
Filomat 31:8 (2017), 2381–2390
DOI 10.2298/FIL1708381T

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

An Accelerated Jacobi-gradient Based Iterative Algorithm
for Solving Sylvester Matrix Equations

Zhaolu Tiana, Maoyi Tianb,c, Chuanqing Gud, Xiaoning Haoa

aCollege of Big Data Science, Taiyuan University of Technology, Taiyuan 030024, P.R.China
bGeomatics College, Shandong University of Science and Technology, Qingdao 266590, P.R.China

cKey Laboratory of Surveying and Mapping Technology on Island and Reef,National Administration of Surveying, Mapping and Geoinfomation
dDepartment of Mathematics, Shanghai University, Shanghai 200444, P.R.China

Abstract. In this paper, an accelerated Jacobi-gradient based iterative (AJGI) algorithm for solving Sylvester
matrix equations is presented, which is based on the algorithms proposed by Ding and Chen [6], Niu et al.
[18] and Xie et al. [25]. Theoretical analysis shows that the new algorithm will converge to the true solution
for any initial value under certain assumptions. Finally, three numerical examples are given to verify the
efficiency of the accelerated algorithm proposed in this paper.

1. Introduction

Consider the iterative solution of the following Sylvester matrix equation :

AX + XB = C, (1)

where A ∈ Rm×m, B ∈ Rn×n, C ∈ Rm×n are known matrices, and X ∈ Rm×n is the matrix to be determined.
Eq.(1) plays an important role in some fields of applied mathematics and control theory [1, 5, 11]. Eq.(1)

is mathematically equivalent to the following linear equation

Ax = c, (2)

where A = I ⊗ A + BT
⊗ I, and vectors x and c contain the concatenated columns of the matrices X and

C, respectively. It is well-known that Eq.(1) admits a unique solution if and only if A and −B possess no
common eigenvalues [14]. However, this is a numerically poor way to determine the solution X of Eq.(1), as
the dimensions of matrices increase greatly and may be ill-conditioned, so this approach is only applicable
for small sized Sylvester matrix equations.

2010 Mathematics Subject Classification. Primary 15A24; Secondary 65F30, 65F35
Keywords. Sylvester matrix equations, Jacobi-gradient based algorithm, Accelerated, Convergence
Received: 28 November 2015; Accepted: 15 April 2016
Communicated by Dijana Mosić
Corresponding author: Zhaolu Tian
This work is supported by the Key Laboratory of Surveying and Mapping Technology on Island and Reef, National Administration

of Surveying, Mapping and Geoinfomation (2013A03), National key scientific instrument and equipment development projects
(2013YQ120343), the National Natural Science Foundation of China (11401422) and the National Natural Science Foundation of China
(11371243)

Email address: tianzhaolu2004@126.com (Zhaolu Tian)

Z.L.Tian et al. / Filomat 31:8 (2017), 2381–2390 2382

When the matrices A and B are small and dense, the algorithms [3, 14] are attractive, which consist in
transforming A and B into triangular or Hessenberg form by an orthogonal similarity transformation, and
then solving the resulting matrix equation directly by a back-substitution process. When the matrices A and
B are large and sparse, iterative methods are more efficient to solve Eq.(1) such as the Smith,s method [19], the
alternating-direction implicit (ADI) method [4, 16, 21], the HSS and corresponding methods [2, 23, 27, 28],
the SSHI method [15], and the KPIM method [20], etc.

Recently, Ding et al.in [6, 9, 10, 12, 22, 24, 26] presented a gradient based iterative (GI) algorithm for
solving a class of matrix equations by applying the so-called hierarchical identification principle [7, 8],
which regards the unknown matrix as the system parameter matrix to be identified, and then construct a
recursive formula to approximate the unknown solution. Niu et al. [18] proposed a relaxed gradient based
iterative (RGI) algorithm for solving Sylvester matrix equations. The numerical experiments show that the
convergent behavior of Niu,s algorithm is better than Ding,s algorithm when the relaxation factor is chosen
appropriately. Xie et al. [25] proposed an accelerated gradient based iterative (AGBI) algorithm, on the
basis of the information generated in the previous half-step, the authors introduce a relaxation factor to
improve the RGI algorithm.

