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Abstract. In this paper we study special mappings between n-dimensional (pseudo-) Riemannian man-
ifolds. In 2003 Topalov introduced PQε- projectivity of Riemannian metrics, with constant ε , 0, 1 + n.
These mappings were studied later by Matveev and Rosemann and they found that for ε = 0 they are
projective. These mappings could be generalized for case, when εwill be a function on manifold. We show
that PQε- projective equivalence with ε is a function corresponds to a special case of F-planar mapping,
studied by Mikes and Sinyukov (1983) with F = Q. Moreover, the tensor P is derived from the tensor Q and
non-zero function ε.

We assume that studied mappings will be also F2- planar (Mikeš 1994). This is the reason, why we
suggest to rename PQε mapping as Fε2. For these mappings we find the fundamental partial differential
equations in closed linear Cauchy type form and we obtain new results for initial conditions.

1. Introduction

Diffeomorphisms and automorphisms of geometrically generalized manifolds constitute one of the
current main direction in differential geometry. Many papers are devoted to geodesic, almost geodesic,
quasigeodesic, holomorphically projective, F-planar mappings and many others. Study of special man-
ifold with affine connection, (pseudo-) Riemannian, e-Kählerian and e-Hermitian spaces, give one of the
most important area, see [1]–[33]. For example, T. Levi-Civita [15] used geodesic mappings for modeling
mechanical processes, A.Z. Petrov [27] used quasigeodesic mapping for modeling in theoretical physics.

More general question were studied by Hrdina, Slovák, Vašı́k, see [10], [11] and [12]. Others, who deals
with question, were Minčić, Stanković, Velimirović, Zlatanović [31].

The PQε-projective equivalence between n-dimensional Riemannian manifolds were introduced by
Topalov [32], P and Q are tensors of type (1, 1) for which PQ = ε Id, ε ∈ R, ε , 1, 1 + n. Moreover, these
mappings are special cases of F2-planar mappings, [8], studied in [19], see [24, p. 225 - 231].

Based on the above and other properties, these mappings were renamed such a Fε2-planar [8]. It follows
immediately from their definition that PQε-projective equivalence is the correspondence occurring in the
earlier studied F-planar mappings (Mikeš, Sinyukov [23]) and F = Q.
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H. Chudá et al / Filomat 31:9 (2017), 2683–2689 2684

In our paper we study Fε2-projective mappings between (pseudo-) Riemannian manifolds with non-zero
function ε. For these mappings we find a fundamental system of closed linear equations in covariant
derivatives in (pseudo-) Riemannian manifolds (M, 1,F) with F2 , κ Id. Moreover, we obtain new results
for initial conditions of metrics which are in Fε2-planar correspondence.

2. On F-Planar Mappings

Let An = (M,∇,F) be an n-dimensional manifold M with affine connection ∇, and affinor structure F, i.e.
a tensor field of type (1, 1).

Definition 2.1 (Mikeš, Sinyukov [23], see [24, p. 213], [25, p. 385]). A curve `, which is given by the equa-
tions ` = `(t), λ(t) = d`(t)/dt (, 0), t ∈ I, where t is a parameter, is called F-planar, if its tangent vector
λ(t0), for any initial value t0 of the parameter t, remains, under parallel translation along the curve `, in the
distribution generated by the vector functions λ and Fλ along `.

In accordance with this definition, ` is F-planar if and only if the following condition holds: ∇λ(t)λ(t) =
%1(t)λ(t) + %2(t)Fλ(t), where %1 and %2 are some functions of the parameter t, see ([23], [24, p. 213]).

We suppose two spaces An = (M,∇,F) and Ān = (M̄, ∇̄, F̄) with torsion-free affine connection ∇ and ∇̄,
respectively. Affine structures F and F̄ are defined on M, resp. M̄.

Definition 2.2 (Mikeš, Sinyukov [23], see [24, p. 214], [25, p. 386]). A diffeomorphism f between manifolds
with affine connection An and Ān is called an F-planar mapping if any F-planar curve in An is mapped onto
an F̄-planar curve in Ān.

