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Abstract. A method of spatial (integral) differentiation of multivector fields in an N̂ -dimensional manifold
M, into which a hyper-rectangle [a, b] is mapped by a bijective smooth map r : [a, b] → M, has been
introduced. For a class of discontinuous multivector fields a new concept of a residual field as well as the
concept of total HN̂ integrability have been defined. Finally, this led naturally to an extension of Cauchy’s
residue theorem in M.

1. Introduction

The Kurzweil-Henstock integral [2, 5], defined by means of Riemann sums, and with certain modification
of the fineness of a partition of the interval [a, b] ⊂ R, was the first generalized Riemann integral. This integral
is equivalent to the integrals of Denjoy and Peron, [5]. The McShane integral [3], which is equivalent to the
Lebesque integral [5], was the second generalized Riemann integral. In contrast to the one-dimensional case,
the Kurzweil-Henstock integral in RN does not integrate all derivatives (see Pfeffer [13]). In order to remove
this flow Mawhin [12] added a condition restricting the class of admissible partitions of an N-dimensional
interval. This led to another Riemann type integral named regular partition integral, that would integrate all
derivatives inRN. Macdonald [11] used the regular partition integral to overcome the deficiency in Hestenes’
proof of Stokes’ theorem, [1, 6]. Sarić [15] defined a new integral named total H1-integral. This integral
solves the problem in formulating the fundamental theorem of calculus in R whenever a primitive F is
defined at the end points of [a, b] ⊂ R. Accordingly, in what follows, we will try to extend Cauchy’s integral
formula to an N̂-dimensional manifold M immersed in RN, for a large scale class of multivector fields F,
and in the spirit of Hestenes’ appealing proof. To do this, we must firstly define a so-called spatial (integral)
derivative of F in M. After that it remains to define an integral that would integrate this derivative.

During the last few decades, many researchers focused their attention on the study and generalizations
of the Montgomery identity. In 2015., using the total value of the Riemann integral, Sarić and Jakupović [14]
establish a generalized Montgomery identity. In the same year, Sarikaya, Filiz and Kiris [17] used a generalized
Montogomery identity for the Riemann-Liouville fractional integrals to establish some new Ostrowski type
integral inequalities, and Hussain and Rashad [9] generalized n-dimensional Montgomery identity, which
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they used to subsequently find an Ostrowski type integral inequalities unifying the continuous, discrete and
quantum cases. Accordingly, a further generalization of the n-dimensional Montgomery identity may be
established on the total value of the HN̂-directed integral defined in what follows.

2. Preliminaries

The ambient space of this note is the N-dimensional Euclidean space RN. By N we denote the set of
natural numbers. The measure |E| of a set E in RN is the Lebesgue outer measure. Let (ei)N

i=1 = (e1, e2, ..., eN)
be the standard orthonormal basis for RN. With the Cartesian coordinate system every point x in RN

has an ordered set
(
xi
)N

i=1
associated with it. We work in RN with the usual inner (dot) product x · y

=
∑N

i=1 xiyi and the associated Euclidean norm ‖·‖. Given a positive integer N̂ ≤ N, by a brick [a, b]
in RN̂ we mean an N̂-dimensional hyper-rectangle (also called an orthotope) formally defined as the
Cartesian product of N̂ non-degenerate compact intervals

[
an̂, bn̂

]
(n̂ = 1, 2, ..., N̂). In mathematical symbols,

[a, b] := ΠN̂
n̂=1

[
an̂, bn̂

]
=

[
a1, b1

]
×

[
a2, b2

]
× ... × [aN̂, bN̂]. The collection I ([a, b]) is a family of all non-

degenerate compact hyper-rectangles I = ΠN̂
n̂=1

[
un̂, vn̂

]
such that

[
un̂, vn̂

]
⊆

[
an̂, bn̂

]
, [10]. By L(N̂) we denote

the set of all multi-indices ı̂ = (in̂)N̂
n̂=1 = (i1, i2, ..., iN̂) with in̂ = 1, 2, ..., νn̂ for each n̂ = 1, 2, ..., N̂. The product

partition of [a, b], denoted by P [a, b], is a finite collection of all orthotope-point pairs ([aı̂, bı̂] , xı̂) such that
[aı̂, bı̂] = ΠN̂

n̂=1[an̂
in̂
, bn̂

in̂
] = [a1

i1
, b1

i1
] × [a2

i2
, b2

i2
] × ... × [aN̂

iN̂
, bN̂

iN̂
] and xı̂ = (xn̂

in̂
)N̂
n̂=1 = (x1

i1
, x2

i2
, ..., xN̂

iN̂
), for each ı̂ ∈ L(N̂).

