen p ≥ 2 and each integer n ≥ 1, let us introduce stopping time

τn = inf
{

t ∈ [0,T],E sup
0≤t≤τn

|Y(t)|p ≥ n
}
∧ T.

Applying the same estimates, we find from (10) that

E sup
0≤t≤τn

|Y(t)|p ≤ C1 + pE sup
0≤t≤τn

∣∣∣∣∣∫ τn

t
|Y(s)|p−2(Y(s))T1(s,Y(s),Z(s)) dB(s)

∣∣∣∣∣ (20)

+ pE sup
0≤t≤τn

∣∣∣∣∣∫ τn

t
|Y(s)|p−2(Y(s))τn [h(s,Y(s)) + Z(s)] dW(s)

∣∣∣∣∣ ,
where C1 is a positive constant. By applying Burkholder-Davis-Gundy inequality [15], hypothesis (H3) and
elementary inequalities, we will obtain the estimates for the integrals from (20). For arbitrary ε3 > 0,

E sup
0≤t≤τn

∣∣∣∣∣∫ τn

t
|Y(s)|p−2(Y(s))T1(s,Y(s),Z(s)) dB(s)

∣∣∣∣∣ (21)

≤ 4E
(∫ τn

0
|Y(t)|2p−2

||1(t,Y(t),Z(t)||2 dt
) 1

2

≤ 4E


(
( sup
0≤t≤τn

|Y(t)|p)
) 1

2
(∫ τn

0
|Y(t)|p−2

||1(t,Y(t),Z(t))||2 dt
) 1

2


≤ 2ε3E sup
0≤t≤τn

|Y(t)|p +
4
ε3

E
∫ τn

0
|Y(t)|p−2ρ

2
p (|Y(t)|p) dt

+
4α
ε3

E
∫ τn

0
|Y(t)|p−2

||Z(t)||2 dt +
4
ε3

E
∫ τn

0
|Y(t)|p−2

||1(t, 0, 0)||2 dt.
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Similarly, for arbitrary ε4 > 0,

E sup
0≤t≤τn

∣∣∣∣∣∫ τn

t
|Y(s)|p−2(Y(s))T[h(s,Y(s)) + Z(s)] dW(s)

∣∣∣∣∣ (22)

≤ 4E
(∫ τn

0
|Y(t)|2p−2

||h(t,Y(t)) + Z(t)||2 ds
) 1

2

≤ 4E


(

sup
0≤t≤τn

|Y(t)|p
) 1

2
(∫ τn

0
|Y(t)|p−2

||h(s,Y(t)) + Z(t)||2 dt
) 1

2


≤ 2ε4E
(

sup
0≤t≤τn

|Y(t)|p
)

+
6
ε4

E
∫ τn

0
|Y(t)|p−2ρ

2
p (|Y(t)|p) dt

+
6
ε4

E
∫ τn

0
|Y(t)|p−2

||Z(t)||2 dt +
6
ε4

E
∫ τn

0
|Y(t)|p−2

||h(t, 0)||2 dt.

Substituting (21) and (22) in (20), applying Hölder and Jensen’s inequalities, we find that

E sup
0≤t≤τn

|Y(t)|p ≤ C2 + 2p(ε3 + ε4)E sup
0≤t≤τn

|Y(t)|p + 8(p − 2)
( 2
ε3

+
3
ε4

) ∫ τn

0
E|Y(t)|p dt (23)

+ 4
( 2
ε3

+
3
ε4

) ∫ τn

0
ρ(E|Y(t)|p) dt + 2p

(2α
ε3

+
3
ε4

)
E
∫ τn

0
|Y(t)|p−2

||Z(t)||2 dt,

where

C2 = C1 +
8
ε3

E
∫ τn

0
||1(t, 0, 0)||p dt +

12
ε4

E
∫ τn

0
||h(t, 0)||p dt.

Constants ε3 and ε4 are arbitrary and can be chosen such that 1 − 2p(ε3 + ε4) > 0. Therefore, we conclude
from (9), (18), (19), (23) and Lemma 4.3 that

E( sup
0≤t≤τn

|Y(t)|p) < ∞.

If we let n→∞, by applying Fatou’s lemma we have that

E( sup
0≤t≤T

|Y(t)|p) < ∞,

which completes the proof.

Theorem 4.5. Let all assumptions of Lemma 4.3 hold and let {(Y(t),Z(t)), t ∈ [0,T]} be the solution of Eq. (2), than
process Z(t) satisfies

E
(∫ T

0
||Z(t)||2 dt

) p
2

< ∞.

Proof. For each integer n ≥ 1, let us introduce the stopping time

τn =

{
t ∈ [0,T],

∫ t

0
||Z(t)||2dt ≥ n

}
∧ n.