In [13], Fan, Gu and Tian realized the matrix multiplication in GI algorithm would cost large time and
spaces if the matrices A and B are large and dense, so the authors presented a Jacobi-gradient iterative
(JGI) algorithm.In order to improve the convergent rate of the JGI algorithm, in this paper, we propose an
accelerated Jacobi-gradient based iterative (AJGI) algorithm for solving Sylvester matrix equations based
on the algorithms [6, 13, 18, 25], the convergence condition of the AJGI algorithm is analyzed, and three
numerical examples are given to compare the AJGI algorithm with the algorithms in [6, 13, 17, 18, 25].

2. GI algorithm, RGI algorithm, AGBI algorithm and JGI algorithm

We firstly recall the GI algorithm proposed by Ding et al. [6] for solving Eq.(1). Regarding Eq.(1) as the
following two matrix equations:

AX = C − XB , XB = C − AX. (3)

From (3) Ding et al. presented the GI algorithm.
Algorithm 1: The gradient based iterative (GI) algorithm
Step 1: Given any two initial approximate solution block vectors X1(0),X2(0) , and then

X(0) = [X1(0) + X2(0)]/2
Step 2: For k = 1, 2, · · · , until converges, do:
Step 3: X1(k) = X(k − 1) + µAT[C − AX(k − 1) − X(k − 1)B]
Step 4: X2(k) = X(k − 1) + µ[C − AX(k − 1) − X(k − 1)B]BT

Step 5: X(k) = [X1(k) + X2(k)]/2
Step 6: End
It is shown in [6] that the GI algorithm converges as long as

0 < µ <
2

λmax(AAT) + λmax(BTB)
,

where λmax(AAT) is the largest eigenvalue of AAT.
In [18], Niu at al. proposed a relaxed gradient based iterative algorithm for solving Eq.(1) by introducing

a relaxed factor ω̂.
Algorithm 2: The relaxed gradient based iterative (RGI) algorithm
Step 1: Given two initial approximate solution block vectors X1(k − 1) and X2(k − 1)
Step 2: For k = 1, 2, · · · , until converges, do:
Step 3: X(k − 1) = ω̂X1(k − 1) + (1 − ω̂)X2(k − 1)
Step 4: X1(k) = X(k − 1) + (1 − ω̂)µAT[C − AX(k − 1) − X(k − 1)B]
Step 5: X2(k) = X(k − 1) + ω̂µ[C − AX(k − 1) − X(k − 1)B]BT

Step 6: End

Z.L.Tian et al. / Filomat 31:8 (2017), 2381–2390 2383

The RGI algorithm has been proved to be convergent when

0 < µ <
1

ω̂(1 − ω̂)(λ1 + λ2 + λ3)
,

where λ1 = λmax(AAT), λ2 = λmax(BTB), and λ3 = σmax(BAT) denotes the largest singular value of matrix
BAT.

By using the information of X1(k) to update X(k − 1), Xie et al. [25] proposed the following accelerated
gradient based iterative (AGBI) algorithm.

Algorithm 3: The accelerated gradient based iterative (AGBI) algorithm
Step 1: Given two initial approximate solution block vectors X1(k − 1) and X2(k − 1)
Step 2: For k = 1, 2, · · · , until converges, do:
Step 3: X(k − 1) = (1 − ω̄)X1(k − 1) + ω̄X2(k − 1)
Step 4: X1(k) = X(k − 1) + ω̄µAT[C − AX(k − 1) − X(k − 1)B]
Step 5: X(k − 1) = (1 − ω̄)X1(k) + ω̄X2(k − 1)
Step 6: X2(k) = X(k − 1) + (1 − ω̄)µ[C − AX(k − 1) − X(k − 1)B]BT

Step 7: End
From Theorem 3.4 [25], we conclude that the AGBI algorithm will be convergent when

0 < µ < min
{

2
ω̄‖A‖2

,
2

(1 − ω̄)‖B‖2

}
.

In order to reduce computational cost and save storage space in GI algorithm, the authors in [13]
presented the Jacobi-gradient iterative (JGI) algorithm to solve the Lyapunov matrix equation

AX + XAT = Q,

and obtained its convergent theorem. Now, we will use the JGI algorithm to solve Eq.(1).
Let A = D1 + F1 and B = D2 + F2, where D1,D2 are the diagonal parts of A and B, respectively. Based on

(3), we have
D1X = C − XB − F1X,

XD2 = C − AX − XF2.