Due to the diffeomorphism f we always suppose that ∇, ∇̄, and the affinors F, F̄ are defined on M (≡ M̄)
where An = (M,∇,F) and Ān = (M, ∇̄, F̄). The following holds.

Theorem 2.3. An F-planar mapping f from An onto Ān preserves F-structures (i.e. F̄ = a F + b Id, a,b are some
functions), and is characterized by the following condition

P(X,Y) = ψ(X) · Y + ψ(Y) · X + ϕ(X) · FY + ϕ(Y) · FX (1)

for any vector fields X,Y, where P = ∇̄ − ∇ is the deformation tensor field of f , ψ and ϕ are some linear forms.

This Theorem was proved by Mikeš and Sinyukov [23] for finite dimension n > 3, a more concise proof
of this Theorem for n > 3 and also a proof for n = 3 was given by I. Hinterleitner and Mikeš [3], see [24,
p. 214]. Therefore, under Theorem 2.3 we shortly suppose that F̄ = F on M. This is the classical assumption
that the structures preserve.

We remind the following types of F-planar mappings from manifolds An with affine connection ∇ onto
(pseudo-) Riemannian manifolds V̄n with metric 1̄:

Definition 2.4 (Mikeš [18], see [24, p. 225], [25, p. 398]).

1. An F-planar mapping of a manifold An = (M,∇,F) with affine connection onto a (pseudo-) Riemannian
manifold V̄n = (M, 1̄) is called an F1-planar mapping if the metric tensor 1̄ satisfies the condition

1̄(X,FX) = 0, for all X. (2)

2. An F1-planar mapping An → V̄n is called an F2-planar mapping if the one-form ψ is gradient-like,
i.e. ψ(X) = ∇XΨ, where Ψ is a function on An.

3. An F1-planar mapping An → V̄n is called an F3-planar mapping if the one-forms ψ and ϕ are related
by ψ(X) = ϕ(FX).
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The F2-planar mapping f : An → V̄n is characterized by the following equations (Mikeš [18], see [24, p. 230]):

∇kai j = λiδ j
k + λ jδk

i + ξiFk
j + ξ jFi

k, (3)

where

ai j = e2ψ1̄i j, λi = −aiαψα, ξi = −aiαϕα, (4)

where ψ j, ϕi, Fh
i are components of ψ, ϕ, F and 1̄i j are components of the inverse matrix to the metric 1̄.

It is clear to see that if An = (M,∇,F) is a (pseudo-) Riemannian manifold Vn = (M, 1,F) with metric
tensor 1 and the Levi-Civita connection ∇, after lowering indices in (3), we obtain

∇kai j = λi1 jk + λ j1ik + ξiF jk + ξ jFik, (5)

where ai j = aαβ1iα1 jβ, λi = 1iαλα, ξi = 1iαξα, Fik = 1iαFαk .

3. PQε-Projective Riemannian Manifolds

3.1. Definition of PQε-projective Riemannian manifolds
Let 1 and 1̄ be two (pseudo-) Riemannian metrics on an n-dimensional manifold M. Consider (1, 1)-

tensors P,Q which are satisfying the following conditions:

PQ = ε Id, 1(X,PX) = 0, 1̄(PX,X) = 0, 1(X,QX) = 0, 1̄(QX,X) = 0, (6)

for all X and where ε , 1,n + 1 is a real number. These conditions are written in a different way, see [16].

Definition 3.1 (Topalov, see [32]). The metrics 1, 1̄ are called PQε-projective if for the 1-form Φ the Levi-
Civita connections ∇ and ∇̄ of 1 and 1̄ satisfy

(∇̄ − ∇)XY = Φ(X)Y + Φ(Y)X −Φ(PX)QY −Φ(PY)QX (7)

for all X,Y.

