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Fixed Point Results for Multivalued Hardy–Rogers
Contractions in b-Metric Spaces

Cristian Chifua, Gabriela Petruşela

aBabeş-Bolyai University Cluj-Napoca, Faculty of Business

Abstract. The purpose of this paper is to present some fixed point results in b-metric spaces using a
contractive condition of Hardy-Rogers type with respect to the functional H. The data dependence of the
fixed point set, the well-posedness of the fixed point problem, as well as, the Ulam-Hyres stability are also
studied.

1. Preliminaries

In 1973, Hardy and Rogers ([5]) gave a generalization of Reich fixed point theorem. Since then, many
authors have been used different Hardy-Rogers contractive type conditions in order to obtain fixed point
results. In what follows we shall recall, pure randomly, some of them.

In 2009, Kadelburg, Radenovic and Rasic ([6]), gave some common fixed point results in cone metric
spaces. Radojevic, Paunovic and Radenovic ([7]) have obtained some coincidence point theorems in
complete metric spaces. Sgroi and Vetro ([9]) have presented some results for F−contractions in complete
and ordered metric spaces. Finally, Roshan, Shobkolaei, Sedghi and Abbas ([8]) gave some common fixed
point results in b-metric spaces.

In this paper we shall give some fixed point results for multivalued operators in b-metric spaces using a
contractive condition of Hardy-Rogers type with respect to the functional H. The data dependence of the
fixed point set, the well-posedness of the fixed point problem, as well as, the Ulam-Hyres stability are also
studied.

Because we shall work in b − metric spaces, we’ll start by presenting some notions about this kind of
metric spaces.

Definition 1.1. Let X be a nonempty set and let s ≥ 1 be a given real number. A function d : X×X→ R+ is said to
be a b-metric if and only if for all x, y, z ∈ X, the following conditions are satisfied:

1. d
(
x, y

)
= 0⇐⇒ x = y;

2. d
(
x, y

)
= d

(
y, x

)
;

3. d
(
x, y

)
≤ s

[
d (x, z) + d

(
z, y

)]
.
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In this case, the pair (X, d) is called b −metric space with constant s.

Remark 1.2. The class of b-metric spaces is larger than the class of metric spaces since a b-metric space is a metric
space when s=1.

Example 1.3. Let X={0, 1, 2} and d : X × X → R+ such that d (0, 1) = d (1, 0) = d (0, 2) = d (2, 0) = 1, d (1, 2) =
d (2, 1) = α ≥ 2, d (0, 0) = d (1, 1) = d (2, 2) = 0. We have

d
(
x, y

)
≤
α
2

[
d (x, z) + d

(
z, y

)]
, for x, y, z ∈ X.

Then (X, d) is a b-metric space. If α > 2 the ordinary triangle inequality does not hold and (X, d) is not a metric
space.

Example 1.4. The set lp (R) =
{

(xn) ⊂ R|
∞

lim
n=1
|xn|

p < ∞
}
, 0 < p < 1, together with the functional d : lp (R) ×

lp (R)→ R+, d
(
x, y

)
=

(
∞

lim
n=1

∣∣∣x − y
∣∣∣p)1/p

, is a b-metric space with constant s = 21/p.

Example 1.5. Let X = R and d : X×X→ R+, d
(
x, y

)
=

∣∣∣x − y
∣∣∣3 . The (X, d) is a b-metric space with constant s = 3.

Definition 1.6. Let (X, d) be a b −metric space with constant s. Then the sequence (xn)n∈N ⊂ X is called:

1. convergent if and only if there exists x ∈ X such that d (xn, x)→ 0, as n→∞;
2. Cauchy if and only if d (xn, xm)→ 0, as n,m→∞.

Definition 1.7. Let (X, d) be a b − metric space with constant s. If Y is a nonempty subset of X, then the closure Y
of Y is the set of limits of all convergent sequences of points in Y, i.e.,

Y := {x ∈ X : ∃(xn)n∈N, xn → x, as n→∞} .