From (10), for t = 0 and p = 2,

|Y(0)|2 ≤ |ξ|2 + 2
∫ τn

t
YT(s) f (s,Y(s),Z(s)) ds −

∫ τn

t
||Z(s)||2 ds

+

∫ τn

t
||1(s,Y(s),Z(s))||2 ds + 2

∫ τn

t
(Y(s))T1(s,Y(s),Z(s)) dB(s)

− 2
∫ τn

t
trace[(Z(s))Th(s,Y(s))] ds − 2

∫ τn

t
(Y(s))T[h(s,Y(s)) + Z(s)] dW(s).
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Hence,∫ τn

t
||Z(s)||2 ds ≤ |ξ|2 − |Y(0)|2 + 2

∫ τn

t
(Y(s))T f (s,Y(s),Z(s)) ds

+

∫ τn

t
||1(s,Y(s),Z(s))||2 ds + 2

∫ τn

t
(Y(s))T1(s,Y(s),Z(s)) dB(s)

− 2
∫ τn

t
trace[(Z(s))Th(s,Y(s))] ds − 2

∫ τn

t
(Y(s))T[h(s,Y(s)) + Z(s)] dW(s).

By applying the elementary inequality |a + b|p ≤ (1 + δ)|a|p + φ(δ)|b|p, where δ > 0 and φ(δ) is a generic
constant (see [16]), we find that(∫ τn

t
||Z(s)||2 ds

) p
2

≤ (1 + δ)
∣∣∣∣∣∫ τn

t
||1(s,Y(s),Z(s))||2 ds

∣∣∣∣∣
p
2

+ q(δ, p)

|ξ|p + |Y0|
p + 2

p
2

∣∣∣∣∣∫ τn

t
(Y(s))T f (s,Y(s),Z(s)) ds

∣∣∣∣∣
p
2

+2
p
2

∣∣∣∣∣∫ τn

t
(Y(s))T1(s,Y(s),Z(s)) dB(s)

∣∣∣∣∣
p
2

+ 2
p
2

∣∣∣∣∣∫ τn

t
trace[(Z(s))Th(s,Y(s))] ds

∣∣∣∣∣
p
2

+2
p
2

∣∣∣∣∣∫ τn

t
(Y(s))T[h(s,Y(s)) + Z(s)] dW(s)

∣∣∣∣∣
p
2

 ,
for an arbitrary constant δ > 0 and generic constant q(δ, p).

Previous three estimates resembles to some standard methods for BSDEs in general used first by Pardoux
and Peng (for example see [21]). A proper credit is given to the authors for this part of the proof.

Therefore,

E
(∫ τn

t
||Z(s)||2 ds

) p
2

≤ (1 + δ)J2 + q(δ, p)
[
2E

(
sup
0≤t≤T

|Y(s)|p
)

+ J1 + J3 + J4 + J5

]
, (24)

where J1, J2, J3 and J4 are the appropriate integrals. By applying hypothesis (H3), for an arbitrary ε5 > 0,

J1 ≤ 2E
[∫ τn

t

(
|Y(s)|2

ε5
+ ε5| f (s,Y(s),Z(s))|2

)
ds

] p
2

(25)

≤ 2
p
2−1

T
p
2−1

ε
p
2
5

E
∫ τn

t
|Y(s)|p ds + ε

p
2
5 2

p
2−1E

(∫ τn

t
| f (s,Y(s),Z(s)) − f (s, 0, 0)|2 ds +

∫ τn

t
| f (s, 0, 0)|2 ds

) p
2


≤ 2

p
2−1

T
p
2

ε
p
2
5

sup
0≤t≤T

E|Y(t)|p + ε
p
2
5 2p−1

(
E
∫ τn

t
[ρ

2
p (|Y(s)|p) + C||Z(s)||2] ds

) p
2

+ε
p
2
5 2p−1T

p
2−1E

∫ τn

t
|| f (s, 0, 0)||p ds

]
≤ 2

p
2−1

T
p
2

ε
p
2
5

sup
0≤t≤T

E|Y(t)|p + ε
p
2
5 2

3p
2 −2

T
p
2 sup

0≤t≤T
ρ(E|Y(t)|p) + C

p
2 E

(∫ τn

t
||Z(s)||2 ds

) p
2


+ε
p
2
5 2p−1T

p
2−1E

∫ τn

t
| f (s, 0, 0)|p ds

]
≤ (Cε5)

p
2 22p−3E

(∫ τn

t
||Z(s)||2 ds

) p
2

+ r1,
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where r1 is a generic constant.

In order to estimate J2, it should be noted that from hypothesis (H3) it follows that there exists a constant
ε0 > 0 such that

||1(t, y, z)||2 ≤ (1 + ε0)ρ
2
p (|y|2) + α(1 + ε0)||z||2 +

(
1 +

1
ε0

)
||1(t, 0, 0)||2.

