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Existence of Solutions for a Second Order Boundary
Value Problem with the Clarke Subdifferential
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Abstract. In this paper, we prove a theorem on the existence of solutions for a second order differential
inclusion governed by the Clarke subdifferential of a Lipschitzian function and by a mixed semicontinuous
perturbation.

1. Introduction

The existence of solutions for the first order differential inclusion in a separable Hilbert space H of the
form

(PM)
{
−ẋ(t) ∈ ∂cϕ(x(t)) + M(t, x(t)), a.e.t ∈ [0,T]
x(0) = x0,

has been studied in [5], where ∂c(ϕ(·)) is the Clarke subdifferential of the proper lower semicontinous inf
compact convex function ϕ(·), M : [0,T] × H ⇒ H is an upper semicontinuous with respect to the second
variable multimapping with closed convex values.

The authors in [17] investigated the same evolution inclusion with ϕ(.) a proper convex and lower
semicontinous function, in both cases where the perturbation M(., .) has convex or nonconvex values.

Evolution differential inclusions governed by the subdifferential of proper convex l.s.c functions appears
often in problems of optimal control theory (Cesari [9], Clarke [10], and Rockafellar [23]), of mechanics
(Moreau [19] and Donchev [12]), and of mathematics economics (Cornet [11] and Henry [15]).

It is worth mentioning, that when ϕ(.) is the indicator function of a closed convex moving set C(t),
the subdifferential of ϕ(.) is the normal cone at C(t), and problem (PF) is a perturbed sweeping process.
Numerical aspects of the sweeping process can be found in [21], applications include the dynamics of
machines [13] and the vast area of numerical simulation in granular mechanics (see [20] and references
therein for a review). Frictional contact may be somewhat regularized through the introduction of local
elastic micro-deformation ([18]) and of viscosity-like effects [25, 26]. Such perturbed processes have been
thoroughly studied in many papers, see for example ([2, 24, 27, 29]).

In the present work, we study, in the finite-dimensional spaceRn, the existence of solutions of the second
order boundary value problem of the form

(PF)
{
−ẍ(t) ∈ ∂cϕ(x(t)) + F(t, x(t), ẋ(t)), a.e. t ∈ [0, 1]
x(0) = x(1) = 0,
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where F : [0, 1]×Rn
×Rn ⇒ Rn is a nonempty closed valued multimapping measurable on [0, 1] and mixed

semicontinuous, that is, for almost every t∈ [0, 1], at each (x, y) ∈ Rn
× Rn such that F(t, x, y) is convex,

the multimapping F(t, ., .) is upper semicontinous on Rn
× Rn and whenever F(t, x, y) is not convex, the

multimapping F(t, ., .) is lower semicontinous on some neighborhood of (x, y). We refer the reader to [3] for
mixed semicontinuous perturbation to a second order boundary value problem governed by a maximal
monotone operator.

2. Definitions and Preliminaries

Let Rn be the n-dimensional Euclidean space with scalar product 〈., .〉 and norm ‖.‖.
BRn (0, r) and BRn (0, r) are the closed balls of Rn with center 0 and radius r > 0, for r = 1 we will write BRn

and BRn . L([0, 1]) is the σ-algebra of Lebesgue measurable sets of [0, 1], dt is the Lebesgue measure on [0, 1],
andB(Rn) is the σ-algebra of Borel subsets ofRn. By L1

Rn ([0, 1]) we denote the space of all Lebesgue-Bochner
integrable Rn-valued mappings defined on [0, 1].
Let CRn ([0, 1]) be the Banach space of all continuous mappings x : [0, 1] → Rn, endowed with the sup
norm ‖.‖C, and C1

Rn ([0, 1]) be the Banach space of all continuous mappings x : [0, 1]→ Rn with continuous
derivative, equipped with the norm

‖x‖C1 = max{max
t∈[0,1]
‖x(t)‖,max

t∈[0,1]
‖ẋ(t)‖}.