Definition 1.8. Let (X, d) be a b −metric space with constant s. Then a subset Y ⊂ X is called:

1. closed if and only if for each sequence (xn)n∈N ⊂ Y which converges to x, we have x ∈ Y;
2. compact if and only if for every sequence of elements of Y there exists a subsequence that converges to an element

of Y;
3. bounded if and only if δ (Y) := {d (a, b) : a, b ∈ Y} < ∞.

Definition 1.9. The b −metric space (X, d) is complete if every Cauchy sequence in X converges.

Let us consider the following families of subsets of a b-metric space (X, d):

P(X) = {Y |Y ⊂ X } ,P(X) := {Y ∈ P (X) |Y , ∅} ; Pb(X) := {Y ∈ P(X)| Y is bounded } ,

Pcl(X) := {Y ∈ P(X)| Y is closed} ; Pcp(X) :=
{
Y ∈ P(X)| Y is compact

}
Throughout the paper the following fuctionals are used:

• the gap functional: D : P(X) × P(X)→ R+

D(A,B) = inf{d(a, b) | a ∈ A, b ∈ B}.

In particular, if x0 ∈ X, then D (x0,B) := D ({x0} ,B) .

• the Pompeiu-Hausdorff generalized functional: H : P(X) × P(X)→ R+ ∪ {+∞},
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H(A,B) = max{ρ(A,B), ρ (B,A)},

where ρ : P(X) × P(X)→ R+ ∪ {+∞} defined as

ρ(A,B) = sup{D(a,B) | a ∈ A},

is called the excess generalized functional.

Let T : X → P(X) be a multivalued operator. A point x ∈ X is called fixed point for T if and only if
x ∈ T(x).

The set Fix(T) := {x ∈ X| x ∈ T(x)} is called the fixed point set of T, while SFix(T) = {x ∈ X| {x} = T (x)} is
called the strict fixed point set of T. Notice that SFix(T) ⊆ Fix(T).

The following properties of some of the functionals defined above will be used throughout the paper
(see [1] , [4] for details and proofs):

Lemma 1.10. Let (X,d) be a b-metric space with constant s > 1, A,B ∈ Pcl (X). Then

1. D (x,B) ≤ d (x, b), for any b ∈ B;
2. D (x,B) ≤ H (A,B), for any x ∈ A;
3. D (x,A) ≤ s

[
d
(
x, y

)
+ D

(
y,A

)]
, for all x, y ∈ X,A ⊂ X;

4. D (x,A) = 0 if and only if x ∈ A;
5. For any q > 1, a ∈ A, there exists b ∈ B such that d (a, b) ≤ qH (A,B) ;
6. d

(
xn, xn+p

)
≤ sd (xn, xn+1) + s2d (xn+1, xn+2) + ...+ sp−1d

(
xn+p−2, xn+p−1

)
+ sp−1d

(
xn+p−1, xn+p

)
, for any n ∈N

and p ∈N∗.

2. Fixed Point Results

In this section we shall present our main fixed point theorem for multivalued Hardy-Rogers operators.

Theorem 2.1. Let (X, d) be a complete b-metric space with constant s > 1 and T : X→ P(X) a multivalued operator
such that:

(i) there exist a, b, c ∈ R+, a + b + 2cs < s−1
s2 and b + cs < 1

s such that

H(T(x),T(y)) ≤ ad(x, y) + b
[
D(x,T(x)) + D(y,T(y))

]
+ c

[
D

(
x,T

(
y
))

+ D
(
y,T (x)

)]
,

for all x, y ∈ X;
(ii) T is closed;

In these conditions Fix (T) , ∅.

Proof. (i) It’s easy to see that because a + b + 2cs < s−1
s2 , a + b + cs < a + b + 2cs < s−1

s2 and hence,

s (a + b + cs) <
s − 1

s
.

