Filomat 31:9 (2017), 2683–2689 https://doi.org/10.2298/FIL1709683C

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On F_2^{ε} -Planar Mappings with Function ε of (pseudo-) Riemannian Manifolds

Hana Chudá^a, Nadezda Guseva^b, Patrik Peška^c

^aTomas Bata University of Zlin, Faculty of Applied Informatics, Dept. of Math. ^bMoscow Pedagogical University, Dept. of Geometry ^cPalacky University Olomouc, Dept. of Algebra and Geometry

Abstract. In this paper we study special mappings between *n*-dimensional (pseudo-) Riemannian manifolds. In 2003 Topalov introduced PQ^{ε} -projectivity of Riemannian metrics, with constant $\varepsilon \neq 0, 1 + n$. These mappings were studied later by Matveev and Rosemann and they found that for $\varepsilon = 0$ they are projective. These mappings could be generalized for case, when ε will be a function on manifold. We show that PQ^{ε} -projective equivalence with ε is a function corresponds to a special case of *F*-planar mapping, studied by Mikes and Sinyukov (1983) with F = Q. Moreover, the tensor *P* is derived from the tensor *Q* and non-zero function ε .

We assume that studied mappings will be also F_2 -planar (Mikeš 1994). This is the reason, why we suggest to rename PQ^{ε} mapping as F_2^{ε} . For these mappings we find the fundamental partial differential equations in closed linear Cauchy type form and we obtain new results for initial conditions.

1. Introduction

Diffeomorphisms and automorphisms of geometrically generalized manifolds constitute one of the current main direction in differential geometry. Many papers are devoted to geodesic, almost geodesic, quasigeodesic, holomorphically projective, *F*-planar mappings and many others. Study of special manifold with affine connection, (pseudo-) Riemannian, *e*-Kählerian and *e*-Hermitian spaces, give one of the most important area, see [1]–[33]. For example, T. Levi-Civita [15] used geodesic mappings for modeling mechanical processes, A.Z. Petrov [27] used quasigeodesic mapping for modeling in theoretical physics.

More general question were studied by Hrdina, Slovák, Vašík, see [10], [11] and [12]. Others, who deals with question, were Minčić, Stanković, Velimirović, Zlatanović [31].

The PQ^{ε} -projective equivalence between *n*-dimensional Riemannian manifolds were introduced by Topalov [32], *P* and *Q* are tensors of type (1, 1) for which $PQ = \varepsilon Id$, $\varepsilon \in \mathbb{R}$, $\varepsilon \neq 1, 1 + n$. Moreover, these mappings are special cases of F_2 -planar mappings, [8], studied in [19], see [24, p. 225 - 231].

Based on the above and other properties, these mappings were renamed such a F_2^{ε} -planar [8]. It follows immediately from their definition that PQ^{ε} -projective equivalence is the correspondence occurring in the earlier studied *F*-planar mappings (Mikeš, Sinyukov [23]) and *F* = *Q*.

Received: 19 December 2014; Accepted: 30 March 2015

²⁰¹⁰ Mathematics Subject Classification. Primary 53B10; Secondary 53B20; 53B30; 53B35; 53B50.

Keywords. F_2^{ϵ} -planar mapping, PQ^{ϵ} -projective mapping, *F*-planar mapping, (pseudo-) Riemannian manifolds.

Communicated by Ljubica Velimirović

The paper was supported by project CZ.1.07/2.3.00/30.0035 of Fac. of Appl. Informatics, T. Bata University in Zlín and IGA PrF 2014016 Palacký University Olomouc.

Email addresses: chuda@fai.utb.cz (Hana Chudá), ngus12@mail.ru (Nadezda Guseva), patrik.peska@upol.cz (Patrik Peška)

In our paper we study F_2^{ε} -projective mappings between (pseudo-) Riemannian manifolds with non-zero function ε . For these mappings we find a fundamental system of closed linear equations in covariant derivatives in (pseudo-) Riemannian manifolds (M, g, F) with $F^2 \neq \varkappa Id$. Moreover, we obtain new results for initial conditions of metrics which are in F_2^{ε} -planar correspondence.