By W2.1
Rn ([0, 1]) we denote the space of all continuous mappings x ∈ CRn ([0, 1]) such that their first usual

derivatives are continuous and scalarly derivable and such that ẍ ∈ L1
Rn ([0, 1]).

If E is a Banach space, we denote by E′ its topological dual space endowed with the norm

‖ξ‖∗ := sup{〈ξ, v〉 : v ∈ E, ‖v‖ ≤ 1},

σ(E,E′) is the weak topology on E and σ(E′,E) is the weak* topology on E′.
For a set A ⊂ Rn, co(A) is the closed convex hull of A.
The theorem below is a result characterizing the closed convex hull of a subset of a linear space E.

Theorem 2.1. (see [6]) Let K be a nonempty subset of E. Then

co(K) = {x ∈ E : ∀ x′ ∈ E′, 〈x′, x〉 ≤ δ∗(x′,K)},

where,
δ∗(x′,K) = sup

y∈K
〈x′, y〉

stands for the support function of K at x′ ∈ E′.

Lemma 2.2. (see [8]) Let E be a Banach space, and C be a closed convex subset of E, then

d(x,C) = sup
x′∈BE′

(
〈x′, x〉 − δ∗(x′,C)

)
.

Theorem 2.3. (See [7]) Let E be Banach space and C be a convex subset of E, then C is weakly closed if and only if it
is strongly closed.

Theorem 2.4. (Banach-Mazur’s Lemma, see [16]) If E is a Banach space and (xn) is a sequence of elements of E
converging weakly to x, then some sequences of convex combinations of the elements xn converges to x in the norm
topology of E.

We recall the following definitions.
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Definition 2.5. Let E be a Banach space. Let Y be a subset of E and f : Y → R, we shall say that f is Lipschitz (of
rank L) near x if, for some ε > 0, f satisfies the Lipschitz condition (of rank L) on the set x + εBE.

Definition 2.6. (see [10]) Let E be a Banach space. Let f : E → R be Lipschitzian near a given point x0 ∈ E, and
v any other vector in E. The generalized directional derivative of f at x0 in the direction v, denoted by f ◦(x0, v), is
defined as follows

f ◦(x0, v) = lim
y→x0

sup
t→0

f (y + tv) − f (y)
t

,

where y is a vector in E and t is a positive scalar.
The Clarke subdifferential of f at x0, denoted by ∂c f (x0), is the subset of E′ defined by

∂c f (x0) := {ξ ∈ E′ : 〈ξ, v〉 ≤ f ◦(x0, v) for all v ∈ E}.

Proposition 2.7. (see [10]) Let f : E→ R be Lipschitzian of rank L near x. Then,
(a) ∂c f (x) is a nonempty convex and weakly∗-compact subset of E′, and ‖ξ‖∗ ≤ L for every ξ in ∂c f (x);
(b) for every v in E, one has

f (x, v) = max{〈ξ, v〉 : ξ ∈ ∂c f (x)}.

Lemma 2.8. (see [22]) The Clarke subdifferential mapping ∂c f : E⇒ E′ is norm-to-weak* upper semicontinuous.

3. Main Results

We begin by giving a proposition which summarizes some properties of some Green type function
needed in the proof of our main result (see [1] and [14]).

Proposition 3.1. Let E be a separable Banach space, and let G : [0, 1] × [0, 1]→ R be the function defined by

G(t, s) =

{
(t − 1)s if 0 ≤ s ≤ t,
t(s − 1) if t ≤ s ≤ 1.

Then the following assertions hold.
(a) If u ∈W2,1

E ([0, 1]) with u(0) = u(1) = 0, then

u(t) =

∫ 1

0
G(t, s)ü(s)ds, ∀t ∈ [0, 1].

(b) G(., s) is derivable on [0, 1], for every s ∈ [0, 1] except on the diagonal and its derivative is given by

∂G
∂t

(t, s) =

{
s if 0 ≤ s < t,
(s − 1) if t < s ≤ 1.

