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Abstract. In this paper we obtain some results concerning the ascent and descent of a quasi-Fredholm
relation in a Hilbert space and we analyze the behaviour of a polynomial in a quasi-Fredholm relation in a
Hilbert space.

1. Introduction

Closed quasi-Fredholm operators in Banach or Hilbert spaces have been studied by different authors,
for instance, [1], [4], [9] and [11] among others.

In [9], Labrousse showed that these operators allow an algebraic decomposition, the so-called Kato
decomposition. Many years later, in [10] Labrousse et al generalized the above result to the general case
of range space relations in Hilbert spaces. On the other hand, Mbekhta [11] gave some results concerning
the ascent and descent of a closed quasi-Fredholm operator in a Hilbert space. In [4] Berkani studied,
essentially, the behaviour of a polynomial in a closed quasi-Fredholm operator in a Hilbert space. However,
the generalization of the results of [4] and [11] mentioned above to the case of range space relations seems
still unknown.

On the other hand, in the last years, several authors have paid attention to the research of the the-
ory of linear relations since it has applications in many problems in Physics and other areas of Applied
Mathematical. We cite some of them.

Applications of some perturbation results for linear relations to the study of degenerate elliptic-parabolic
evolution equations. (See [6] and the references therein).

Applications of the fixed point theory of linear relations in: Game theory and Mathematical Economics;
Discontinuous differential equations which occur in the Biological Sciences (for example, population in
dynamics and epidemiology); Optimal control and Digital Imaging. (See [8] and the references therein).

Applications of the Fredholm theory of linear relations to the study of many problems of the Operator
theory: Theory of pseudoresolvents and theory of linear bundles. (See [3] and the references therein).

In view of the above remarks the attempt to generalize the existing results for operators to the case of
linear relations appears as natural and perhaps necessary in view of scientific progress in this field.

The purpose of the present paper is to extend the results of Berkani [4] and Mbekhta [11] for closed
operators to the general case of range space relations.
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The paper is organized as follows. Some entirely algebraic properties of linear relations in linear spaces
are presented in Section 2, in particular, some general facts about the ascent and descent of a linear relation
as well as some results concerning the degree of a polynomial in a linear relation are established. Range
space and quasi-Fredholm relations in Hilbert spaces are discussed in Section 3; in particular we recall the
interesting characterization of quasi-Fredholm relations by their Kato decomposition due to Labrousse et
al. [10]. As an application of this characterization we give a result which relates the quasi-Fredholmness of
a range space relation to that of its powers. All results obtained in the above sections 2 and 3 are used in the
following sections. Section 4 is devoted to the extension of the results of Mbekhta [11] for operators to the
case of range space relations. The analysis is essentially based on the main results of [10]. The fundamental
theorem of Section 5 proves that if p(A) = un

i=1(A−λiI)mi (see Definition 2.7 below)is a polynomial in a linear
relation A, then p(A) is quasi-Fredholm if and only if A − λiI is quasi-Fredholm. The proof of this result
is based on the results obtained in the previous sections combined with the ingenious techniques due to
Berkani [4].

The present paper can be seen as a natural continuation of the paper [10].

2. Algebraic Properties for Linear Relations

In this section we present some entirely algebraic notions and properties of linear relations in linear
spaces which are needed in the sequel.

We adhered to the notations and terminology of the monographs [5], [10] and [13]. Let E be a linear
space over K = R or C. A linear relation A in E is a subspace of the space E × E, the Cartesian product
of E and itself. The subspaces D(A) := {x : (x, y) ∈ A},N(A) := {x : (x, 0) ∈ A},A(0) := {y : (0, y) ∈ A} and
R(A) := {y : (x, y) ∈ A} are called the domain, the null space, the multivalued part and the range of A,
respectively.