2. On F-Planar Mappings

Let $A_n = (M, \nabla, F)$ be an *n*-dimensional manifold *M* with affine connection ∇ , and affinor structure *F*, i.e. a tensor field of type (1, 1).

Definition 2.1 (Mikeš, Sinyukov [23], see [24, p. 213], [25, p. 385]). A curve ℓ , which is given by the equations $\ell = \ell(t)$, $\lambda(t) = d\ell(t)/dt$ ($\neq 0$), $t \in I$, where t is a parameter, is called *F*-planar, if its tangent vector $\lambda(t_0)$, for any initial value t_0 of the parameter t, remains, under parallel translation along the curve ℓ , in the distribution generated by the vector functions λ and $F\lambda$ along ℓ .

In accordance with this definition, ℓ is *F*-planar if and only if the following condition holds: $\nabla_{\lambda(t)}\lambda(t) = \rho_1(t)\lambda(t) + \rho_2(t)F\lambda(t)$, where ρ_1 and ρ_2 are some functions of the parameter *t*, see ([23], [24, p. 213]).

We suppose two spaces $A_n = (M, \nabla, F)$ and $\overline{A}_n = (\overline{M}, \overline{\nabla}, \overline{F})$ with torsion-free affine connection ∇ and $\overline{\nabla}$, respectively. Affine structures F and \overline{F} are defined on M, resp. \overline{M} .

Definition 2.2 (Mikeš, Sinyukov [23], see [24, p. 214], [25, p. 386]). A diffeomorphism *f* between manifolds with affine connection A_n and \bar{A}_n is called an *F*-planar mapping if any *F*-planar curve in A_n is mapped onto an \bar{F} -planar curve in \bar{A}_n .

Due to the diffeomorphism f we always suppose that ∇ , $\overline{\nabla}$, and the affinors F, \overline{F} are defined on $M (\equiv \overline{M})$ where $A_n = (M, \nabla, F)$ and $\overline{A}_n = (M, \overline{\nabla}, \overline{F})$. The following holds.

Theorem 2.3. An *F*-planar mapping *f* from A_n onto \overline{A}_n preserves *F*-structures (i.e. $\overline{F} = aF + bId$, *a*,*b* are some functions), and is characterized by the following condition

$$P(X,Y) = \psi(X) \cdot Y + \psi(Y) \cdot X + \varphi(X) \cdot FY + \varphi(Y) \cdot FX$$
⁽¹⁾

for any vector fields X, Y, where $P = \overline{\nabla} - \nabla$ is the deformation tensor field of f, ψ and φ are some linear forms.

This Theorem was proved by Mikeš and Sinyukov [23] for finite dimension n > 3, a more concise proof of this Theorem for n > 3 and also a proof for n = 3 was given by I. Hinterleitner and Mikeš [3], see [24, p. 214]. Therefore, under Theorem 2.3 we shortly suppose that $\overline{F} = F$ on M. This is the classical assumption that the *structures preserve*.

We remind the following types of *F*-planar mappings from manifolds A_n with affine connection ∇ onto (pseudo-) Riemannian manifolds \bar{V}_n with metric \bar{g} :

Definition 2.4 (Mikeš [18], see [24, p. 225], [25, p. 398]).

1. An *F*-planar mapping of a manifold $A_n = (M, \nabla, F)$ with affine connection onto a (pseudo-) Riemannian manifold $\overline{V}_n = (M, \overline{g})$ is called an *F*₁-planar mapping if the metric tensor \overline{g} satisfies the condition

$$\bar{g}(X, FX) = 0$$
, for all X. (2)

- 2. An F_1 -planar mapping $A_n \to \overline{V}_n$ is called an F_2 -planar mapping if the one-form ψ is gradient-like, i.e. $\psi(X) = \nabla_X \Psi$, where Ψ is a function on A_n .
- 3. An F_1 -planar mapping $A_n \to \overline{V}_n$ is called an F_3 -planar mapping if the one-forms ψ and φ are related by $\psi(X) = \varphi(FX)$.