In addition, for each n̂ = 1, 2, ..., N̂ the intervals [an̂
in̂
, bn̂

in̂
] are non-overlapping (they have pairwise disjoint

interiors), ∪νn̂
in̂=1[an̂

in̂
, bn̂

in̂
] =

[
an̂, bn̂

]
and xn̂

in̂
∈ [an̂

in̂
, bn̂

in̂
]. It is evident that a given product partition P ([a, b]) of

[a, b] can be tagged in infinitely many ways by choosing different points as tags. If E is a set of points
belonging to [a, b], then the restriction of P([a, b]) to E is a finite collection of ([aı̂, bı̂] , xı̂) ∈ P([a, b]) such
that each pair of [aı̂, bı̂] and E intersects in at least one point and all xı̂ are tagged in E. In mathematical
symbols, P([a, b]) |E = {([aı̂, bı̂] , xı̂) ∈ P([a, b]) | xı̂ ∈ [aı̂, bı̂] ∩ E , ∅ and ı̂ ∈ L(N̂)}. The distance of the
[aı̂, bı̂], denoted by diam([aı̂, bı̂]), is defined as follows: diam([aı̂, bı̂]) = sup{

∥∥∥x − y
∥∥∥ | x, y ∈ [aı̂, bı̂]}, where∥∥∥x − y

∥∥∥ is computed using the Euclidean norm of a vector in RN̂. Given δ : [a, b] → (0, 1), named a gauge,
a product partition P([a, b]) = {([aı̂, bı̂] , xı̂) | ı̂ ∈ L(N̂)} is called δ-fine if diam ([aı̂, bı̂]) ≤ δ (xı̂) for every
([aı̂, bı̂] , xı̂) ∈ P([a, b]). Let P([a, b]) be the family of all product partitions P([a, b]) of [a, b]. For E ⊂ [a, b]
the family of all δ-fine product partitions P([a, b]) ∈ P([a, b]) of [a, b], such that P([a, b]) |E ⊂ P([a, b]), we
denote by Pδ([a, b]) |E . For the infinite set of product partitions Pn([a, b]) ∈ P([a, b]) of [a, b], denoted by
〈Pn([a, b])〉+∞n=1, we write 〈Pn([a, b])〉+∞n=1 ∈ (P ([a, b]) ,≺) if Pn([a, b]) ≺ Pn+1([a, b]) for each n ∈N. The statement
Pn([a, b]) ≺ Pn+1([a, b]) means that for each orthotope-point pair (

[
aı̂n+1 , bı̂n+1

]
, xı̂n+1 ) ∈ Pn+1([a, b]) there exists a

corresponding orthotope-point pair (
[
aı̂n , bı̂n

]
, xı̂n ) ∈ Pn([a, b]) such that

([
aı̂n+1 , bı̂n+1

])
⊂

([
aı̂n , bı̂n

])
and

{xı̂n | (
[
aı̂n , bı̂n

]
, xı̂n ) ∈ Pn([a, b])} ⊂ {xı̂n+1 | (

[
aı̂n+1 , bı̂n+1

]
, xı̂n+1 ) ∈ Pn+1([a, b])}.

Then, (P ([a, b]) ,≺) is the family of directed sets, [4]. Clearly, for any x ∈ [a, b] there exists a directed set
〈Pn([a, b])〉+∞n=1 ∈ (P ([a, b]) ,≺) so that x is a tag for it.