On the other hand, since b + cs < 1
s , we obtain

1 − b − cs
s(a + b + cs)

> 1.

Let x0 ∈ X and 1 < q < 1
s

1−b−cs
a+b+cs .
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There exists x1 ∈ T(x0) such that

H (T (x0) ,T (x1)) ≤ ad(x0, x1) + b[D(x0,T (x0))) + D(x1,T (x1))] + c [D (x0,T (x1)) + D (x1,T (x0))] .

By Lemma 1.1. we have:

D(x0,T (x0)) ≤ d(x0, x1);
D(x1,T (x1)) ≤ H(T (x0) ,T (x1));
D(x1,T (x0)) = 0;
D(x0,T (x1)) ≤ s[d(x0, x1) + D(x1,T (x1))] ≤ s[d(x0, x1) + H(T (x0) ,T (x1))].

Hence

H (T (x0) ,T (x1)) ≤ ad (x0, x1) + bd (x0, x1) + bH(T (x0) ,T (x1)) + csd (x0, x1) + csH(T (x0) ,T (x1))

(1 − b − cs)H (T (x0) ,T (x1)) ≤ (a + b + cs)d (x0, x1)

Since b + cs < 1
s < 1 we have

H (T (x0) ,T (x1)) ≤
a + b + cs
1 − b − cs

d (x0, x1) .

Using again Lemma 1.1., there exists x2 ∈ T (x1) such that

d (x1, x2) ≤ qH (T (x0) ,T (x1))

d (x1, x2) ≤ q
a + b + cs
1 − b − cs

d (x0, x1) .

Let q a+b+cs
1−b−cs := α < 1

s < 1
Hence

d (x1, x2) ≤ αd (x0, x1) .

Continuing this process we shall obtain that there exists a sequence (xn)n∈N, with xn ∈ T (xn−1), such that
d (xn, xn+1) ≤ αnd

(
x0,x1

)
for each n ∈N.

This inequality implies that (xn)n∈N is a Cauchy sequence, see [3]. Hence there exists x ∈ X such that
xn → x, as n→∞.

Now, we shall prove that x ∈ T (x) .
We have:

D (x,T (x)) ≤ sd(x, xn+1) + sD (xn+1,T (x))
≤ sd(x, xn+1) + sH (T (xn) ,T (x)) .

H (T(xn),T(x)) ≤ ad(xn, x) + b[D(xn,T (xn)) + D(x,T (x))] + c [D (x,T (xn)) + D (xn,T (x))]
≤ ad(xn, x) + bd(xn, xn+1) + bD(x,T (x)) + cd(xn+1, x) + csd(xn, x) + csD(x,T (x)).

Hence

D (x,T (x)) ≤ sd(x, xn+1) + asd(xn, x) + bsd(xn, xn+1) + bsD(x,T (x)) +

csd(xn+1, x) + cs2d(xn, x) + cs2D(x,T (x)).

If n→∞ then we obtain
(
1 − bs − cs2

)
D (x,T (x)) ≤ 0.

Since b + cs < 1
s we have that bs + cs2 < 1 and hence, D (x,T (x)) = 0. This implies that x ∈ T (x) and hence

Fix (T) , ∅.



C. Chifu, G. Petruşel / Filomat 31:8 (2017), 2499–2507 2503

An existence and uniqueness fixed point result for multivalued Hardy-Rogers operators is the following:

Theorem 2.2. Let (X, d) be a complete b-metric space with constant s > 1 and T : X→ P(X) a multivalued operator
such that:

(i) there exist a, b, c ∈ R+, a + b + 2cs < s−1
s2 and b + cs < 1

s such that

H(T(x),T(y)) ≤ ad(x, y) + b
[
D(x,T(x)) + D(y,T(y))

]
+ c

[
D

(
x,T

(
y
))

+ D
(
y,T (x)

)]
,

for all x, y ∈ X;
(ii) T is closed;

If SFix (T) , ∅ then SFix (T) = Fix (T) = {x}.