The *F*₂-planar mapping $f: A_n \rightarrow \overline{V}_n$ is characterized by the following equations (Mikeš [18], see [24, p. 230]):

$$\nabla_k a^{ij} = \lambda^i \delta^j_k + \lambda^j \delta^k_i + \xi^i F^k_j + \xi^j F^i_{k'}$$
(3)

where

$$a^{ij} = e^{2\psi}\bar{g}^{ij}, \quad \lambda^i = -a^{i\alpha}\psi_\alpha, \quad \xi^i = -a^{i\alpha}\varphi_\alpha, \tag{4}$$

where ψ_j , φ_i , F_i^h are components of ψ , φ , F and \bar{g}^{ij} are components of the inverse matrix to the metric \bar{g} .

It is clear to see that if $A_n = (M, \nabla, F)$ is a (pseudo-) Riemannian manifold $V_n = (M, g, F)$ with metric tensor g and the Levi-Civita connection ∇ , after lowering indices in (3), we obtain

$$\nabla_k a_{ij} = \lambda_i g_{jk} + \lambda_j g_{ik} + \xi_i F_{jk} + \xi_j F_{ik}, \tag{5}$$

where $a_{ij} = a^{\alpha\beta}g_{i\alpha}g_{j\beta}$, $\lambda_i = g_{i\alpha}\lambda^{\alpha}$, $\xi_i = g_{i\alpha}\xi^{\alpha}$, $F_{ik} = g_{i\alpha}F_k^{\alpha}$.

3. PQ^{*e*}-Projective Riemannian Manifolds

3.1. Definition of PQ^{ε} -projective Riemannian manifolds

Let *g* and \bar{g} be two (pseudo-) Riemannian metrics on an *n*-dimensional manifold *M*. Consider (1, 1)-tensors *P*, *Q* which are satisfying the following conditions:

$$PQ = \varepsilon Id, \ g(X, PX) = 0, \ \bar{g}(PX, X) = 0, \ g(X, QX) = 0, \ \bar{g}(QX, X) = 0,$$
(6)

for all X and where $\varepsilon \neq 1, n + 1$ is a real number. These conditions are written in a different way, see [16].

Definition 3.1 (Topalov, see [32]). The metrics g, \bar{g} are called PQ^{ε} -projective if for the 1-form Φ the Levi-Civita connections ∇ and $\bar{\nabla}$ of g and \bar{q} satisfy

$$(\bar{\nabla} - \nabla)_X Y = \Phi(X)Y + \Phi(Y)X - \Phi(PX)QY - \Phi(PY)QX$$
⁽⁷⁾

for all *X*, *Y*.

Remark. Two metrics g and \bar{g} are denoted by the synonym PQ^{ε} -projective if they are PQ^{ε} -projective equivalent. On the other hand this notation can be seen from the point of view of mappings. Assume two Riemannian manifolds (M, g) and (\bar{M}, \bar{g}) . A diffeomorphism $f : M \to \bar{M}$ allows to identify the manifolds M and \bar{M} . For this reason we can speak about PQ^{ε} -projective mappings (or more precisely diffeomorphisms) between (M, g) and (\bar{M}, \bar{g}) , when equations (6) and (7) hold. In these formulas \bar{g} and $\bar{\nabla}$ mean in fact the pullbacks $f^*\bar{g}$ and $f^*\bar{\nabla}$.

3.2. New results of PQ^{ε} -projective Riemannian manifolds for function $\varepsilon \neq 0$

Natural generalization is a case, when ε is a non-zero function, at any point, defined on *M*. Next, we will study mappings characterized by formula (6) and (7).

Comparing formulas (1) and (7) we make sure that PQ^{ε} -projective equivalence is a special case of the *F*-planar mapping between Riemannian manifolds (*M*, *g*) and (*M*, \bar{g}). Evidently, this is if $\psi \equiv \Phi$, $F \equiv Q$ and $\varphi(\cdot) = -\Phi(P(\cdot))$.

Moreover, it elementary follows from (7) that ψ is a gradient-like form, see [32], thus a PQ^{ε} -projective equivalence is a special case of an F_2 -planar mapping.

It is see that in above formulas (6) and (7) we can consider ε not only constant but also function on manifold *M* and we will deal with this problem.