Similar to the GI algorithm, the Jacobi-gradient iterative algorithm can be expressed as follows:
Algorithm 4: The Jacobi-gradient iterative (JGI) algorithm
Step 1: Given any two initial approximate solution block vectors X1(0),X2(0) , and then

X(0) = [X1(0) + X2(0)]/2
Step 2: For k = 1, 2, · · · , until converges, do:
Step 3: X1(k) = X(k − 1) + µD1[C − AX(k − 1) − X(k − 1)B]
Step 4: X2(k) = X(k − 1) + µ[C − AX(k − 1) − X(k − 1)B]D2
Step 5: X(k) = [X1(k) + X2(k)]/2
Step 6: End

3. The Accelerated Jacobi-Gradient Based Iterative (AJGI) Algorithm

In Algorithm 4, we use the information of X(k− 1) instead of X2(k− 1) to update X(k− 1), and introduce
two relaxation factors ω1 and ω2, then obtain the following accelerated Jacobi-gradient based iterative
(AJGI) algorithm.

Algorithm 5: The accelerated Jacobi-gradient based iterative (AJGI) algorithm
Step 1: Given two initial approximate solution block vectors X1(k − 1) and X2(k − 1)
Step 2: For k = 1, 2, · · · , until converges, do:
Step 3: X(k − 1) = [X1(k − 1) + X2(k − 1)]/2
Step 4: X1(k) = X(k − 1) + (1 − ω1)µD1[C − AX(k − 1) − X(k − 1)B]

Z.L.Tian et al. / Filomat 31:8 (2017), 2381–2390 2384

Step 5: X̂(k − 1) = (1 − ω2)X(k − 1) + ω2X1(k)
Step 6: X2(k) = X̂(k − 1) + ω1µ[C − AX̂(k − 1) − X̂(k − 1)B]D2
Step 7: End

Theorem 3.1. If the Sylvester matrix equation (1) is consistent and has a unique solution X, then the iterative
sequences X(k) generated by Algorithm 4 converge to X, i.e., limk→∞ X(k) = X; or the error X(k)−X converge to zero
for any initial value X(0) when µ satisfies

‖I − µD1A‖2 + ‖I − µBD2‖2 + µτ1σ2 + µτ2σ1 < 2,

where τ1 = ‖D1‖2, τ2 = ‖D2‖2, σ1 = ‖A‖2, and σ2 = ‖B‖2, respectively.

Proof. Define the error matrices

X̃(k) := X(k) − X,

X̃1(k) := X1(k) − X, X̃2(k) := X2(k) − X

According to Algorithm 4, we can obtain

X̃(k) = X1(k)/2 + X2(k)/2 − X
= X̃1(k)/2 + X̃2(k)/2,

X̃1(k) = X(k − 1) + µD1[C − AX(k − 1) − X(k − 1)B] − X
= X̃(k − 1) − µD1AX̃(k − 1) − µD1X̃(k − 1)B,

X̃2(k) = X(k − 1) + µ[C − AX(k − 1) − X(k − 1)B]D2 − X
= X̃(k − 1) − µ[AX̃(k − 1) + X̃(k − 1)B]D2
= X̃(k − 1) − µAX̃(k − 1)D2 − µX̃(k − 1)BD2.

then
X̃(k) = X̃1(k)/2 + X̃2(k)/2

= X̃(k − 1) − 1
2µD1AX̃(k − 1) − 1

2µD1X̃(k − 1)B
−

1
2µAX̃(k − 1)D2 −

1
2µX̃(k − 1)BD2.

Taking the 2-norm of X̃(k), then we have

‖X̃(k)‖2 ≤
1
2 (‖I − µD1A‖2 + ‖I − µBD2‖2

+ µ‖D1‖2‖B‖2 + µ‖D2‖2‖A‖2)‖X̃(k − 1)‖2
= 1

2 (‖I − µD1A‖2 + ‖I − µBD2‖2 + µτ1σ2 + µτ2σ1)‖X̃(k − 1)‖2,

where τ1 = ‖D1‖2 = max
1≤i≤m

|d1(ii)|, τ2 = ‖D2‖2 = max
1≤i≤n

|d2(ii)|, σ1 and σ2 are the largest singular values of A and

B, respectively.
Let

q =
1
2

(‖I − µD1A‖2 + ‖I − µBD2‖2 + µτ1σ2 + µτ2σ1),

we get

‖X̃(k)‖2 ≤ q‖X̃(k − 1)‖2 ≤ · · · ≤ qk
‖X̃(0)‖2.