(c) G(., .) and
∂G
∂t

(., .) satisfy

sup
t∈[0,1]
|G(t, s)| ≤ 1, sup

t∈[0,1]
t,s

|
∂G
∂t

(t, s)| ≤ 1.

(d) For f ∈ L1
E([0, 1]) and for the mapping u f : [0, 1]→ E defined by

u f (t) =

∫ 1

0
G(t, s) f (s)ds, ∀ t ∈ [0, 1],

one has u f (0) = u f (1) = 0. Furthermore, the mapping u f is derivable, and its derivative u̇ f satisfies

lim
h→0

u f (t + h) − u f (t)
h

= u̇ f (t) =

∫ 1

0

∂G
∂t

(t, s) f (s)ds.

(e) The mapping u̇ f is scalarly derivable, that is, there exists a mapping ü f : [0, 1]→ E such that, for every x′ ∈ E′ ,
the scalar function 〈x′, u̇ f (.)〉 is derivable, with d

dt 〈x
′, u̇ f (t)〉 = 〈x′, ü f (t)〉. Furthermore, ü f = f a.e. on [0, 1].
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Let us mention a useful consequence of Proposition 3.1.

Proposition 3.2. Let E be a separable Banach space and let f : [0, 1]→ E be a continuous mapping (respectively, a
mapping in L1

E([0, 1])). Then the mapping u f : [0, 1]→ E defined by

u f (t) =

∫ 1

0
G(t, s) f (s)ds, ∀ t ∈ [0, 1],

is the unique C2
E([0, 1])-solution (respectively, W2,1

E ([0, 1])-solution) of the differential equation{
ü(t) = f (t), ∀ t ∈ [0, 1],
u(0) = u(1) = 0.

For the proof of our theorem we will also need the following theorem and we refer the reader to [28] and
[4] for its proof.

Theorem 3.3. Let M : [0, 1]×Rn
×Rn ⇒ Rn be a closed valued multimapping satisfying the following hypotheses.

(i) M is L([0, 1]) ⊗ B(Rn) ⊗ B(Rn)-measurable;
(ii) for every t ∈ [0, 1], at each (x, y) ∈ Rn

× Rn such that M(t, x, y) is convex, the multimapping M(t, ., .) is upper
semicontinuous, and whenever M(t, x, y) is not convex, M(t, ., .) is lower semicontinuous on some neighborhood of
(x, y);
(iii) there exists a positive function f : [0, 1] ×Rn

×Rn ⇒ R of Carathéodory type which is integrably bounded on
bounded subsets of Rn such that

M(t, x, y) ∩ BRn (0, f (t, x, y)) , ∅,

for all (t, x, y) ∈ [0, 1] ×Rn
×Rn.

Then for any ε > 0 and any compact set K ⊂ C1
Rn ([0, 1]), there is a nonempty closed convex valued multimapping

Φ : K ⇒ L1
Rn ([0, 1]) which has a strongly-weakly sequentially closed graph such that for any x ∈ K and φ ∈ Φ(x)

for almost every t ∈ [0, 1], one has,
φ(t) ∈M(t, x(t), ẋ(t)),

‖φ(t)‖ ≤ f (t, x(t), ẋ(t)) + ε.

Now we are able to prove our main result.

Theorem 3.4. Let ϕ : Rn
→ R be a Lipschitzian function of rank L and F : [0, 1] ×Rn

×Rn ⇒ Rn be a nonempty
closed valued multimapping satisfying the following hypotheses:
(H1) F is L([0, 1]) ⊗ B(Rn) ⊗ B(Rn)-measurable;
(H2) for every t ∈ [0, 1], at each (x, y) such that F(t, x, y) is convex, F(t, ., .) is upper semicontinuous, and whenever
F(t, x, y) is not convex, F(t, ., .) is lower semicontinuous on some neighborhood of (x, y);
(H3) there exists some positive Lebesgue integrable function ρ(.) defined on [0, 1] such that

F(t, x, y) ∩ ρ(t)BRn , ∅, for all (t, x, y) ∈ [0, 1] ×Rn
×Rn.