If this PQ^{ε} -projective mappings $V_n \to \overline{V}_n$ will be F_2 -planar, formula (5) has the following linear form:

$$\nabla_k a_{ij} = \lambda_i g_{jk} + \lambda_j g_{ik} - \lambda_\alpha P_i^\alpha g_{j\beta} Q_k^\beta - \lambda_\alpha P_j^\alpha g_{i\beta} Q_k^\beta.$$
(8)

From conditions (4) and (6) we obtain a(X, PX) = 0 and a(X, QX) = 0 for all X, and equivalently in local form

$$a_{i\alpha}P_j^{\alpha} + a_{j\alpha}P_i^{\alpha} = 0 \text{ and } a_{i\alpha}Q_j^{\alpha} + a_{j\alpha}Q_i^{\alpha} = 0.$$
⁽⁹⁾

Now, from the condition $PQ = \varepsilon Id$, it follows that Q is regular and

$$P = \varepsilon Q^{-1}.$$
 (10)

This implies that *P* depends on *Q* and ε . Moreover two conditions in (6) depend on the other ones, i.e. in the definition of PQ^{ε} -projective mappings we can restrict on the conditions g(X, QX) = 0, $\overline{g}(X, QX) = 0$, $PQ = \varepsilon Id$. This fact implies the following lemma:

Lemma 3.2. If Q satisfies the conditions g(X, QX) = 0 and $\bar{g}(X, QX) = 0$ for function $\varepsilon \neq 0$, then we obtain g(X, PX) = 0 and $\bar{g}(X, PX) = 0$.

Proof. We can write first conditions (6) for g in the local form as $g_{i\alpha}Q_j^{\alpha} + g_{j\alpha}Q_i^{\alpha} = 0$. These equations we contract with $\bar{Q}_k^i \bar{Q}_l^j$, where $\bar{Q} = Q^{-1}$, after some calculations we obtain

$$g_{li}\bar{Q}_k^i + g_{kj}\bar{Q}_l^j = 0$$

i.e. $g(X, Q^{-1}X) = 0$ for all X. From that follows g(X, PX) = 0 for all X. Analogically it holds also for the metric \overline{g} . \Box

4. F_2^{ε} -Projective Mapping with Function ε

Due to the above properties, from formula (9) and Lemma 3.2, we can simplify the Definition 3.1. Let g and \overline{g} be two (pseudo-) Riemannian metrics on an n-dimensional manifold M. Consider the regular (1, 1)-tensors F which is satisfying the following conditions

$$g(X, FX) = 0 \text{ and } \bar{g}(X, FX) = 0.$$
 (11)

for all X.

Definition 4.1. The metrics g and \bar{g} are called F_2^{ε} -projective if for a certain gradient 1-form ψ the Levi-Civita connections ∇ and $\bar{\nabla}$ of g and \bar{g} satisfy

$$(f^*\bar{\nabla} - \nabla)_X Y = \psi(X)Y + \psi(Y)X - \varepsilon \,\psi(F^{-1}X)FY - \varepsilon \,\psi(F^{-1}Y)FX,\tag{12}$$

for all vector fields *X*, *Y* and ε is a function on *M*, with $\varepsilon(x) \neq 0$, for all $x \in M$.

For $\varepsilon = const \neq 0$ this definition is in [8]. From Lemma 3.2, definition of F_2 -planar mapping and comparing formulas (7) and (12) we evidently obtain following proposition:

Proposition 4.2. A PQ^{ε} -projective mapping with non-zero function ε and gradient-like form ψ is an F_2^{ε} -planar mapping with $P = \varepsilon F^{-1}, Q = F$.

We can rewrite formula (12) into this form:

$$\bar{\Gamma}^{h}_{ij} = \Gamma^{h}_{ij} + \psi_{(i}\delta_{j)} - \varepsilon\psi_{\alpha}P^{\alpha}_{(i}F^{h}_{j)}.$$
(13)

Contracting *h*, *j* we get

$$\bar{\Gamma}^{\alpha}_{i\alpha} = \Gamma^{\alpha}_{i\alpha} + (n+1-\varepsilon) \cdot \psi_i. \tag{14}$$

From Voss-Weyl formula, see [24, p. 57], we get $\bar{\Gamma}_{i\alpha}^{\alpha} - \Gamma_{i\alpha}^{\alpha} = \partial_i \ln \sqrt{\left|\det \bar{g}/\det g\right|}$. Because ψ_i is gradient-like form, i.e. $\psi_i = \partial_i \Psi$, then ε is a function of argument Ψ , i.e. $\varepsilon = \varepsilon(\Psi)$.