Proof. Let x ∈ SFix (T) and suppose that there exist y ∈ Fix (T) , y , x.

d
(
x, y

)
= D

(
T (x) , y

)
≤ H

(
T (x) ,T

(
y
))

≤ ad(x, y) + b
[
D(x,T(x)) + D(y,T(y))

]
+ c

[
D

(
x,T

(
y
))

+ D
(
y,T (x)

)]
≤ ad(x, y) + 2cd(x, y).

Hence (1 − a − 2c) d(x, y) ≤ 0.
Since a + 2c < a + b + 2cs < s−1

s2 < 1, we shall obtain that d(x, y) = 0 which implies that x = y and this is a
contradiction.

In conclusion SFix (T) = Fix (T) = {x}.

An example illustrating our theorem is given in what follows.

Example 2.3. Let us consider the following two sets (see [2]):

M1 =
{m

n
|m = 0, 1, 3, 9, ...; n = 3k + 1, k ∈N

}
;

M2 =
{m

n
|m = 1, 3, 9, 27, ...; n = 3k + 2, k ∈N

}
.

Let X = M1 ∪M2. Define T : X→ R+,

T (x) =

{ {
αx, βx

}
, x ∈M1

{βx}, x ∈M2
,

where 0 < β ≤ α < 1.
Notice that T is not a Hardy-Rogers operator with respect to the metric d̂(x, y) := |x − y| (see [2]), but it becomes

a Hardy-Rogers operator with respect to the b-metric (with constant s = 3) defined by d
(
x, y

)
=

∣∣∣x − y
∣∣∣3.

Proof. We shall prove that there exist a, b, c ∈ R+ such that T is a Hardy-Rogers with respect to d. We shall
have four cases:

(1) x, y ∈M1

In this case ρ(T (x) ,T
(
y
)
) =

∣∣∣αx − αy
∣∣∣3 = α3d

(
x, y

)
and ρ(T

(
y
)
,T (x)) =

∣∣∣αy − αx
∣∣∣3 = α3d

(
x, y

)
and hence

H(T (x) ,T
(
y
)
) = α3d

(
x, y

)
.

(2) x, y ∈M2

In this case ρ(T (x) ,T
(
y
)
) =

∣∣∣βx − βy
∣∣∣3 = β3d

(
x, y

)
and ρ(T

(
y
)
,T (x)) =

∣∣∣βy − βx
∣∣∣3 = β3d

(
x, y

)
and hence

H(T (x) ,T
(
y
)
) = β3d

(
x, y

)
≤ α3d

(
x, y

)
.

(3) x ∈M1, y ∈M2
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In this case ρ(T (x) ,T
(
y
)
) =

∣∣∣αx − βy
∣∣∣3 and ρ(T

(
y
)
,T (x)) =

∣∣∣βy − αx
∣∣∣3 and hence H(T (x) ,T

(
y
)
) =∣∣∣αx − βy

∣∣∣3 .
We have to consider the following cases:

3.1. If x > y, then
∣∣∣∣x − β

α y
∣∣∣∣ < ∣∣∣x − βy

∣∣∣, and hence H(T (x) ,T
(
y
)
) =

∣∣∣αx − βy
∣∣∣3 = α3

∣∣∣∣x − β
α y

∣∣∣∣3 ≤ α3
∣∣∣x − βy

∣∣∣3 =

α3D
(
x,T

(
y
))
.

3.2. If x < y, then:

If x < βy, then
∣∣∣∣αβx − y

∣∣∣∣ < ∣∣∣αx − y
∣∣∣, and hence H(T (x) ,T

(
y
)
) =

∣∣∣αx − βy
∣∣∣3 = β3

∣∣∣∣αβx − y
∣∣∣∣3 ≤ β3

∣∣∣αx − y
∣∣∣3 =

β3D
(
y,T (x)

)
≤ α3D

(
y,T (x)

)
.