If by w we denote a set of independent variables (wn̂)N̂
n̂=1 each of which takes values within the corre-

sponding interval
[
an̂, bn̂

]
, then a bijective smooth map r : [a, b]→ M ⊂ RN that is a orientation-preserving

diffeomorphism (has a smooth inverse), usually represented by an ordered set of Cartesian coordinates
x(w) = (xm̂((wn̂)N̂

n̂=1)N̂
m̂=1 associated with it, is the parameterization of an N̂-dimensional manifold denoted

by M and immersed in RN. At each point w ∈ M the set of N̂ vectors {∂wn̂ r}N̂n̂=1 (∂wn̂ denotes the partial
derivatives) constitute a basis for the tangent space =x(M) of M, [8]. Note that M is compact and has
a boundary denoted by ∂M. Clearly, the partition P(M) of M is a collection of all manifold-point pairs
(mı̂,wı̂) into which the orthotope-point pairs ([aı̂, bı̂] , xı̂) belonging to P [a, b] ∈ P([a, b]) are mapped by r.
Consequently, for a set W ⊂ M, which a image of E ⊂ [a, b] induced by r, the family Pδ(M) |W contains all
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δ-fine partitions P(M) = {(mı̂,wı̂) | ı̂ ∈ L(N̂)} ∈ P(M) of M such that P(M) |W ⊂ P(M), and (P(M),≺) is the
family of directed sets 〈Pn(M)〉+∞n=1.

In addition to the above mentioned inner product we work in RN̂ with the geometric product too. The
geometric product of vectors inRN̂, which can be decomposed into the symmetric inner and anti-symmetic
outer (wedge) product, has the following properties: associativity, distributivity and vv = v2 = ‖v‖2.
Although the vector spaceRN̂ is closed under vector addition, it is not closed under multiplication. Instead,
by multiplication and addition the vectors of RN̂ generate a larger linear space G(RN̂) called the geometric
algebra of RN̂. Given an integer k ≤ N̂, we denote by I(N̂, k) the set of all multi-indices ik = (i j)k

j=1

with 1 ≤ i1 < i2 < ... < ik ≤ N̂ , and for every ik ∈ I(N̂, k) the geometric product eik = ei1 ei2 ...eik of the
orthonormal basis vectors (ei j )

k
j=1 is reduced to the outer product Λk

j=1ei j = ei1∧ei2∧...∧eik , since the inner

product Θk
j=1ei j = ei1 · ei2 · ... · eik vanishes (there are no repeated factors in the product). The outer product

is completely determined by the following properties: associativity, linearity in both arguments, ei∧e j =

−e j∧ei for every i , j and ei∧ei = 0 for every i, [1]. A k-vector in RN̂ is any formal linear combination∑
ik∈I(N̂,k) αik eik with αik ∈R for every ik ∈ I(N̂, k). The space of k-vectors is denoted by Gk(RN̂). In particular,
G1(RN̂) = RN̂. For reasons of formal convenience, we set G0(RN̂) := R and Gk(RN̂) := {0} for k > N̂. As
G(RN̂) =

∑N̂
k=0 Gk(RN̂), the elements F of G(RN̂) are called multivectors which can be expressed uniquely

as a sum of its k-vector parts. The norm of F ∈ G(RN̂) is defined by ‖F ‖ = (
∑N̂

k=0 F
†

k Fk)1/2
≥ 0, where F †k is

reverse (or adjoint) ofF , [6]. A simple k-vector is the outer product of k linearly independent 1-vectors, that
is, v = v1∧v2∧...∧vk, [1] . Since k linearly independent vectors also span a k-dimensional subspace V of RN̂,
it is apparent that to every simple k-vector there corresponds a unique k-dimensional subspace of RN̂. In
fact, every simple k-vector can be interpreted geometrically as an oriented volume of some k-dimensional
subspace of RN̂, [6]. Hence, the invertible map ΛN̂

n̂=1∂wn̂ r ↔ M (ΛN̂
n̂=1∂wn̂ r = ∂w1 r ∧ ∂w2 r ∧ ... ∧ ∂wN̂ r) is a

one-to-one correspondence between the simple N̂-vector and the oriented manifold M into which [a, b] is
mapped by r, [1]. So, an orientation IN̂ of M is a simple N̂-vector with the norm

∥∥∥IN̂∥∥∥ = 1 related to a
positively oriented coordinate system by ΛN̂

n̂=1∂wn̂ r = IN̂ |det 1n̂m̂|
1/2, where |det 1n̂m̂|

1/2 =
∥∥∥ΛN̂

n̂=1∂wn̂ r
∥∥∥ and

1n̂m̂ = ∂wn̂ r ·∂wm̂ r. The boundary ∂M of M is an N̂ − 1-dimensional manifold with induced orientation IN̂−1
determined by the convention IN̂ = IN̂−1ℵ, where ℵ is the unit outward boundary normal at each point on
∂M. So, if I1 is a unit tangent vector on a curve in RN, then I0 = ±1 is a scalar-valued orientation assigned
respectively to the end points of the curve segments. Clearly, the two end points of a curve segment have
opposite orientation.