Remark. Two metrics 1 and 1̄ are denoted by the synonym PQε-projective if they are PQε-projective
equivalent. On the other hand this notation can be seen from the point of view of mappings. Assume two
Riemannian manifolds (M, 1) and (M̄, 1̄). A diffeomorphism f : M→ M̄ allows to identify the manifolds M
and M̄. For this reason we can speak about PQε-projective mappings (or more precisely diffeomorphisms)
between (M, 1) and (M̄, 1̄), when equations (6) and (7) hold. In these formulas 1̄ and ∇̄ mean in fact the
pullbacks f ∗1̄ and f ∗∇̄.

3.2. New results of PQε-projective Riemannian manifolds for function ε , 0
Natural generalization is a case, when ε is a non-zero function, at any point, defined on M. Next, we

will study mappings characterized by formula (6) and (7).
Comparing formulas (1) and (7) we make sure that PQε-projective equivalence is a special case of the

F-planar mapping between Riemannian manifolds (M, 1) and (M, 1̄). Evidently, this is if ψ ≡ Φ, F ≡ Q and
ϕ(·) = −Φ(P(·)).

Moreover, it elementary follows from (7) that ψ is a gradient-like form, see [32], thus a PQε-projective
equivalence is a special case of an F2-planar mapping.

It is see that in above formulas (6) and (7) we can consider ε not only constant but also function on
manifold M and we will deal with this problem.

If this PQε-projective mappings Vn → V̄n will be F2-planar, formula (5) has the following linear form:

∇kai j = λi1 jk + λ j1ik − λαPαi 1 jβQ
β
k − λαPαj 1iβQ

β
k . (8)
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From conditions (4) and (6) we obtain a(X,PX) = 0 and a(X,QX) = 0 for all X, and equivalently in local form

aiαPαj + a jαPαi = 0 and aiαQα
j + a jαQα

i = 0. (9)

Now, from the condition PQ = εId, it follows that Q is regular and

P = εQ−1. (10)

This implies that P depends on Q and ε. Moreover two conditions in (6) depend on the other ones, i.e.
in the definition of PQε-projective mappings we can restrict on the conditions 1(X,QX) = 0, 1̄(X,QX) = 0,
PQ = ε Id. This fact implies the following lemma:

Lemma 3.2. If Q satisfies the conditions 1(X,QX) = 0 and 1̄(X,QX) = 0 for function ε , 0, then we obtain
1(X,PX) = 0 and 1̄(X,PX) = 0.

Proof. We can write first conditions (6) for 1 in the local form as 1iαQα
j + 1 jαQα

i = 0. These equations we

contract with Q̄i
kQ̄ j

l , where Q̄ = Q−1, after some calculations we obtain

1liQ̄i
k + 1kjQ̄

j
l = 0,

i.e. 1(X,Q−1X) = 0 for all X. From that follows 1(X,PX) = 0 for all X. Analogically it holds also for the
metric 1̄.

4. Fε
2
-Projective Mapping with Function ε

Due to the above properties, from formula (9) and Lemma 3.2, we can simplify the Definition 3.1.
Let 1 and 1̄ be two (pseudo-) Riemannian metrics on an n-dimensional manifold M. Consider the regular

(1, 1)-tensors F which is satisfying the following conditions

1(X,FX) = 0 and 1̄(X,FX) = 0. (11)

for all X.

Definition 4.1. The metrics 1 and 1̄ are called Fε2-projective if for a certain gradient 1-form ψ the Levi-Civita
connections ∇ and ∇̄ of 1 and 1̄ satisfy

( f ∗∇̄ − ∇)XY = ψ(X)Y + ψ(Y)X − εψ(F−1X)FY − εψ(F−1Y)FX, (12)

for all vector fields X,Y and ε is a function on M, with ε(x) , 0, for all x ∈M.

For ε = const , 0 this definition is in [8]. From Lemma 3.2, definition of F2-planar mapping and comparing
formulas (7) and (12) we evidently obtain following proposition:

Proposition 4.2. A PQε-projective mapping with non-zero function ε and gradient-like form ψ is an Fε2-planar
mapping with P = εF−1,Q = F.