Substituting the last inequality in integral J2 and applying the previous elementary inequalities, we derive
that

J2 ≤ (1 + δ)α(1 + ε0)
(∫ τn

t
||Z(s)||2 ds

) p
2

+ q′(δ, p)
∣∣∣∣∣∫ τn

t
[(1 + ε0)ρ

2
p (|Y(s)|2) + (1 +

1
ε0

)||1(s, 0, 0)||2] ds
∣∣∣∣∣

p
2

(26)

≤ (1 + δ)α(1 + ε0)
(∫ τn

t
||Z(s)||2 ds

) p
2

+ r2,

where r2 and q′(δ, p) are generic constants.

Analogously, for εi > 0, i = 6, ..., 11,

J3 ≤ 2
p
2 E

(∫ τn

t
|Y(s)|2||1(s,Y(s),Z(s))||2 ds

) p
4

(27)

≤ 2pE

 sup
0≤t≤T

|Y(t)|
p
2

(∫ τn

t
[ρ

2
p (|Y(s)|p) + α||Z(s)||2 + ||1(s, 0, 0)||2] ds

) p
4


≤ 2p−1(3T)
p
4−1E

(
1
ε6

( sup
0≤t≤T

|Y(t)|
p
2 )2 + ε6Tρ(|Y(s)|p)

)
+ 2p−1(3T)

p
4−1α

p
4 E

 1
ε7

( sup
0≤t≤T

|Y(t)|
p
2 )2 + ε7

(∫ τn

t
||Z(s)||2 ds

) p
2


+ 2p−1(3T)
p
4−1E

[
1
ε8

( sup
0≤t≤T

|Y(t)|
p
2 )2 + ε8T

∫ τn

t
||1(s, 0, 0)||p ds

]
≤ 2p−1(3T)

p
4−1α

p
4 ε7E

(∫ τn

t
||Z(s)||2 ds

) p
2

+ r3,

J4 ≤ E
(∫ τn

t
[ε9||Z(s)||2 +

1
ε9
ρ

2
p (|Ys|

p)] ds
) p

2

(28)

≤ 2
p
2−1

ε p
2
9 E

(∫ τn

t
||Z(s)||2 ds

) p
2

+
1

ε
p
2
9

T
p
2 sup

0≤t≤T
ρ(E|Ys|

p)


≤ 2

p
2−1ε

p
2
9 E

(∫ τn

t
||Z(s)||2 ds

) p
2

+ r4,
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and

J5 ≤ 2
p
2 E

(∫ τn

t
|Y(s)|2||h(s,Y(s)) + Z(s)||2 ds

) p
4

(29)

≤ 2
p
2 E sup

0≤t≤T
|Y(t)|

p
2

(∫ τn

t
[2ρ

2
p (|Y(s)|p) + 2||Z(s)||2] ds

) p
4

≤ 2
p
2 E sup

0≤t≤T
|Y(t)|

p
2 2

p
4−1

2
p
4 T

p
4−1

∫ τn

t
ρ

1
2 (|Y(s)|p) ds +

(∫ τn

t
||Z(s)||2 ds

) p
4


≤ 2p−1T
p
4−1E sup

0≤t≤T
|Y(t)|

p
2

∫ τn

t
ρ

1
2 (|Y(s)|p) ds + 2

3p
4 −1T

p
4−1E sup

0≤t≤T
|Y(t)|

p
2

(∫ τn

t
||Z(s)||2 ds

) p
4

≤ 22p−4T
p
2−2ε10E sup

0≤t≤T
|Y(t)|p +

T
ε10

sup
0≤t≤T

ρ(E|Y(s)|p) ds +
2

3p
2 −2T

p
2−2

ε11
E sup

0≤t≤T
|Y(t)|p + ε11

(∫ τn

t
||Z(s)||2 ds

) p
2

≤ ε11

(∫ τn

t
||Z(s)||2 ds

) p
2

+ r5,

where r3, r4, r5 are generic constants.

Since we have from Theorem 4.4, Lemma 4.3 and property of function ρ that E sup0≤t≤T |Y(t)|p < ∞,
sup0≤t≤T ρ(E|Y(t)|p) < ∞, and as assumption (9) holds, substituting (25)–(29) in (24), we obtain that

E
(∫ τn

t
||Z(s)||2ds

) p
2

≤R +
[
q(δ, p)ε + (1 + δ)2α(1 + ε0)

]
E
(∫ τn

t
||Z(s)||2 ds

) p
2

, (30)

where R is a generic constant and ε = (Cε5)
p
2 22p−3 + 2p−1(3T)

p
4−1α

p
4 ε7 + 2

p
2−1ε

p
2
9 + ε11. For a given α ∈ (0, 1), we

can choose constants ε0, ε5, ε7, ε9, ε11 and δ such that

(1 + δ)2α(1 + ε0) + q(δ, p)ε < 1.