A multivector field f : M→ G(RN̂) associates with each point w ∈ M a multivector f (w) ∈ G(RN̂). By a
manifold field onM(M) (M(M) is a image of I( [a, b]) induced by r) we mean F : M(M) → G(RN̂) which
associates with each manifold m ∈ M(M) a multivector F (m) ∈ G(RN̂). Such a manifold field is called
additive onM(M) if for any manifold m ∈ M(M) and any collection of non-overlapping manifolds (mi)n

i=1,
whose union is m, the equality F (m) =

∑n
i=1 F (mi) holds. There are a number of different ways to define the

limit of a manifold field. The definition given below comes from the definition of the Moore-Smith limit, [4].

Definition 2.1. Let F :M(M)→ G(RN̂) be a manifold field and W ⊂ M. A multivctor field f is the Moore-Smith
limit of F on M\W if there exists a gauge δ on M such that for each 〈Pn(M)〉+∞n=1 ∈ (Pδ(M) |W ,≺) and for every ε > 0
there exists a partition Pnε (M) ∈ 〈Pn(M)〉+∞n=1 such that∥∥∥F (mı̂n ) − f

(
wı̂n

)∥∥∥ < ε, (1)

whenever (mı̂n ,wı̂n ) ∈ Pn(M)\Pn(M) |W ,Pn(M) ∈ 〈Pn(M)〉+∞n=1 and Pnε (M) ≺ Pn(M). In mathematical symbols,
f (w) = limm→w F (m).

IfF converges to its limit f almost everywhere on M, that means for every w ∈M except for a set W ⊂M
of Lebesgue outer measure zero, then the domain of f may not be all of M. If the set W is a countable set,
then F is said to converge to f nearly everywhere on M.



B. Sarić / Filomat 31:8 (2017), 2433–2439 2436

Let4w = (4wn̂)N̂
n̂=1 be an ordered set of the line segments of the curvilinear coordinates wn̂ (n̂ = 1, 2, ..., N̂),

whose end points are obtained by mapping the end points of the coordinate intervals 4xn̂ (n̂ = 1, 2, ..., N̂).
The Lebesgue outer measure |m| of m ∈ M(M) is the corresponding hyper-rectangle’s volume. Hence, we set
|m| = 4N̂w =

∥∥∥ΛN̂
n̂=1∂wn̂ r4wn̂

∥∥∥ = |det 1n̂m̂|
1/2
4w1
4w2...4wN̂. Now, we are in a position to define a differential

N̂-form dN̂
F : M→ G(RN̂) on M, as follows.

Definition 2.2. Let a multivector field f be the Moore-Smith limit of a manifold fieldF :M(M)→ G(RN̂) on M\W,
where W ⊂M. Then, the Moore-Smith limit of 4N̂

F = F4N̂w on M is said to be a differential N̂-form dN̂
F = f dN̂w

on M. In mathematical symbols, dN̂
F (w) = limm→w 4

N̂
F (m).

In spite of the fact that the Moore-Smith limit of 4N̂w vanishes identically on M, a differential N̂-form
dN̂
F = f dN̂w could be a null multivector field on M (A multivector field F : M → G(RN̂) is said to be

a null multivector field on M if the set {w ∈ M | F (w) , 0} is a set of Lebesgue outer measure zero, see
2.4 Definition in [2]). In what follows, we will use the notations

∑
ı̂∈L(N̂) IN̂(wı̂)4N̂

F (mı̂) = ΞI4F (P(M)) and∑
ı̂∈L(N̂) IN̂(wı̂) f (wı̂) |mı̂| = ΞI f4w(P(M)), for each (mı̂,wı̂) ∈ P(M). The following definition of the HN̂-directed

integral of IN̂dN̂
F = IN̂ f dN̂w comes from [4] and [6].