Most important thing in the study of *F*-planar mapping is preserving covariant derivative of structure *F*. The structure *F preserves covariant derivative* if $\overline{\nabla}F = \nabla F$. We proof that following lemma holds:

Lemma 4.3. If F_2^{ε} -planar mapping f preserves covariant derivative of structure F, then $\varepsilon = -1$ or f is affine, *i.e.* $f^* \overline{\nabla} = \nabla$.

Proof. It is known, that $\nabla_j F_i^h = \partial_i F_i^h + F_i^\alpha \Gamma_{\alpha j}^h - F_\alpha^h \Gamma_{i j}^\alpha$ and $\bar{\nabla}_j F_i^h = \partial_i F_i^h + F_i^\alpha \bar{\Gamma}_{\alpha j}^h - F_\alpha^h \bar{\Gamma}_{i j}^\alpha$. Using equation (12), which characterized F_2^ε -planar mapping, we get

$$\bar{\nabla}_j F_i^h = \nabla_j F_i^h + F_i^\alpha \psi_\alpha \delta_j^h - (\varepsilon + 1) \psi_i F_j^h + \psi_\alpha P_i^\alpha F_\beta^h F_j^\beta.$$

Evidently, structure F preserves covariant derivative if and only if the following formula holds

$$F_i^{\alpha}\psi_{\alpha}\delta_j^h - (\varepsilon+1)\psi_i F_j^h + \psi_{\alpha}P_i^{\alpha}F_{\beta}^h F_j^{\beta} = 0.$$
⁽¹⁵⁾

We will limit only for calculations at point x_0 . We suppose that $\psi_i(x_0) \neq 0$, because from (12) would follow $f^*\bar{\nabla} = \nabla$, i.e. for all points imply f is affine. Thus $\psi_\alpha P_i^\alpha(x_0) \neq 0$ and then from (15) implies:

$$F^h_{\varepsilon}F^{\varepsilon}_j = \alpha \delta^h_j + \beta F^h_j. \tag{16}$$

Now, we contract (16) with metric tensor g_{ih} and after that, we symetrize with respect to indices *i*, *j*. Because $g_{i\alpha}F_i^{\alpha} + g_{j\alpha}F_i^{\alpha} = 0$, we obtain $\beta g_{i\alpha}F_j^{\alpha} = 0$ and from it, evidently, implies $\beta = 0$.

After substitution (16) to formula (15), we get

$$\left(F_i^{\alpha}\psi_{\alpha}+\alpha\psi_{\alpha}P_i^{\alpha}\right)\delta_j^h-(\varepsilon+1)\psi_iF_j^h=0.$$

From this implies that $(\varepsilon + 1)\psi_i = 0$ then $\varepsilon = -1$ or $\psi_i \equiv 0$ for all points on *M*, i.e. in the last case *f* is affine. \Box

Theorem 4.4. Let (M, g, F) be a (pseudo-) Riemannian manifold with regular structure F, for which $F^2 \neq \varkappa Id$ and g(X, FX) = 0 for all X. If (M, g, F) admits an F_2^{ε} -projective mapping onto a (pseudo-) Riemannian manifold $(\overline{M}, \overline{g})$ then the complete set of linear differential equations of Cauchy type in covariant derivatives in (M, g, F)

$$\nabla_k a_{ij} = \lambda_i g_{jk} + \lambda_j g_{ik} + \Lambda_i g_{j\beta} F_k^{\beta} + \Lambda_j g_{i\beta} F_k^{\beta}$$
(17)

have a solution respective unknown function a_{ij} *which* $a_{ij} = a_{ji}$, det $||a_{ij}|| \neq 0$ and

$$a_{i\alpha}F_j^{\alpha} + a_{j\alpha}F_i^{\alpha} = 0.$$
⁽¹⁸⁾

Whereas $\lambda_i = a_{\alpha\beta} T_i^{\alpha\beta}$, $\Lambda_i = a_{\alpha\beta} T_i^{\alpha\beta}$ and $T_i^{\sigma\alpha\beta}$, $\sigma = 1, 2$ are a certain tensors obtained from g_{ij} and F_i^h .