Therefore, if

‖I − µD1A‖2 + ‖I − µBD2‖2 + µτ1σ2 + µτ2σ1 < 2, (4)

then
X̃(k)→ 0 as k→∞.

This completes the proof of Theorem 3.1.

Z.L.Tian et al. / Filomat 31:8 (2017), 2381–2390 2385

Theorem 3.2. If the Sylvester matrix equation (1) is consistent and has a unique solution X, then the iterative
sequences X(k) generated by Algorithm 5 converge to X, i.e., limk→∞ X(k) = X; or the error X(k)−X converge to zero
for any initial value X(0) when µ satisfies

‖I − (1 − ω1)µD1A‖2 + (1 − ω1)µτ1σ2 + τ‖I − ω1µBD2‖2 + ω1µττ2σ1 < 2

and 0 < ω1 < 1, ω2 > 0.

Proof. Define the error matrices

X̄(k) := X(k) − X, ¯̂X(k) := X̂(k) − X,
X̄1(k) := X1(k) − X, X̄2(k) := X2(k) − X

From Algorithm 5 it is easy to get

X̄(k) = 1
2 X1(k) + 1

2 X2(k) − X
= 1

2 X̄1(k) + 1
2 X̄2(k),

X̄1(k) = X(k − 1) + (1 − ω1)µD1[C − AX(k − 1) − X(k − 1)B] − X
= X̄(k − 1) − (1 − ω1)µD1AX̄(k − 1) − (1 − ω1)µD1X̄(k − 1)B,

X̄2(k) = X̂(k − 1) + ω1µ[C − AX̂(k − 1) − X̂(k − 1)B]D2 − X
= ¯̂X(k − 1) − ω1µ[A ¯̂X(k − 1) + ¯̂X(k − 1)B]D2

= ¯̂X(k − 1) − ω1µA ¯̂X(k − 1)D2 − ω1µ
¯̂X(k − 1)BD2.

Since
¯̂X(k − 1) = X̄(k − 1) − µω2(1 − ω1)D1AX̄(k − 1) − µω2(1 − ω1)D1X̄(k − 1)B,

then
‖

¯̂X(k − 1)‖2 ≤ (‖I − µω2(1 − ω1)D1A‖2 + µω2(1 − ω1)τ1σ2)‖X̄(k − 1)‖2 = τ‖X̄(k − 1)‖2

with 0 < ω1 < 1, ω2 > 0.
Since 0 < ω1 < 1, then we have

‖X̄(k)‖2 = ‖ 1
2 X̄1(k) + 1

2 X̄2(k)‖2
≤

1
2‖X̄1(k)‖2 + 1

2‖X̄2(k)‖2
≤

1
2 (‖I − (1 − ω1)µD1A‖2 + (1 − ω1)µτ1σ2)‖X̄(k − 1)‖2

+ 1
2 (τ‖I − ω1µBD2‖2 + ω1µττ2σ1)‖X̄(k − 1)‖2.

Let

p =
1
2

(‖I − (1 − ω1)µD1A‖2 + (1 − ω1)µτ1σ2) +
1
2

(τ‖I − ω1µBD2‖2 + ω1µττ2σ1),

Then we have

‖X̄(k)‖2 ≤ p‖X̄(k − 1)‖2 ≤ · · · ≤ pk
‖X̄(0)‖2.

Therefore, if

‖I − (1 − ω1)µD1A‖2 + (1 − ω1)µτ1σ2 + τ‖I − ω1µBD2‖2 + ω1µττ2σ1 < 2, (5)

then
X̄(k)→ 0 as k→∞.

This completes the proof of Theorem 3.2

Z.L.Tian et al. / Filomat 31:8 (2017), 2381–2390 2386

Similar to Algorithm 3, we can get another accelerated Jacobi-gradient based iterative algorithm.
Algorithm 6:
Step 1: Given two initial approximate solution block vectors X1(k − 1) and X2(k − 1)
Step 2: For k = 1, 2, · · · , until converges, do:
Step 3: X(k − 1) = ω1X1(k − 1) + (1 − ω1)X2(k − 1)
Step 4: X1(k) = X(k − 1) + (1 − ω1)µAT[C − AX(k − 1) − X(k − 1)B]
Step 5: X̀(k − 1) = (1 − ω2)X(k − 1) + ω2X1(k)
Step 6: X2(k) = X̀(k − 1) + ω1µ[C − AX̀(k − 1) − X̀(k − 1)B]BT