Then the boundary differential inclusion

(PF)
{
−ẍ(t) ∈ ∂cϕ(x(t)) + F(t, x(t), ẋ(t)), a.e. t ∈ [0, 1],
x(0) = x(1) = 0

has at least one solution x(.) ∈W2,1
Rn ([0, 1]).

Proof. Step 1. Remark by Proposition (2.7) that for all x ∈ Rn, ∂cϕ(x) ⊂ LBRn since ϕ is Lipschitzian on Rn.

Put for all t ∈ [0, 1], m(t) = L + ρ(t) +
1
2

and let us consider the sets

D =
{
h ∈ L1

Rn ([0, 1]) : ‖h(t)‖ ≤ m(t), a.e. on [0, 1]
}
,
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and

K =
{
x f ∈W2,1

Rn ([0, 1]) : x f (t) =

∫ 1

0
G(t, s) f (s)ds, ∀t ∈ [0, 1], f ∈ D

}
.

It is clear thatD is a convex σ(L1
Rn ,L∞Rn )-compact subset of L1

Rn ([0, 1]) and thatK is a convex compact subset
of C1

Rn ([0, 1]). Indeed, let (hn(.))n be a sequence of elements of D converging to h(.) ∈ L1
Rn ([0, 1]). For all

t ∈ [0, 1], let sn(t) =
hn(t)
m(t)

. We have ‖sn(t)‖ ≤ 1, that is, sn(.) ∈ BL∞
Rn , which is weakly∗-compact, so by

extracting a subsequence, we may suppose that (sn(.))n σ(L∞Rn ,L1
Rn )-converges to a mapping s(.) ∈ L∞Rn ([0, 1]),

this implies that for all z(.) ∈ L1
Rn ([0, 1]), 〈sn(.), z(.)〉 → 〈s, z〉.

Let y(.) ∈ L∞Rn ([0, 1]), then, m(.)y(.) ∈ L1
Rn ([0, 1]). Consequently,

〈m(.)sn(.), y(.)〉 = 〈sn(.),m(.)y(.)〉 → 〈s(.),m(.)y(.)〉 = 〈m(.)s(.), y(.)〉,

that is, (hn(.)) σ(L1
Rn ,L∞Rn )-converges to the mapping h(.) := m(.)s(.). This shows that D is relatively weakly

compact. Furthermore, sinceD is a strongly closed convex subset of L1
Rn ([0, 1]), then, by Theorem(2.3), it is

weakly closed. We conclude thatD is weakly compact in L1
Rn ([0, 1]).

Now, to see the compactness of K in C1
Rn ([0, 1]), observe first that it is equicontinuous since for all f (.) ∈ D

and for all t1, t2 ∈ [0, 1], (t1 < t2) one has

‖x f (t2) − x f (t1)‖ = ‖

∫ 1

0
G(t2, s) f (s)ds −

∫ 1

0
G(t1, s) f (s)ds‖

≤

∫ 1

0
|G(t2, s) − G(t1, s)|m(s)ds

and, by the assertion (d) in Proposition(3.1),

‖ẋ f (t2) − ẋ f (t1)‖ = ‖

∫ 1

0

∂G
∂t2

(t2, s) f (s)ds −
∫ 1

0

∂G
∂t1

(t1, s) f (s)ds‖

≤

∫ 1

0
|
∂G
∂t2

(t2, s) −
∂G
∂t1

(t1, s)|m(s)ds.