Proof. We will study the fundamental equations of an F_2^{ε} -planar mapping. From Proposition 4.2 follows, that formula (8) has the form

$$\nabla_k a_{ij} = \lambda_i g_{jk} + \lambda_j g_{ik} - \lambda_\alpha F_i^\alpha g_{j\beta} F_k^\beta - \lambda_\alpha F_j^\alpha g_{i\beta} F_k^\beta.$$
⁽¹⁹⁾

From (4), (9) and Lemma 3.2 we may deduce the validity of condition (18). Now we covariantly differentiate (18) and obtain 3

$$\nabla_k a_{i\alpha} F_i^{\alpha} + \nabla_k a_{j\alpha} F_i^{\alpha} = T_{ijk'}$$

where $\overset{3}{T}_{ijk} = -a_{i\alpha} \nabla_k F^{\alpha}_j - a_{j\alpha} \nabla_k F^{\alpha}_i$.

Using formula (19) and after some calculation, we get

$$(\varepsilon+1)(g_{\alpha k}F_{j}^{\alpha}\lambda_{i}+g_{\alpha k}F_{i}^{\alpha}\lambda_{j})+\lambda_{\alpha}F_{j}^{\alpha}g_{ik}+\lambda_{\alpha}F_{i}^{\alpha}g_{jk}-\lambda_{\alpha}P_{i}^{\alpha}g_{\beta\gamma}F_{j}^{\beta}F_{k}^{\gamma}-\lambda_{\alpha}P_{j}^{\alpha}g_{\beta\gamma}F_{i}^{\beta}F_{k}^{\gamma}=\tilde{T}_{ijk}^{3}.$$
(20)

It is known, that g_{ij} , $g_{\beta\gamma}F_i^{\beta}F_j^{\gamma}$ are symmetric and $g_{\alpha k}F_j^{\alpha}$ is antisymmetric tensors. After skew symmetrization formula (20) with respect to indices *j*, *k* and replacing indices *i*, *k* we added up the obtained formula with (20) and finally we get:

$$(\varepsilon + 1) \cdot (g_{\alpha i} F_{j}^{\alpha} \lambda_{k} + g_{\alpha k} F_{j}^{\alpha} \lambda_{i}) + g_{ik} \lambda_{\alpha} F_{j}^{\alpha} - g_{\beta \gamma} F_{i}^{\beta} F_{k}^{\gamma} \lambda_{\alpha} P_{j}^{\alpha} = \overset{4}{T}_{ijk},$$
(21)
where $\overset{4}{T}_{ijk} = \frac{1}{2} (\overset{3}{T}_{ijk} + \overset{3}{T}_{kji} - \overset{3}{T}_{kij}).$

Now, we create this homogeneous equation:

$$g_{\alpha i}F_j^{\alpha}A_k + g_{\alpha k}F_j^{\alpha}A_i + g_{ik}B_j - g_{\beta\gamma}F_i^{\beta}F_k^{\gamma}C_j = 0$$

with unknown variables A_i , B_i and C_i . Because rank $||g_{\alpha i}F_j^{\alpha}|| > 3$ from (21) we get $A_k = 0$. From residual case it implies either $B_j = C_j = 0$ or $g_{\beta\gamma}F_i^{\beta}F_k^{\gamma} = -\varkappa g_{ik}$, the later case is equivalently $F^2 = \varkappa Id$. This is a contradiction with the assumption of theorem 4.4.

Therefore $B_j = C_j = 0$ and it implies that $\lambda_{\alpha} F_i^{\alpha} = a_{\alpha\beta} T_i^{\alpha\beta}$ and $\lambda_{\alpha} P_i^{\alpha} = a_{\alpha\beta} T_i^{\alpha\beta}$, where \hat{T} and \hat{T} are a certain tensors obtained from g_{ij} and F_i^h . Now, elementary, if $\|\tilde{F}_i^h\| = \|F_i^h\|^{-1}$, then $\lambda_i = \lambda_{\alpha} F_j^{\alpha} \tilde{F}_i^j = a_{\alpha\beta} T_j^{\alpha\beta} \tilde{F}_i^j \equiv a_{\alpha\beta} T_i^{\alpha\beta}$. Thereby this calculations, from (19) we obtain formula (17). \Box

5. F_2^{ε} -Planar Mappings with the $\bar{g} = k \cdot g$ Condition

From the properties of equations (17) and (18) follows the new results for F_2^{ε} -planar mappings, for which $F^2 \neq \varkappa Id$. These conditions we suppose for the whole studied (pseudo-) Riemannian manifolds (M, g, F). The theory of differential equations implies that the system of equation (17) for initial condition at the point $x_0 \in M$

$$a_{ij}(x_0) = a_{ij}^0$$
(22)

has only one unique solution.