A linear relation A is the graph an operator if and only if A(0) = {0}. The inverse A−1 of A is given by
A−1 := {(y, x) : (x, y) ∈ A}. We say that A is injective if N(A) = {0} and A is called surjective if R(A) = E.
The index of A is the quantity i(A) := dimN(A) − codimR(A) provided dimN(A) and codimR(A) are not both
infinite where codimR(A) := dimE/R(A).

For linear relations A and B in E and λ ∈ K, the linear relations A + B,A ⊕ B,AB and λA are defined by
A + B := {(x, y + z) : (x, y) ∈ A, (x, z) ∈ B},
A ⊕ B := {(x + u, y + v) : (x, y) ∈ A, (u, v) ∈ B} such that A ∩ B = {(0, 0)},
AB := {(x, z) : (x, y) ∈ B, (y, z) ∈ A for some y ∈ E}
while λA stands for (λI)A where I is the identity operator on E.
The product of linear relations is clearly associative. Hence An,n ∈ Z, is defined as usual with A0 = I

and A1 = A.
The following elementary lemma is a preliminary result from which information concerning the com-

mutativity of linear relations will follow.

Lemma 2.1. Let A and B be linear relations in a linear space E such that AB = BA.

(i) (AB)n = AnBn and AnBm = BmAn for all n,m ∈N.
(ii) A(N(B)) ⊂ A(0) + N(B) ⊂ R(An) + N(B) for all n ∈N.

(iii) If A is injective and surjective, then (A−1)nB ⊂ B(A−1)n for all n ∈N.

Proof. (i) This statement can be easily obtained proceeding by induction.
(ii) Follows immediately from the definitions.
(iii) Since A is injective, we have that ID(A) = A−1A and since A is surjective, it follows that I ⊂ AA−1. So

that A−1B = A−1BI ⊂ A−1BAA−1 = A−1ABA−1
⊂ BA−1 and by induction we obtain the validity of (iii). �

In the rest of this section A will be a linear relation in a linear space E.

Lemma 2.2. Let λ, µ ∈ K. Then

(i) (A − λI)n(A − µI)m = (A − µI)m(A − λI)n for all n,m ∈N.
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(ii) If λ , µ, then N(A − λI)n
⊂ R(A − µI)m for all n,m ∈N.

Proof. (i) By [5, Proposition VI.5.1] the linear relations A − λI and A − µI commute. The statement now
follows from Lemma 2.1 (i).

(ii) See [13, Lemma 7.2]. �

The resolvent set of A is the set ρ(A) := {λ ∈ K : A − λI is injective and surjective } and the spectrum of
A is the set σ(A) = K \ ρ(A).

Lemma 2.3. Assume that A has a nonempty resolvent set.

(i) E = D(An) + R(Am) and {0} = An(0) ∩N(Am) for all n,m ∈N.
(ii) Let n,m ∈N ∪ {0}. Then R(An)/R(An+m) � D(An)/(D(An) ∩ (N(An) + R(Am))) � E/(N(An) + R(Am)).

(iii) Let λ ∈ K \ {0} and n ∈N. Then E = R(A − λI) + R(An).

Proof. (i) This assertion was proved in [14, Lemma 6.1].
(ii) The first isomorphism was established in [13, Lemma 4.1]. The fact that D(An)/(D(An) ∩ (N(An) +

R(Am))) � (D(An) + R(Am))/(N(An) + R(Am)) together with the part (i) proves the second isomorphism.
(iii) By virtue of (i) it is enough to verify that D(An) ⊂ R(A − λI) + R(An). Let x ∈ D(An). It follows from

the definition of D(An) that there exist xo ∈ λ−1(A − λI)x, x1 ∈ λ−2(A − λI)Ax,... and xn−1 ∈ λ−n(A − λI)An−1x.
Hence

x0 + x1 + ... + xn−1 ∈ λ
−1Ax − x + λ−2A2x − λ−1Ax + ... + λ−(n−1)An−1x − λ−(n−1)An−1x + λ−nAnx =