Since m(.) ∈ L1
R

([0, 1]) and G(.) and
∂G
∂t

(.) are uniformly continuous, we get the equicontinuity of K and of

the set {ẋ(.), x(.) ∈ K}.
On the other hand, for all f (.) ∈ D, we have by assertion (c) of Proposition(3.1),

‖x f (t)‖ = ‖

∫ 1

0
G(t, s) f (s)ds‖ ≤

∫ 1

0
|G(t, s)|‖ f (s)‖ds

≤

∫ 1

0
m(s)ds = ‖m‖L1

R
,

and

‖ẋ f (t)‖ = ‖

∫ 1

0

∂G
∂t

(t, s) f (s)ds‖ ≤
∫ 1

0
|
∂G
∂t

(t, s)|‖ f (s)‖ds

≤

∫ 1

0
m(s)ds = ‖m‖L1

R
.

This shows that K (t) and {ẋ(t), x(.) ∈ K} are bounded in the finite-dimensional space Rn and hence there
are relatively compact. By the Ascoli-Arzelà Theorem we conclude thatK and {ẋ(.), x(.) ∈ K} are relatively
compact in CRn ([0, 1]), or equivalently,K is relatively compact in C1

Rn ([0, 1]).
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In the following we prove that K is closed in C1
Rn ([0, 1]). Let (x fn (.))n be a sequence of elements of K

converging to x(.) ∈ C1
Rn ([0, 1]), that is, for all t ∈ [0, 1], x fn (t) =

∫ 1

0 G(t, s) fn(s)ds, and ( fn(.))n ⊂ D. SinceD is
σ(L1

Rn ,L∞Rn )-compact, we can extract from ( fn(.))n a subsequence that we do not relabel and which converges
weakly to a mapping f (.) ∈ D. Let y(.) ∈ L∞Rn ([0, 1]), for all t ∈ [0, 1], we have

lim
n→∞
〈G(t, .) fn(.), y(.)〉 = lim

n→∞
〈 fn(.),G(t, .)y(.)〉

= 〈 f (.),G(t, .)y(.)〉 = 〈G(t, .) f (.), y(.)〉,

i.e.,

lim
n→∞

∫ 1

0
〈G(t, s) fn(s), y(s)〉ds =

∫ 1

0
〈G(t, s) f (s), y(s)〉ds,

in particular for y(.) = 1[0,1](.)e j, with (e j) j a basis of the space Rn, then,

〈 lim
n→∞

∫ 1

0
G(t, s) fn(s)ds, e j〉 = 〈

∫ 1

0
G(t, s) f (s)ds, e j〉,∀ j,

which ensures,

lim
n→∞

x fn (t) = lim
n→∞

∫ 1

0
G(t, s) fn(s)ds =

∫ 1

0
G(t, s) f (s)ds = x(t),

from assertion (d) of Proposition(3.1), we have

lim
n→∞

ẋ fn (t) = lim
n→∞

∫ 1

0

∂G
∂t

(t, s) fn(s)ds =

∫ 1

0

∂G
∂t

(t, s) f (s)ds = ẋ(t).

We conclude that the sequence (xn(.), ẋn(.))n converges to (x(.), ẋ(.)) = (x f (.), ẋ f (.)), this implies that K is
closed and hence it is compact in C1

Rn ([0, 1]).
By Theorem(3.3) where we take f (t, x, y) = ρ(t), there is a nonempty closed convex valued multimapping

Φ : K ⇒ L1
Rn ([0, 1]) which has a strongly-weakly sequentially closed graph, such that, for all x ∈ K and

φ ∈ Φ(x), we have for almost all t ∈ [0, 1]

φ(t) ∈ F(t, x(t), ẋ(t)) and ‖φ(t)‖ ≤ ρ(t) +
1
2
. (3.1)

Step 2. Let us define the multimapping Γ : K ⇒ C1
Rn ([0, 1]) by

Γ(x) =
{

y ∈ C1
Rn ([0, 1]) : y(t) =

∫ 1

0
G(t, s)w(s)ds,∀t ∈ [0, 1],

w(t) ∈ −∂cϕ(x(t)) − φ(t), a.e.t ∈ [0, 1], φ ∈ Φ(x)
}
.