We can rewrite formula (12) into this form:

Γ̄h
ij = Γh

ij + ψ(iδ j) − εψαPα(iF
h
j). (13)

Contracting h, j we get

Γ̄αiα = Γαiα + (n + 1 − ε) · ψi. (14)

From Voss-Weyl formula, see [24, p. 57], we get Γ̄αiα − Γαiα = ∂i ln
√∣∣∣det 1̄/det 1

∣∣∣. Because ψi is gradient-like
form, i.e. ψi = ∂iΨ, then ε is a function of argument Ψ, i.e. ε = ε(Ψ).

Most important thing in the study of F-planar mapping is preserving covariant derivative of structure F.
The structure F preserves covariant derivative if ∇̄F = ∇F. We proof that following lemma holds:
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Lemma 4.3. If Fε2-planar mapping f preserves covariant derivative of structure F, then ε = −1 or f is affine,
i.e. f ∗∇̄ = ∇.

Proof. It is known, that ∇ jFh
i = ∂iFh

i + Fαi Γh
α j − Fh

αΓ
α
i j and ∇̄ jFh

i = ∂iFh
i + Fαi Γ̄h

α j − Fh
αΓ̄

α
i j. Using equation (12),

which characterized Fε2-planar mapping, we get

∇̄ jFh
i = ∇ jFh

i + Fαi ψαδ
h
j − (ε + 1)ψiFh

j + ψαPαi Fh
βF
β
j .

Evidently, structure F preserves covariant derivative if and only if the following formula holds

Fαi ψαδ
h
j − (ε + 1)ψiFh

j + ψαPαi Fh
βF
β
j = 0. (15)

We will limit only for calculations at point x0. We suppose that ψi(x0) , 0, because from (12) would follow
f ∗∇̄ = ∇, i.e. for all points imply f is affine. Thus ψαPαi (x0) , 0 and then from (15) implies:

Fh
εF
ε
j = αδh

j + βFh
j . (16)

Now, we contract (16) with metric tensor 1ih and after that, we symetrize with respect to indices i, j. Because
1iαFαj + 1 jαFαi = 0, we obtain β1iαFαj = 0 and from it, evidently, implies β = 0.

After substitution (16) to formula (15), we get(
Fαi ψα + αψαPαi

)
δh

j − (ε + 1)ψiFh
j = 0.

From this implies that (ε + 1)ψi = 0 then ε = −1 or ψi ≡ 0 for all points on M, i.e. in the last case f is
affine.

Theorem 4.4. Let (M, 1,F) be a (pseudo-) Riemannian manifold with regular structure F, for which F2 , κ Id
and 1(X,FX) = 0 for all X. If (M, 1,F) admits an Fε2-projective mapping onto a (pseudo-) Riemannian manifold
(M̄, 1̄) then the complete set of linear differential equations of Cauchy type in covariant derivatives in (M, 1,F)

∇kai j = λi1 jk + λ j1ik + Λi1 jβF
β
k + Λ j1iβF

β
k (17)

have a solution respective unknown function ai j which ai j = a ji, det ‖ai j‖ , 0 and

aiαFαj + a jαFαi = 0. (18)

Whereas λi = aαβ
1
Tαβi , Λi = aαβ

2
Tαβi and

σ
Tαβi , σ = 1, 2 are a certain tensors obtained from 1i j and Fh

i .

Proof. We will study the fundamental equations of an Fε2-planar mapping. From Proposition 4.2 follows,
that formula (8) has the form

∇kai j = λi1 jk + λ j1ik − λαFαi 1 jβF
β
k − λαFαj 1iβF

β
k . (19)

From (4), (9) and Lemma 3.2 we may deduce the validity of condition (18). Now we covariantly differentiate
(18) and obtain

∇kaiαFαj + ∇ka jαFαi =
3
Ti jk,

where
3
Ti jk = −aiα∇kFαj − a jα∇kFαi .