If x > βy, then we have another two cases:

If αx < βy, then
∣∣∣∣αβx − y

∣∣∣∣ < ∣∣∣αx − y
∣∣∣, and hence H(T (x) ,T

(
y
)
) =

∣∣∣αx − βy
∣∣∣3 = β3

∣∣∣∣αβx − y
∣∣∣∣3 ≤

β3
∣∣∣αx − y

∣∣∣3 = β3D
(
y,T (x)

)
≤ α3D

(
y,T (x)

)
.

If αx > βy, then
∣∣∣∣x − β

α y
∣∣∣∣ < ∣∣∣x − βy

∣∣∣, and hence H(T (x) ,T
(
y
)
) =

∣∣∣αx − βy
∣∣∣3 = α3

∣∣∣∣x − β
α y

∣∣∣∣3 ≤
α3

∣∣∣x − βy
∣∣∣3 = α3D

(
x,T

(
y
))
.

(4) x ∈M2, y ∈M1

In this case ρ(T (x) ,T
(
y
)
) =

∣∣∣βx − αy
∣∣∣3 and ρ(T

(
y
)
,T (x)) =

∣∣∣αy − βx
∣∣∣3 and hence H(T (x) ,T

(
y
)
) =∣∣∣αy − βx

∣∣∣3 .
Just like in the previuos case, we have to consider the following cases:

4.1. x > y

If y < βx,
∣∣∣∣αβ y − x

∣∣∣∣ < ∣∣∣αy − x
∣∣∣, and hence H(T (x) ,T

(
y
)
) =

∣∣∣αy − βx
∣∣∣3 = β3

∣∣∣∣αβ y − x
∣∣∣∣3 ≤ β3

∣∣∣αy − x
∣∣∣3 =

β3D
(
x,T

(
y
))
≤ α3D

(
x,T

(
y
))
.

If y > βx, then we have another two cases:

If αy < βx, then
∣∣∣∣αβ y − x

∣∣∣∣ < ∣∣∣αy − x
∣∣∣, and hence H(T (x) ,T

(
y
)
) =

∣∣∣αy − βx
∣∣∣3 = β3

∣∣∣∣αβ y − x
∣∣∣∣3 ≤

β3
∣∣∣αy − x

∣∣∣3 = β3D
(
x,T

(
y
))
≤ α3D

(
x,T

(
y
))
.

If αy > βx, then
∣∣∣∣y − β

αx
∣∣∣∣ < ∣∣∣y − βx

∣∣∣, and hence H(T (x) ,T
(
y
)
) =

∣∣∣αy − βx
∣∣∣3 = α3

∣∣∣∣y − β
αx

∣∣∣∣3 ≤
α3

∣∣∣y − βx
∣∣∣3 = α3D

(
y,T (x)

)
.

4.2 x < y

In this case we have
∣∣∣∣y − β

αx
∣∣∣∣ < ∣∣∣y − βx

∣∣∣, and hence H(T (x) ,T
(
y
)
) =

∣∣∣αy − βx
∣∣∣3 = α3

∣∣∣∣y − β
αx

∣∣∣∣3 ≤
α3

∣∣∣y − βx
∣∣∣3 = α3D

(
y,T (x)

)
.

Hence, we can conclude that H(T(x),T(y)) ≤ α3d(x, y) + α3D
(
x,T

(
y
))

+ α3D
(
y,T (x)

)
, for all x, y ∈ X.

If, for example α = β = 1
5 , then T : X → P(X). If we consider a = c = α3 and b = 0, then, for s = 3, all the

assumptions on a, b, c in Theorem 2.1 are fulfilled and the operator T defined above satisfies the conditions
of the theorem.

In what follows we shall present a data dependence theorem for multivalued Hardy-Rogers operators
in a complete b-metric space.