First, observe that for any x ∈ K and all φ ∈ Φ(x) the multimapping t 7→ −∂cϕ(x(t)) − φ(t) is measurable.
According to the theorem of the existence of measurable selection (see [8]), there is a measurable mapping
γ : [0, 1]→ Rn such that γ(t) ∈ −∂cϕ(x(t))−φ(t) for all t ∈ [0, 1]. Consequently, the mapping y(.) : [0, 1]→ Rn

defined by y(t) =
∫ 1

0 G(t, s)γ(s)ds belongs to Γ(x), this shows that Γ(x) is a nonempty set.
Fix any x ∈ K and y ∈ Γ(x), by the definition of Γ(x), there exists φ ∈ Φ(x) and a Lebesgue measurable
mapping w : [0, 1]→ Rn such that

y(t) =

∫ 1

0
G(t, s)w(s)ds, ∀ t ∈ [0, 1] and w(t) ∈ −∂cϕ(x(t)) − φ(t), a.e. t ∈ [0, 1].
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From (3.1), for almost every t ∈ [0, 1], we get

‖w(t)‖ ≤ L + ρ(t) +
1
2

= m(t), (3.2)

this implies that Γ(x) ⊂ K , that is, Γ is a map fromK into itself.
Clearly Γ(x) is convex since the set Φ(x) and the Clarke subdifferential of ϕ(x(·)) are convex.

Let us prove now, that for any x ∈ K , Γ(x) is a compact subset of C1
Rn ([0, 1]). Since K is compact, it is

sufficient to prove that Γ(x) is closed. Let (yn(.)) be a sequence of Γ(x) converging to y(.) ∈ K , that is, there
is a sequence (φn(.)) ⊂ Φ(x) and a sequence of Lebesgue measurable mappings (wn(.)) such that for each
n ∈N,

yn(t) =

∫ 1

0
G(t, s)wn(s)ds ∀t ∈ [0, 1],

and
wn(t) ∈ −∂cϕ(x(t)) − φn(t) a.e.t ∈ [0, 1]. (3.3)

By (3.2), (wn(.)) is included inD which is σ(L1
Rn ,L∞Rn )-compact, then we can extract a subsequence, that we

do not relabel, σ(L1
Rn ,L∞Rn )-converging to some mapping w(.) ∈ L1

Rn ([0, 1]). Consequently, for every t ∈ [0, 1],

y(t) = lim
n→+∞

∫ 1

0
G(t, s)wn(s)ds =

∫ 1

0
G(t, s)w(s)ds.

Indeed, let z ∈ L∞Rn ([0, 1]), for all t ∈ [0, 1], we have

lim
n→∞
〈G(t, .)wn(.), z(.)〉 = lim

n→∞
〈wn(.),G(t, .)z(.)〉 = 〈w(.),G(t, .)z(.)〉 = 〈G(t, .)w(.), z(.)〉,

i.e.,

lim
n→∞

∫ 1

0
〈G(t, s)wn(s), z(s)〉ds =

∫ 1

0
〈G(t, s)w(s), z(s)〉ds,

in particular for z(.) = 1[0,1](.)e j with (e j) a basis of the space Rn we obtain our claim.
On the other hand, as (φn(.)) ⊂ Φ(x), by (3.1), there is a subsequence also denoted (φn(.)) which converges
σ(L1

Rn ,L∞Rn ) to a mappingφ(.) ∈ Φ(x) since Φ(x) is closed. Consequently, (wn(.)+φn(.))nσ(L1
Rn ,L∞Rn )− converges

to (w(.)+φ(.)) ∈ L1
Rn ([0, 1]). By Banach Mazur’s Lemma (Theorem(2.4)), there exists a sequence (zn(.))n which

converges strongly in L1
Rn ([0, 1]) to w(.) + φ(.) with for each n ∈N,

zn(.) ∈ co{wm(.) + φm(.), m ≥ n}.