Step 7: End

Theorem 3.3. If the Sylvester matrix equation (1.1) is consistent and has a unique solution X, then the iterative
sequences X(k) generated by Algorithm 6 converge to X, i.e., limk→∞ X(k) = X; or the error X(k)−X converge to zero
for any initial value X(0) when 0 < ω1 < 1, ω2 > 0 and µ satisfies

ω1(‖I − (1 − ω1)µD1A‖2 + (1 − ω1)µτ1σ2) + τ(1 − ω1)(‖I − ω1µBD2‖2 + ω1µτ2σ1) < 1. (6)

Proof. This proof is similar to that of Theorem 3.2.

Remark 3.4. In Theorems 3.1, 3.2 and 3.3, we can choose relative large u, ω1 not satisfying the inequalities (4), (5)
and (6), but the JGI and AJGI algorithms also converge to the true solutions.This is because that the inequalities are
just the sufficient conditions but not the necessary conditions, and we magnify the inequalities too large during the
proofs. However, it is difficult to find the optimal values of the parameters µ, ω1 and ω2.

Remark 3.5. In fact, the AJGI algorithm doesn’t increase the computational cost obviously compared with the JGI
algorithm, since the matrix X̂(k − 1) in Algorithm 5 can been written equivalently as follows:

X̂(k − 1) = X(k − 1) + ω2(1 − ω1)µD1[C − AX(k − 1) − X(k − 1)B],

where X(k− 1) and D1[C−AX(k− 1)−X(k− 1)B] have been computed in previous steps, so X̂(k− 1) can be obtained
at a fraction of the cost. We can get the similar conclusion from Algorithm 6.

4. Numerical examples

In this section, three examples are given to illustrate the effectiveness of the AJGI algorithm. The
numerical experiments are performed in Matlab R2010 on an Intel dual core processor (3.20 GHZ, 4 GB
RAM). We use three iteration parameters to test the five algorithms in this paper with the iteration step
(denoted as IT), the computing time in seconds (denoted as CPU) and the relative residual (denoted as ek).

Example 4.1. [6] Consider the following sylvester matrix equation

AX + XB = C

with

A =

[
1 1
2 −4

]
, B =

[
1 1
−1 1

]
, C =

[
3 10
−12 −8

]
.

In Fig.1, the convergence curves by five iterative solvers are recorded. From Fig.1 and Table 1, we find that the AJGI
algorithm converges faster than GI, JGI, RGI and AGBI algorithms, respectively, and the AJGI algorithm outperforms
other four algorithms in both iteration step and CPU time.

Z.L.Tian et al. / Filomat 31:8 (2017), 2381–2390 2387

0 5 10 15 20 25 30

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Iteration number k

T
he

 r
el

at
iv

e
re

si
du

al

GI
JGI
RGI
AGBI
AJGI

Figure 1: Comparison of convergence curves for GI, JGI, RGI, AGBI and AJGI algorithms

Table 1: Numerical results of Example 1.

Method IT CPU ek
GI 215 3.424 × 10−3 9.3416e − 014
JGI 256 1.862 × 10−3 9.1605e − 014
RGI 185 2.847 × 10−3 9.2090e − 014

AGBI 163 3.022 × 10−3 8.9345e − 014
AJGI 97 0.922 × 10−3 8.2423e − 014

Example 4.2. [6] In this example, the experimental matrices contain a variable α, we choose m = n = 30. From
Figs.2, 3 and Table 2 we find that the AJGI algorithm converges faster than GI, JGI, RGI and AGBI algorithms,
respectively, and the larger the relaxed factor ω2 is, the faster the convergence of the AJGI algorithm. However, if ω2
is too large, the algorithm may diverge. How to choose the optimal convergence factor ω2 is still an open problem.

0 10 20 30 40 50

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Iteration number k

T
he

 r
el

at
iv

e
re

si
du

al

ω2 = 2

ω2 = 4

ω2 = 6

ω2 = 10

Figure 2: Convergence curves for GI, JGI, RGI, AGBI and AJGI algorithms with α = 4

Table 2: Numerical results of Example 2.