Using formula (19) and after some calculation, we get

(ε + 1)(1αkFαj λi + 1αkFαi λ j) + λαFαj 1ik + λαFαi 1 jk − λαPαi 1βγFβj F
γ
k − λαPαj 1βγFβi Fγk =

3
Ti jk. (20)
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It is known, that 1i j, 1βγFβi Fγj are symmetric and 1αkFαj is antisymmetric tensors. After skew symmetrization
formula (20) with respect to indices j, k and replacing indices i, k we added up the obtained formula with (20)
and finally we get:

(ε + 1) · (1αiFαj λk + 1αkFαj λi) + 1ikλαFαj − 1βγFβi FγkλαPαj =
4
Ti jk, (21)

where
4
Ti jk = 1

2 (
3
Ti jk +

3
Tkji −

3
Tki j).

Now, we create this homogeneous equation:

1αiFαj Ak + 1αkFαj Ai + 1ikB j − 1βγFβi Fγk C j = 0

with unknown variables Ai, Bi and Ci. Because rank ‖1αiFαj ‖ > 3 from (21) we get Ak = 0. From residual

case it implies either B j = C j = 0 or 1βγFβi Fγk = −κ1ik, the later case is equivalently F2 = κId. This is a
contradiction with the assumption of theorem 4.4.

Therefore B j = C j = 0 and it implies that λαFαi = aαβ
5
Tαβi and λαPαi = aαβ

2
Tαβi , where

2
T and

5
T are a certain

tensors obtained from 1i j and Fh
i . Now, elementary, if ||

∼

Fh
i || = ||F

h
i ||
−1, then λi = λαFαj

∼

Fj
i = aαβ

2
Tαβj

∼

Fj
i ≡ aαβ

1
Tαβi .

Thereby this calculations, from (19) we obtain formula (17).

5. Fε
2
-Planar Mappings with the 1̄ = k · 1 Condition

From the properties of equations (17) and (18) follows the new results for Fε2-planar mappings, for which
F2 , κ Id. These conditions we suppose for the whole studied (pseudo-) Riemannian manifolds (M, 1,F).
The theory of differential equations implies that the system of equation (17) for initial condition at the point
x0 ∈M

ai j(x0) =
0
ai j (22)

has only one unique solution.
Due to this, the general solution of (17) depends on the real parameters which can be, for example, the

conditions (22). Because ai j is symmetric, conditions can not be more then n(n + 1)/2. Moreover, condition
(18) implies further reduction of the parameters.

The structure F at the point x0 can be written in Jordan’s form as Fi
i = λi, Fi+1

i = µi = 0, 1 and the other
components are vanishing. Because det F , 0, all λi , 0. We do not exclude that λi are complex numbers
(in this case the transformation equations are complex at the point x0).

Substituting i = j to equation (18), we obtain aiiλi + aii+1µi+1 = 0 (formally µn+1 ≡ 0), i.e. the diagonal
components aii depend on the other components.

This implies that the maximum number of the independent components of
0
ai j, which is not greater than

n(n − 1)/2 − n, i.e. n(n − 1)/2 parameters. Therefore the following theorem holds.

Theorem 5.1. A set of (pseudo-) Riemannian manifolds (M, 1,F), det F , 0 and F2 , κ Id, on which some (pseudo-)
Riemannian manifold admits an Fε2-projective mapping, depends on not more than n(n − 1)/2 parameters.

We have the following theorem.

Theorem 5.2. Let (M, 1,F) and (M, 1̄,F) be (pseudo-) Riemannian manifolds with F2 , κ Id and which are in
Fε2-planar correspondence. If the condition 1̄ = k · 1 is valid for x0 ∈M, then 1 and 1̄ are homothetic in M, i.e.

1̄(x) = k · 1(x), (23)

for all x ∈M, with k = const.

Proof. In the assumption of Theorem 5.2, Theorem 4.4 is valid. Then equation (17) holds. For the initial
condition (23) there is no more than one unique solution. On the other hand, a trivial solution of equations
(17) is 1̄ = k · 1, and it satisfies the initial condition (23). The given mapping is homothetic.
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[7] I. Hinterleitner, J. Mikeš, On holomorphically projective mappings from manifolds with equiaffine connection onto Kähler

manifolds, Arch. Math. 49 (2013) 295–302
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