Definition 2.3. For a multivector field f : M → G(RN̂) a multivector L ∈ G(RN̂) is the HN̂-directed integral of
IN̂ f dN̂w over M, if there exists a gauge δ on M such that for each 〈Pn(M)〉+∞n=1 ∈ (Pδ(M) |W ,≺) and for every ε > 0
there exists a partition Pnε (M) ∈ 〈Pn(M)〉+∞n=1 such that

‖ΞI4F (P(M) − L‖ < ε, (2)

whenever Pn(M) ∈ 〈Pn(M)〉+∞n=1 and Pnε (M) ≺ Pn(M). In mathematical symbols, L = HN̂−
∫

M IN̂ f dN̂w.

When working with multivector fields, which have a finite number of discontinuities on M, it does
not really matter how these fields will be defined on the set of discontinuities W ⊂ M. The validity of
this statement will be clarified as the theory unfolds. As this situation will arise frequently, we adopt the
convention that, unless mentioned otherwise, such multivector fields are equal to 0 at all points at which
they can take the infinite values or not be defined at all. Accordingly, we may define a multivector field
Dex f : M→ G(RN̂) by extending f from M\W to W by Dex f (w) = 0 for w ∈W, so that

Dex f (w) =

{
f (w) , if w ∈M\W

0, if w ∈W . (3)

3. Main Results

Let forF :M(M)→ G(RN̂) the Moore-Smith limit f ofF is defined on M. Then, it follows from Definitions
2.1. and 2.2. that there exists a gauge δ on M such that for each 〈Pn(M)〉+∞n=1 ∈ (Pδ(M) |W ,≺) and for every
ε > 0 there exists a partition Pnε (M) ∈ 〈Pn(M)〉+∞n=1 such that∥∥∥ΞI f4w(Pn(M)) − ΞI4F (Pn(M))

∥∥∥ < ε ∣∣∣mı̂n ∣∣∣ , (4)

whenever (mı̂n ,wı̂n ) ∈ Pn(M), Pn(M) ∈ 〈Pn(M)〉+∞n=1 and Pnε (M) ≺ Pn(M). Consequently, in this case there
holds HN̂−

∫
M IN̂dN̂

F = HN̂−
∫

M IN̂ f dN̂w.
In the opposite case, when the Moore-Smith limit f of F on M, at some points of M, can take the infinite

values or not be defined at all and hence the HN̂-directed integrals of IN̂ f dN̂w and IN̂dN̂
F over M can be

distinguished from each other, it would be reasonable to make use of ΞI4F (Pn(M)) instead of ΞIDex f4w(Pn(M))
to define an integral of both IN̂dN̂

F and IN̂ f dN̂w over M. This is obviously our way of attempting to totalize
the HN̂-directed integral afore defined. The definition of the total HN̂-directed integral which follows is
more general one since it includes one more manifold field.
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Definition 3.1. Let W ⊂ M and G ⊂ M be disjoint sets of points at each of which, respectively, the Moore-Smith
limits f and 1 of manifold fields F :M(M) → G(RN̂) and g :M(M) → G(RN̂), can take the infinite values or not
be defined at all. A multivector L ∈ G(RN̂) is the total HN̂-directed integral of 1IN̂dN̂

F = 1IN̂ f dN̂w over M if there
exists a gauge δ on M such that for each 〈Pn(M)〉+∞n=1 ∈ (Pδ(M) |W ,≺) and for every ε > 0 there exists a partition
Pnε (M) ∈ 〈Pn(M)〉+∞n=1 such that

∥∥∥ΞgI4F (Pn(M)) − L
∥∥∥ < ε, whenever Pn(M) ∈ 〈Pn(M)〉+∞n=1 and Pnε (M) ≺ Pn(M). In

mathematical symbols, L = HN̂−vt
∫

M 1IN̂dN̂
F .

The crucial advantage of the integration process established by Definition 3,1. in comparison with any
other integration process defined until now, including all the generalized Riemann approach to integration,
lies in the fact that it is not necessary that 1 and dN̂

F , as the Moore-Smith limits of g and 4N̂
F , respectively,

to be defined at all points of M. This fact, upon which our theory is based in what follows, gives us the
possibility to include the calculus of residues in the process of integration of multivector fields in M. Before
that, we are prepared to prove the extended version of the fundamental theorem of calculus in M. As we
will see, the proof becomes trivial if the definition of the total HN̂-directed integral is applied. In fact, in
this way, we will attempt to put into a rigorous form Hestenes’ proof based on the integral definition of the
derivative and on the Riemann integral, [6]. A major motivation for the formulation of integration in this
manuscript has been to achieve as simple and general a statement of the fundamental theorem as possible,
just as was Hestenes’ motivation too.