Theorem 2.4. Let (X, d) be a complete b-metric space with constant s > 1, T1,T2 : X → P(X) be two multivalued
closed operators which satisfy the following conditions:
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(a) there exists η > 0 such that H(T1(x),T2(x)) ≤ η, for all x ∈ X;
(b) there exist ai, bi, ci ∈ R+, ai + bi + 2cis < s−1

s2 and bi + cis < 1
s such that

H(Ti(x),Ti(y)) ≤ aid(x, y) + bi
[
D(x,Ti(x)) + D(y,Ti(y))

]
+ ci

[
D

(
x,Ti

(
y
))

+ D
(
y,Ti (x)

)]
,

for all x, y ∈ X, i ∈ {1, 2}.
In these conditions we have:

H(Fix(T1),Fix(T2)) ≤
ηs

1 − s max {A1,A2}
,

where Ai = ai+bi+cis
1−bi−cis

, i ∈ {1, 2}

Proof. We’ll show that for every x∗1 ∈ Fix(T1), there exists x∗2 ∈ Fix(T2) such that

d(x∗1, x
∗

2) ≤
sη

1 − sA2
.

Let x∗1 ∈ Fix(T1) arbitrary and let 1 < q < 1−b2−c2s
a2+b2+c2s

1
s . As in the proof of Theorem 2.1. we construct a

sequence (xn)n∈N ⊂ X of successive approximations of T2,with x0 := x∗1 and x1 ∈ T2(x∗1) having the property:

d(xn, xn+1) ≤ αn
2d(x0, x1)

for each n ∈N, where α2 = q a2+b2+c2s
1−b2−c2s <

1
s .

If we consider that the sequence (xn)n∈N converges to x∗2, we have that x∗2 ∈ Fix(T2). Moreover, for each
n ≥ 0, we have:

d(xn, xn+p) ≤ sαn
2

1 − (sα2)p

1 − sα2
d(x0, x1), p ∈N∗.

Since sα2 < 1, letting p→∞we get that

d(xn, x∗2) ≤
sαn

2

1 − sα2
d(x0, x1),∀n ∈N.

Choosing n = 0 in the above relation, we obtain

d(x∗1, x
∗

2) ≤
s

1 − sα2
d(x∗1, x1) ≤

sq
1 − sα2

H(T1(x∗1),T2(x∗1)) ≤
sηq

1 − sα2
.

Interchanging the roles of T1 and T2 we obtain that for every u ∈ Fix (T2), there exists v ∈ Fix (T1) such
that

d(u, v) ≤
sηq

1 − sα1
,

where α1 = q a1+b1+c1s
1−b1−c1s <

1
s .

Thus, letting q↘ 1, we obtain the conclusion.

3. Well-Posedness of the Fixed Point Problem

In what follows we shall prove a well-posedness results with respect to the functional D.

Definition 3.1. Let (X, d) be a b-metric space with constant s ≥ 1 and T : X→ P(X) be a multivalued operator. By
definition, the fixed point problem is well-posed for T with respect to D if:

(i) Fix (T) = {x∗};
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(ii) If (xn)n∈N is a sequence in X such that D(xn,T(xn))→ 0, as n→∞, then xn
d
→ x∗, as n→∞.

Theorem 3.2. Let (X, d) be a complete b-metric space with constant s > 1 and T : X→ P(X) a multivalued operator
for which there exist a, b, c ∈ R+, a + b + 2cs < s−1

s2 and b + cs < 1
s such that

H(T(x),T(y)) ≤ ad(x, y) + b
[
D(x,T(x)) + D(y,T(y))

]
+ c

[
D

(
x,T

(
y
))

+ D
(
y,T (x)

)]
,

for all x, y ∈ X.
If SFix(T) , ∅, then the fixed point problem is well-posed for T with respect to D.