Method IT CPU ek
GI 508 6.437 × 10−2 9.7462e − 014
JGI 321 3.757 × 10−2 9.4241e − 014
RGI 440 5.640 × 10−2 9.6562e − 014

AGBI 401 6.047 × 10−2 9.6299e − 014
AJGI 160 2.429 × 10−2 8.7991e − 014

Z.L.Tian et al. / Filomat 31:8 (2017), 2381–2390 2388

0 10 20 30 40 50

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Iteration number k
T

he
 r

el
at

iv
e

re
si

du
al

GI
JGI
RGI
AGBI
AJGI

Figure 3: Convergence curves for AJGI algorithm with ω2 = 2, 4, 6, 10 and α = 2.5

Example 4.3. Suppose that AX+XB = C, where A,B and C are 60×60 matrices and generated in Matlab as follows:
rand (’state’,0);
A=triu(rand(m,n),1)+diag(α+diag(rand(m)))′ ;
B = A′ ; C=rand(m,m)+eye(m)*2 ; C = C + C′ . In this example, we choose α = 6, and the systems is very ill-
conditioned. Here, we will also compare the AJGI algorithm with the SSJGI algorithm [17]. The SSJGI algorithm
improves the JGI algorithm by introducing a parameter θ, and it converges faster than the JGI algorithm by choosing
appropriate values of θ.

According to Figs.4, 5 and Table 3, we can see that the AJGI algorithm converges faster than GI, JGI, RGI, AGBI,
AJGI and SSJGI algorithms, respectively.

0 5 10 15 20 25 30 35 40

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Iteration number k

T
he

 r
el

at
iv

e
re

si
du

al

GI
JGI
RGI
AGBI
AJGI

Figure 4: Convergence curves for GI, JGI, RGI, AGBI and AJGI algorithms

0 5 10 15 20 25 30

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Iteration number k

T
he

 r
el

at
iv

e
re

si
du

al

SSJGI
AJGI

Figure 5: Convergence curves for AJGI and SSJGI algorithms with θ = 12

Z.L.Tian et al. / Filomat 31:8 (2017), 2381–2390 2389

Table 3: Numerical results of Example 3.

Method IT CPU ek
GI 847 0.360472 9.8006e − 014
JGI 499 0.206684 9.4557e − 014
RGI 735 0.319426 9.6559e − 014

AGBI 397 0.194878 9.4300e − 014
SSJGI 161 0.067995 9.4300e − 014
AJGI 75 0.036669 6.5804e − 014

5. Conclusions

In this paper, we propose an accelerated Jacobi-gradient based iterative (AJGI) algorithm for solving
Sylvester matrix equation AX + XB = C, and show that the iterative solution converges to the exact solution
for any initial value under certain assumptions. Moreover, the AJGI algorithm can be used to determine
the iterative solutions of nonlinear matrix equations, e.g., the Riccati equations. Finally, three numerical
examples are given to illustrate that the AJGI algorithm outperforms other five algorithms mentioned in
this paper in both iteration step and CPU time.

Acknowledgements

The authors are grateful to thank the anonymous referee for their recommendations and valuable
suggestions and Professor Dijana Mosic for the communication.

References

[1] A.Andrew, Eigenvectors of certain matrices,Linear Algebra Appl. 7(2) (1973) 157-162.
[2] Z.Z.Bai, On Hermitian and skew-Hermitian splitting iteration methods for continuous Sylvester equations, J. Comput. Math.

29(2) (2011) 185-198.
[3] R. Bartels, G.W. Stewart, Solution of the matrix equation AX + XB = C, Comm. ACM. 15(9) (1972) 820-826.
[4] D. Calvetti, L. Reichel, Application of ADI iterative methods to the restoration of noisy images, SIAM J. Matrix Anal. Appl. 17(1)

(1996)165-186.
[5] W.Chen, X.Wang, T.Zhong,The structure of weighting coefficient matrices of Harmonic differential quadrature and its applica-

tion,Commun.Numer.Methods Eng. 12(8) (1996) 455-460.
[6] F.Ding, T.Chen, Gradient based iterative algorithms for solving a class of matrix equations, IEEE Trans.Autom.Control. 50(8)

(2005)1216-1221.
[7] F. Ding, T. Chen, Hierarchical gradient-based identi cation of multivariable discretetime systems, Automatica. 41(2) (2005)

315-325.
[8] F. Ding, T. Chen, Hierarchical least squares identi cation methods for multivarible systems, IEEE Trans. Autom. Control. AC-

50(3)(2005) 397-402.
[9] F. Ding, T.Chen, Iterative least squares solutions of coupled Sylvester matrix equations, Syst.Control.Lett. 54(2) (2005) 95-107.