Let IN̂−1dN̂−1σ be a simple N̂ − 1-vector describing a volume element of ∂M and let ∂M(M) be the family
of the boundaries ∂m of m ∈ M(M). An oriented differential N̂ − 1-form IN̂−1FdN̂−1σ on ∂M is said to be
totally HN̂−1-directly integrable with respect to ∂M(M) if IN̂−1FdN̂−1σ is totally HN̂−1-directly integrable on
every ∂m ∈ ∂M(M).

Definition 3.2. Let for a multivector field F the oriented differential N̂−1-form IN̂−1FdN̂−1σ be totally HN̂−1-directly
integrable with respect to ∂M(M). Then, F is said to be spatially (integrally) differentiable to f on M, if f is the
Moore-Smith limit on M of F defined by

F (m) =
I†

N̂

4N̂w
HN̂−1−vt

∫ 	

∂m
IN̂−1FdN̂−1σ. (5)

Theorem 3.3. Let W ⊂ M be a set at whose points the multivector field f, as the Moore-Smith limit on M\W of F
defined by (5), can take the infinite values or not be defined at all. Then, IN̂ f dN̂w = IN̂dN̂

F is totally HN̂-directly
integrable on M and

HN̂−vt
∫

M
IN̂ f dN̂w = HN̂−vt

∫
M
IN̂dN̂

F = HN̂−1−vt
∫ 	

∂m
IN̂−1FdN̂−1σ. (6)

Proof. As the manifold field 4N̂
F = I†

N̂
HN̂−1−vt

∫ 	
∂m IN̂−1FdN̂−1σ defined by (5) is additive and hence

ΞI4F (P(M)) = HN̂−1−vt
∫ 	

∂m
IN̂−1FdN̂−1σ,

for each P(M) ∈ P(M), it follows from Definition 3.1. that

HN̂−vt
∫

M
IN̂ f dN̂w = HN̂−vt

∫
M
IN̂dN̂

F = HN̂−1−vt
∫ 	

∂m
IN̂−1FdN̂−1σ.

In spite of the fact that the differential N̂-form dN̂
F , as the Moore-Smith limit of 4N̂

F defined by (5), can
take the infinite values at some points of W ⊂ M or be a null multivector field on M, in both cases, (6) is
valid also. All this refer us to the following definitions.
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Definition 3.4. Let W ⊂ M. For an arbitrary multivector field F, such that the oriented differential N̂ − 1-form
IN̂−1FdN̂−1σ is totally HN̂−1-directly integrable with respect to ∂M(M), the oriented differential N̂-form IN̂dN̂

F , as

the Moore-Smith limit of HN̂−1−vt
∫ 	
∂m IN̂−1FdN̂−1σ on M, is basically summable (BSδ) in W to the sum R, if there

exists a gauge δ on M such that for each 〈Pn(M)〉+∞n=1 ∈ (Pδ(M) |W ,≺) and for every ε > 0 there exists a partition
Pnε (M) ∈ 〈Pn(M)〉+∞n=1 such that |ΞI4F (Pn(M) |W ) −R| < ε, whenever Pn(M) ∈ 〈Pn(M)〉+∞n=1 and Pnε (M) ≺ Pn(M). If
in addition W can be written as a countable union of sets on each of which IN̂dN̂

F is BSδ, then IN̂dN̂
F is said to be

BSGδ in the set W. In mathematical symbols, R :=
∑

w∈W IN̂dN̂
F (w).

Definition 3.5. Let F be an arbitrary multivector field such that the oriented differential N̂−1-form IN̂−1FdN̂−1σ is to-

tally HN̂−1-directly integrable with respect to∂M(M). Then, the Moore-Smith limit IN̂dN̂
F of HN̂−1−vt

∫ 	
∂m IN̂−1FdN̂−1σ

on M is said to be the residual field denoted by R of F. In mathematical symbols, R := IN̂dN̂
F .