Proof. Let x ∈ SFix (T) and let (xn)n∈N such that D(xn,T(xn))→ 0, as n→∞.
We have:

d (xn, x) ≤ s [D (xn,T (xn)) + H (T (xn) ,T (x))] ≤ sD (xn,T (xn)) + asd (xn, x) + bsD (xn,T (xn))
+bsD (x,T (x)) + csD (xn,T (x)) + csD (x,T (xn))

d (xn, x) ≤ sD (xn,T (xn)) + asd (xn, x) + bsD (xn,T (xn)) +

+cs2d (xn, x) + cs2D (x,T (x)) + cs2d (xn, x) + cs2D (xn,T (xn))(
1 − as − 2cs2

)
d (xn, x) ≤ s (1 + b + cs) D (xn,T (xn)) .

a + 2cs < a + b + 2cs < s−1
s2 < 1

s and hence 1 − as − 2cs2 > 0.
Thus, we have

d (xn, x) ≤ s
1 + b + cs

1 − as − 2cs2 D (xn,T (xn)) .

Letting n→∞, we shall obtain that xn
d
→ x.

4. Ulam-Hyers Stability

Definition 4.1. Let (X, d) be a b-metric space and T : X → Pcl(X) be a multivalued operator. The fixed point
inclusion

x ∈ T(x), x ∈ X (1)

is called generalized Ulam-Hyers stable if and only if there exists ψ : R+ → R+ increasing, continuous in 0 and with
ψ(0) = 0, such that for each ε > 0 and for each solution y∗ ∈ X of the inequation

D(y,T(y)) ≤ ε (2)

there exists a solution x∗ of the fixed point inclusion (4.1) such that

d(y∗, x∗) ≤ ψ(ε).

If there exists C > 0 such that ψ(t) := C · t, for each t ∈ R+, then the fixed point inclusion (4.1) is said to be
Ulam-Hyers stable.

Theorem 4.2. Let (X, d) be a complete b-metric space with constant s > 1and T : X→ P(X) a multivalued operator
such that:

(i) there exist a, b, c ∈ R+, a + b + 2cs < s−1
s2 and b + cs < 1

s such that

H(T(x),T(y)) ≤ ad(x, y) + b
[
D(x,T(x)) + D(y,T(y))

]
+ c

[
D

(
x,T

(
y
))

+ D
(
y,T (x)

)]
,

for all x, y ∈ X;
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(ii) T is closed;

If SFix (T) , ∅, then the fixed point inclusion (4.1) is generalized Ulam-Hyers stable.

Proof. We are in the conditions of Theorem 2.1. and Theorem 2.2, hence Fix (T) = SFix (T) = {x∗} . Let ε > 0
and y∗ be a solution of (4.2) .

We have

d(x∗, y∗) = D(T (x∗) , y∗) ≤ sH(T (x∗) ,T
(
y∗

)
) + sD(y∗,T(y∗))

≤ sad(x∗, y∗) + sbD (x∗,T (x∗)) + sbD
(
y∗,T

(
y∗

))
+

+scD
(
x∗,T

(
y∗

))
+ scD

(
y∗,T (x∗)

)
+ sD(y∗,T(y∗))

≤ sad(x∗, y∗) + sbD
(
y∗,T

(
y∗

))
+ s2cd(x∗, y∗) +

+s2cD
(
y∗,T

(
y∗

))
+ scd(x∗, y∗) + sD(y∗,T(y∗)).

Thus(
1 − as − cs − cs2

)
d(x∗, y∗) ≤ s (1 + b + cs) D(y∗,T(y∗)).

We have that a + (s + 1) c < a + 2cs < a + b + 2cs < s−1
s2 < 1

s , and hence as + cs + cs2 < 1
and now we conclude

d(x∗, y∗) ≤
s (1 + b + cs)

1 − as − cs − cs2 ε.

Hence, the fixed point problem (4.1) is generalized Ulam-Hyers stable.
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