Due to this, the general solution of (17) depends on the real parameters which can be, for example, the conditions (22). Because a_{ij} is symmetric, conditions can not be more then n(n + 1)/2. Moreover, condition (18) implies further reduction of the parameters.

The structure *F* at the point x_0 can be written in Jordan's form as $F_i^i = \lambda_i$, $F_i^{i+1} = \mu_i = 0, 1$ and the other components are vanishing. Because det $F \neq 0$, all $\lambda_i \neq 0$. We do not exclude that λ_i are complex numbers (in this case the transformation equations are complex at the point x_0).

Substituting i = j to equation (18), we obtain $a_{ii}\lambda_i + a_{ii+1}\mu_{i+1} = 0$ (formally $\mu_{n+1} \equiv 0$), i.e. the diagonal components a_{ii} depend on the other components.

This implies that the maximum number of the independent components of a_{ij}^0 , which is not greater than n(n-1)/2 - n, i.e. n(n-1)/2 parameters. Therefore the following theorem holds.

Theorem 5.1. A set of (pseudo-) Riemannian manifolds (M, g, F), det $F \neq 0$ and $F^2 \neq \varkappa$ Id, on which some (pseudo-) Riemannian manifold admits an F_2^{ε} -projective mapping, depends on not more than n(n - 1)/2 parameters.

We have the following theorem.

Theorem 5.2. Let (M, g, F) and (M, \overline{g}, F) be (pseudo-) Riemannian manifolds with $F^2 \neq \varkappa$ Id and which are in F_2^{ε} -planar correspondence. If the condition $\overline{g} = k \cdot g$ is valid for $x_0 \in M$, then g and \overline{g} are homothetic in M, i.e.

$$\bar{g}(x) = k \cdot g(x),\tag{23}$$

for all $x \in M$, with k = const.

Proof. In the assumption of Theorem 5.2, Theorem 4.4 is valid. Then equation (17) holds. For the initial condition (23) there is no more than one unique solution. On the other hand, a trivial solution of equations (17) is $\bar{g} = k \cdot g$, and it satisfies the initial condition (23). The given mapping is homothetic.