Comparing the two previous definitions with Definition 3.1. we may conclude that the sum of residues
of F in M is the total HN̂-directed integral of IN̂dN̂

F over M, as follows

HN̂−vt
∫

M
IN̂dN̂

F =
∑
w∈M

R (w) . (7)

Let W ⊂ M be a set of Lebesgue outer measure zero at whose points the spacial (integral) derivative f of
a multivector field F, as the Moore-Smith limit on M\W of F defined by (5), can take the infinite values or
not be defined at all. Since by (3)

∑
w∈W IN̂Dex f dN̂w = 0, this further implies that if IN̂ f dN̂w is HN̂-directly

integrable on M and hence HN̂−
∫

M IN̂ f dN̂w =
∑

w∈M\W R (w), then

HN̂−1−vt
∫ 	

∂m
IN̂−1FdN̂−1σ = HN̂−vt

∫
M
IN̂dN̂

F = HN̂−

∫
M
IN̂ f dN̂w +

∑
w∈W

R (w) . (8)

In what follows we shall formulate the previous result as a theorem and prove it explicitly.

Theorem 3.6. Let W ⊂M be a set of Lebesgue outer measure zero at whose points the spacial (integral) derivative f
of a multivector field F, as the Moore-Smith limit on M\W of F defined by (5), can take the infinite values or not be
defined at all. If IN̂dN̂

F is basically summable (BSδ) in W to the sum<, then IN̂ f dN̂w is HN̂-directly integrable on
M and

HN̂−

∫
M
IN̂ f dN̂w +< = HN̂−1−vt

∫ 	

∂m
IN̂−1FdN̂−1σ. (9)

Proof. Let the oriented differential form IN̂−1FdN̂−1σ be totally HN̂−1-directly integrable with respect to
∂M(M). Since IN̂dN̂

F is BSδ in the set W to the sum<, it follows from Definition 3.4 that there exists a gauge
δ in M such that for each 〈Pn(M)〉+∞n=1 ∈ (Pδ(M) |W ,≺) and for every ε > 0 there exists a partition Pnε (M) ∈
〈Pn(M)〉+∞n=1 such that

∥∥∥ΞI4F (Pn(M) |W ) −<
∥∥∥ < ε, whenever Pn(M) ∈ 〈Pn(M)〉+∞n=1 and Pnε (M) ≺ Pn(M). In

addition, Dex f ≡ 0 in W and ΞI4F (P(M)) = HN̂−1−vt
∫ 	
∂M IN̂−1FdN̂−1σ, whenever P (M) ∈ P(M) |W . Take (4)

into consideration it is readily seen that∥∥∥∥∥∥ΞIDex f4w(Pn(M)) − [HN̂−1−vt
∫ 	

∂M
IN̂−1FdN̂−1σ −<]

∥∥∥∥∥∥ ≤
≤

∥∥∥ΞIDex f4w(Pn(M)\Pn(M) |W ) − ΞI4F (Pn(M)\Pn(M) |W )
∥∥∥ +

∥∥∥ΞI4F (Pn(M) |W ) −<
∥∥∥ < ε(|M| + 1),

whenever Pn(M) ∈ 〈Pn(M)〉+∞n=1, 〈Pn([a, b]ik
)〉+∞n=1 ∈ (Pδ(M) |W ,≺) and Pnε (M) ≺ Pn(M). Therefore, IN̂ f dN̂w is

HN̂-directly integrable over M and

HN̂−

∫
M
IN̂ f dN̂w +< = HN̂−1−vt

∫ 	

∂M
IN̂−1FdN̂−1σ.



B. Sarić / Filomat 31:8 (2017), 2433–2439 2439

By Definition 3.5. and (6), the result (9) of Theorem 3.6. can be rewritten as

HN̂−1−vt
∫ 	

∂M
IN̂−1FdN̂−1σ = HN̂−vt

∫
M
IN̂ f dN̂w = HN̂−

∫
M
IN̂ f dN̂w +

∑
w∈W

R (w) . (10)

If the spatial (integral) derivative f of F vanishes identically on M\W, then it follows from (10) that

HN̂−1−vt
∫ 	

∂M
IN̂−1FdN̂−1σ =

∑
w∈W

R (w) . (11)

The obtained result provides an extension of Cauchy’s integral formula from the calculus of residues in M
(compare with results in [7, 16]).
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