[10] F. Ding, P.X. Liu, J. Ding, Iterative solutions of the generalized Sylvester matrix equation by using the hierarchical identification
principle, Appl. Math.Comput. 197(1) (2008) 41-50.

[11] F.Ding, X.H.Wang, Q.J.Chen, Y.S.Xiao, Recursive least squares parameter estimation for a class of output nonlinear systems based
on the model decomposition, Circuits Syst. Signal Process. 35 (2016). doi: 10.1007/s00034-015-0190-6.

[12] F.Ding, H.Zhang, Gradient-based iterative algorithm for a class of the coupled matrix equations related to control systems,
Iet.Control.Theory.A. 8(15) (2014) 1588-1595.

[13] W. Fan, C. Gu, Z. Tian, Jacobi-gradient iterative algorithms for Sylvester matrix equations, Proceedings of 14th Conference of the
International Linear Algebra Society, Shanghai University, Shanghai, China, July 16-20, 2007.

[14] G.H. Golub, S. Nash, C.F. Van Loan, A HessenbergCSchur method for the matrix equation AX + XB = C, IEEE Trans. Automat.
Control. 24(6) (1979) 909-913.

[15] C. Gu, H. Xue, A shift-splitting hierarchical identi cation method for solving Lyapunov matrix equations, Linear Alg. Appl.
430(5-6)(2009) 1517-1530.

[16] D.Y. Hu, L.Reichel, Krylov-subspace methods for the Sylvester equation, Linear Alg. Appl. 172(92) (1992), 283-313.
[17] S.K.Li, T.Z.Huang, A shift-splitting Jacobi-gradient algorithm for Lyapunov matrix equations arising from control theory, J.

Comput. Anal. Appl. 13(7)(2011) 1246-1257.
[18] Q.Niu, X.Wang, L.Z.Lu, A relaxed gradient based algorithm for solving Sylvester equations, Asian Journal of Control. 13 (3)

(2011) 461-464.

Z.L.Tian et al. / Filomat 31:8 (2017), 2381–2390 2390

[19] R.A. Smith, Matrix equation XA + BX = C, SIAM J. Appl. Math. 16(1) (1968) 198-201.
[20] Z.L.Tian, C.Q.Gu, A numerical algorithm for Lyapinov equations, Appl. Math. Comput. 202(1) (2008) 44-53.
[21] E.L. Wachspress, Iterative solution of the Lyapunov matrix equation, Appl. Math. Lett. 1(1) (1988) 87-90.
[22] Y.J.Wang, F.Ding, Iterative estimation for a nonlinear IIR filter with moving average noise by means of the data filtering technique,

IMA J. Math. Control Inf. (2016). doi:10.1093/imamci/dnv067.
[23] X.Wang,W.W.Li,L.Z.Mao,On positive-definite and skew-Hermitian splitting iteration methods for continuous Sylvester equation

AX+XB=C,Comput.Math.Appl. 66(11) (2013) 2352-2361.
[24] L.Xie,Y.J.Liu,H.Z.Yang, Gradient based and least squares based iterative algorithms for matrix equations AXB+CXTD = F, Appl.

Math. Comput. 217 (5) (2010) 2191-2199.
[25] Y.J.Xie, C.F.Ma, The accelerated gradient based iterative algorithm for solving a class of generalized Sylvester-transpose matrix

equation, Appl. Math. Comput. 273(C) (2016) 1257-1269.
[26] H.M.Zhang, F.Ding, A property of the eigenvalues of the symmetric positive definite matrix and the iterative algorithm for

coupled Sylvester matrix equations, J. Franklin Inst. 351(1)(2014) 340-357.
[27] Q.Q.Zheng, Ch.F.Ma, On normal and skew-Hermitian splitting iteration methods for large sparse continuous Sylvester equations,

J.Comput.Appl.Math. 268(1) (2014)145-154.
[28] D.M.Zhou, G.L.Chen, Q.Y.Cai, On modifeid HSS iteration methods for continuous Sylvester eqautions, Appl. Math. Comput.

263(C)(2015) 84-93.