Extracting a subsequence, we may suppose that (zn(t))n converges almost every where to w(t) + φ(t). Then,

w(t) + φ(t) ∈
⋂

n

co{wm(t) + φm(t) : m ≥ n} a.e.t ∈ [0, 1].

Fix such t ∈ [0, 1] and any z ∈ Rn. The relation (3.3) and Theorem(2.1) give

〈z,w(t) + φ(t)〉 ≤ δ∗
(
z,−∂cϕ(x(t))

)
,

and since ∂cϕ(x(t)) is a closed convex set, we have by Lemma(2.2),

d
(
w(t) + φ(t),−∂cϕ(x(t))

)
= sup

z′∈BRn

[
〈z′,w(t) + φ(t)〉 − δ∗

(
z′,−∂cϕ(x(t))

)]
≤ 0,

i.e.,
w(t) + φ(t) ∈ −∂cϕ(x(t)) a.e.t ∈ [0, 1].
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This shows that Γ(x) is a compact subset ofK .
Finally we will show that Γ is upper semi-continuous or equivalently that the graph of Γ

gph(Γ) = {(x, y) ∈ K ×K : y ∈ Γ(x)}

is closed forK equipped with the topology of uniform convergence.
Let (xn(.), yn(.))n be a sequence in gph(Γ) converging to (x(.), y(.)) ∈ K × K . i.e., for all n ∈ N, there exists
φn(.) ∈ Φ(xn(.)) and wn(.) ∈ −∂cϕ(xn(.)) − φn(.), such that

yn(t) =

∫ 1

0
G(t, s)wn(s)ds. (3.4)

By (3.2), (wn(.))n is included inD, and hence we can extract a subsequence that we do not relabel and which
converges σ(L1

Rn ,L∞Rn ) to some mapping w(.) ∈ D, i.e., ‖w(t)‖ ≤ m(t) for almost every t∈ [0, 1].
Furthermore, since (φn(.))n ⊂ Φ(xn(.)) ⊂ (ρ(.) + 1

2 )BL∞
Rn , we can extract a subsequence σ(L1

Rn ,L∞Rn )-converging
to some mapping φ(.) ∈ Φ(x(.)) since gph(Φ) is strongly-weakly sequentially closed. As wn(t) + φn(t) ∈
−∂cϕ(xn(t)), and as the convex compact valued multimapping −∂cϕ(.) is upper semicontinuous on Rn (see
Lemma(2.8)), by applying Theorem VI.4 in [8], we obtain

w(t) + φ(t) ∈ −∂cϕ(x(t)), a.e.t ∈ [0, 1].

Furthermore, for every t ∈ [0, 1]

lim
n→∞

∫ 1

0
G(t, s)wn(s)ds =

∫ 1

0
G(t, s)w(s)ds,

and hence, according to (3.4) y(t) =
∫ t

0 G(t, s)w(s)ds. Consequently, (x(.), y(.)) ∈ gph(Γ), that is, the graph
of Γ is closed and hence Γ is upper semicontinuous because K is compact for the topology of uniform
convergence. An application of the Kakutani fixed point Theorem to the multimaping Γ gives some

mapping x(.) ∈ K such that x(.) ∈ Γ(x(.)), i.e. x(t) =
∫ 1

0 G(t, s)w(s)ds for all t ∈ [0, 1], with for almost every
t ∈ [0, 1] w(t) ∈ −∂cϕ(x(t)) − φ(t), and φ(.) ∈ Φ(x(.)). As φ(t) ∈ F(t, x(t), ẋ(t)), a.e. t ∈ [0, 1], we get

ẍ(t) ∈ −∂cϕ(x(t)) + F(t, x(t), ẋ(t)), a.e. t ∈ [0, 1],

that is, x(.) is a solution in W2,1
Rn ([0, 1]) of our problem (PF).

The proof is then complete.
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