Since R is finite, from (30) we find that

E
(∫ τn

t
||Z(s)||2 ds

) p
2

< ∞.

If we let n→∞, by applying Fatou’s lemma we have that

E
(∫ T

t
||Z(s)||2 ds

) p
2

< ∞.

which completes the proof.

Remark. An important remark should be added for the particular case when p = 2. As it is already
known, and it is given here by Proposition 4.2 (Janković, Djordjević, Jovanović [13]), under assumptions
(H0) and (H2) for the functions f , 1 i h, where α ∈ (0, 1), there exists a solution of Eq. (2) such that

E sup
0≤t≤T

|Y(t)|2 < ∞, E
(∫ T

0
||Z(t)||2 dt

)
< ∞.

It is proven in Theorem 4.4 and Theorem 4.5 that under assumption (H3) for functions f , 1 i h, more flexible
condition than (H0), ie condition (9), but with restriction of α, α ∈ (0, 1/2), the same result holds for the
solution of the Eq. (2). So, when conditions of Proposition 4.2 are not satisfied, but solution of the Eq. (2)
exists, Theorems 4.4 and 4.5 could be applied to establish L2-estimate of the solution.
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5. Conclusion

The difference between Eq. (1) and Eq. (2) is a function h in the forward integral which can be treated as a
perturbation. It is interesting to analyze the equation which is obtained by perturbing not only the function
h in the forward integral, but also by perturbing the final condition and the functions f and 1. In order to
analyze this type of completely perturbed equation, it is necessary to study the Lp-stability of the solution of
the nonhomogeneous BDSDE. Some interesting problems arise from the problem of perturbations, such as
the closeness between the solutions of the perturbed and unperturbed equations, time intervals on which
the difference of these solutions stay close enough etc., which could be the topic of the study of forthcoming
papers.

6. Appendix

Let function satisfies condition (H3). Since ρ(x) is the concave function with ρ(0) = 0, it follows for the
0 ≤ x ≤ 1 that ρ(x)

x ≥
ρ(1)

1 , i.e.
ρ(x) ≥ ρ(1)x, 0 ≤ x ≤ 1.

Let us define the function ρ1(x) := x + ρ(x), which has the same properties as the function ρ: ρ1 : R+
→ R+,

it is continuous, nondecreasing and concave, such that ρ1(0) = 0 and∫
0+

dx
x + ρ(x)

≥
ρ(1)

1 + ρ(1)

∫
0+

dx
ρ(x)

= ∞.

We can apply Bihari’s inequality [3] adapted to (17): Let 1 be monotone continuous function, strictly
positive on an interval I, containing a point u0, which vanishes nowhere in I. Let u and k be continuous
functions on an interval J = (α, β] such that u(J) ⊂ I, and suppose that k has a fixed sign in J. Suppose that

u(t) ≤ a +

∫ β

t
k(s)1(u(s)) ds, t ∈ J.

If either
(i) 1 is nondecreasing and k is nonnegative,

or
(ii) 1 is nonincreasing and k is nonpositive,

then

u(t) ≤ G−1

(
G(a) +

∫ β

t
k(s) ds

)
, α1 < t ≤ β, (31)

where G(u) =
∫ u

u0

dx
1(x) , u ∈ I and α1 = max{µ1, µ2}, with

µ1 = inf
{
µ ∈ J : a +

∫ β

t
k(s)1(u(s)) ds ∈ I, µ ≤ t ≤ β

}
,

µ2 = inf
{
µ ∈ J : G(a) +

∫ β

t
k(s) ds ∈ G(I), µ ≤ t ≤ β

}
.

In order to apply Bihari’s inequality adapted to (17), it is necessary to justify its conditions. The intervals
I and J are I = [0,∞) and J = [0,T], and u(s) = E|Y(s)|p, k(s) = max{c1, c2}. Further, for every s ∈ [0,T], we
have that E|Y(s)|p ∈ I, which implies u(J) ⊂ I. A constant a from Bihari’s theorem is E|ξ|p + c4, the function
G(u) =

∫ u

u0

dx
x+ρ(x) and

µ1 = inf
{
µ ∈ J : E|ξ|p + c4 + max{c1, c2}

∫ τn

t
[E|Y(s)|p + ρ(E|Y(s)|p)] ds ∈ I, µ ≤ t ≤ T

}
= 0,

µ2 = inf
{
µ ∈ J : G(E|ξ|p + c4C) + max{c1, c2}

∫ τn

t
[E|Y(s)|p + ρ(E|Y(s)|p)] ds ∈ G(I), µ ≤ t ≤ T

}
= 0,
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while α1 = max{µ1, µ2} = 0.
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