References

- H. Chudá, M. Shiha, Conformal holomorphically projective mappings satisfying a certain initial condition, Miskolc Math. Notes 14 (2013) 569–574.
- [2] I. Hinterleitner, On holomorphically projective mappings of e-Kähler manifolds, Arch. Mat. (Brno) 48 (2012) 333–338.
- [3] I. Hinterleitner, J. Mikeš, On F-planar mappings of spaces with affine connections, Note Mat. 27 (2007) 111–118.
- [4] I. Hinterleitner, J. Mikeš, Fundamental equations of geodesic mappings and their generalizations, J. Math. Sci. 174 (2011) 537–554.
- [5] I. Hinterleitner, J. Mikeš, Projective equivalence and spaces with equi-affine connection, J. Math. Sci. 177 (2011) 546–550; transl. from Fundam. Prikl. Mat. 16 (2010) 47–54.
- [6] I. Hinterleitner, J. Mikeš, Geodesic Mappings and Einstein Spaces, in Geom. Meth. in Phys., Birkhäuser, Basel 19 (2013) 331–336.
 [7] I. Hinterleitner, J. Mikeš, On holomorphically projective mappings from manifolds with equiaffine connection onto Kähler manifolds, Arch. Math. 49 (2013) 295–302
- [8] I. Hinterleitner, J. Mikeš, P. Peška, On F_2^{ε} planar mappings of (pseudo-) Riemannian manifolds, Arch. Math. 50 (2014) 287–295.
- [9] I. Hinterleitner, J. Mikeš, J. Stránská, Infinitesimal F-planar transformations, Russ. Math. 52 (2008) 13–18.
- [10] J. Hrdina, Almost complex projective structures and their morphisms, Arch. Math. 45 (2009) 255–264.
- [11] J. Hrdina, J. Slovák, Morphisms of almost product projective geometries, Proc. 10th Int. Conf. on Diff. Geom. and its Appl., DGA 2007, Olomouc. Hackensack, NJ: World Sci. (2008) 253–261.
- [12] J. Hrdina, P. Vašík, Generalized geodesics on almost Cliffordian geometries, Balkan J. Geom. Appl. 17 (2012) 41-48
- [13] M. Jukl, L. Juklová, J. Mikeš, Some results on traceless decomposition of tensors, J. Math. Sci. 174 (2011) 627–640.
- [14] R.J.K. al Lami, M. Škodová, J. Mikeš, On holomorphically projective mappings from equiaffine generally recurrent spaces onto Kählerian spaces, Arch. Math. 42 (2006) 291–299.
- [15] T. Levi-Civita, Sulle transformationi delle equazioni dinamiche, Ann. Mat. Milano 24 (1886) 255–300.
- [16] V. Matveev, S. Rosemann, Two remarks on PQ^{e} -projectivity of Riemanninan metrics, Glasgow Math. J. 55 (2013) 131–138.
- [17] J. Mikeš, On holomorphically projective mappings of Kählerian spaces, Ukr. Geom. Sb. 23 (1980) 90–98.
- [18] J. Mikeš, Special F-planar mappings of affinely connected spaces onto Riemannian spaces, Mosc. Univ. Math. Bull. 49 (1994) 15–21.
- [19] J. Mikeš, Holomorphically projective mappings and their generalizations, J. Math. Sci. 89 (1998) 1334–1353.
- [20] J. Mikeš, O. Pokorná, On holomorphically projective mappings onto Kählerian spaces, Rend. Circ. Mat. Palermo 69 (2002) 181–186.
- [21] J. Mikeš, O. Pokorná, On holomorphically projective mappings onto almost Hermitian spaces, 8th Int. Conf. Opava (2001) 43-48.
- [22] J. Mikeš, M. Shiha, A. Vanžurová, Invariant objects by holomorphically projective mappings of Kählerian space, 8th Int. Conf. APLIMAT 2009: Conf. Proc. (2009) 439–444.
- [23] J. Mikeš, N.S. Sinyukov, On quasiplanar mappings of space of affine connection, Sov. Math. 27 (1983) 63–70.
- [24] J. Mikeš, A. Vanžurová, I. Hinterleitner, Geodesic Mappings and Some Generalizations, Palacky Univ. Press, Olomouc, 2009.
- [25] J. Mikeš et al, Differential Geometry of Special Mappings, Palacky Univ. Press, Olomouc, 2015.
- [26] T. Otsuki, Y. Tashiro, On curves in Kaehlerian spaces, Math. J. Okayama Univ. (1954) 57–78.
- [27] A.Z. Petrov, Simulation of physical fields, Grav. i teor. Otnos., Kazan State Univ. Press, Kazan 4–5 (1968) 7–21.
- [28] M. Prvanović, Holomorphically projective transformations in a locally product space, Math. Balk. 1 (1971) 195–213.
- [29] N.S. Sinyukov, Geodesic mappings of Riemannian spaces, Nauka, Moscow, 1979.
- [30] M. Škodová, J. Mikeš, O. Pokorná, On holomorphically projective mappings from equiaffine symmetric and recurrent spaces onto Kählerian spaces, Rend. Circ. Mat. Palermo 75 (2005) 309–316.
- [31] M.S. Stanković, M.L. Zlatanović, L.S. Velimirović, Equitorsion holomorphically projective mappings of generalized Kählerian space of the first kind, Czech. Math. J. 60 (2010) 635–653.
- [32] P. Topalov, Geodesic compatibility and integrability of geodesic flows, J. Math. Phys. 44 (2003) 913–929.
- [33] K. Yano, Differential geometry on complex and almost complex spaces, Pergamon Press, Oxford-London-New York-Paris-Frankfurt, 1965.