−x + λ−1A(0) + λ−2A2(0) + ... + λ−(n−1)An−1(0) + λ−nAnx

which implies that
x ∈ −(x0 + x1 + ... + xn−1) + λ−1A(0) + .... + λ−(n−1)An−1(0) + λ−nAnx ⊂ R(A − λI) + R(An)

since clearly Ap(0) ⊂ Aq(0) for all p, q ∈N. �
The ascent and the descent of A are defined by

asc(A) := min{r ∈N ∪ {0} : N(Ar) = N(Ar+1)},

des(A) := min{s ∈N ∪ {0} : R(As) = R(As+1)},

respectively, whenever these minima exist. If no such numbers exist the ascent and descent of A are defined
to be∞.

In [13] the authors introduce and give a systematic treatment of these notions. They show that many of
the results of Taylor and Kaashoek for operators remain valid in the context of linear relations only under
the additional condition that the linear relation A has a trivial singular chain manifold, that is, if Rc(A) = {0}
where Rc(A) := (∪∞n=1N(An)) ∩ (∪∞n=1An(0)). Note that by virtue of Lemma 2.3 (i), the condition ρ(A) , ∅
implies that Rc(A) = {0}.

We shall make extensive use of the following result concerning the ascent and descent of A.

Lemma 2.4. We have

(i) If N(A) ∩ R(Ap) = {0} for some nonnegative integer p, then Rc(A) = {0} and asc(A) ≤ p. If A has a trivial
singular chain manifold and asc(A) ≤ p for some p ∈N ∪ {0}, then N(Ak) ∩ R(Ap) = {0} for k ∈N.

(ii) Assume that for some nonnegative integer p and k ∈N there exists a subspace Mk such that

Mk ⊂ N(Ap),D(Ap) = (D(Ap) ∩ R(Ak)) + Mk.

Then des(A) ≤ p.
(iii) Assume that Rc(A) = {0}. If asc(A) := p < ∞ and des(A) := q < ∞, then D(Aq) = (D(Aq)∩R(Aq))⊕N(Aq), p ≤

q with p = q if D(Ap) ⊂ R(A) + D(Aq).
(iv) If A has a nonempty resolvent set and N(An) ⊂ R(A) for all positive integer n, then asc(A) = 0 or ∞ and

des(A) = 0 or∞.
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Proof. The statements (i), (ii) and (iii) were proved in [13, Lemmas 5.5 and 5.6, Theorems 5.7 and 5.8].
(iv) We first note that by virtue of [10, Lemma 2.7] the conditions N(An) ⊂ R(A) for all n ∈ N and

N(A) ⊂ R(Am) for all m ∈N are equivalent. Suppose that asc(A) := p < ∞. By Lemma 2.3 (i) and part (i) we
have that N(A) ∩ R(Ap) = {0} and hence N(A) = {0} equivalently asc(A) = 0.

Assume now that des(A) := q < ∞, so that R(Aq) = R(Aq+1). Let x ∈ D(Aq) and y ∈ Aqx ⊂ R(Aq+1).
Then, there exist z,w ∈ E such that w ∈ Az and y ∈ Aqw which imply that x − w ∈ N(Aq) ⊂ R(A). Hence
D(Aq) ⊂ R(A) and thus it follows from Lemma 2.3 (i) that R(A) = E equivalently des(A) = 0. �.

Following [10, Definition 2.4] we define the degree δ(A) of A as follows:

δ(A) := min∆(A) if ∆(A) , ∅ and δ(A) := ∞ if ∆(A) = ∅.

where ∆(A) := min{m ∈N : N(A) ∩ R(Am) = N(A) ∩ R(An) for all n ≥ m}.

The following lemma is sometimes useful.

Lemma 2.5. [10, Lemmas 2.5 and 2.7, Corollary 2.6]

(i) Let d ∈N∪{0}. Then, d ∈ ∆(A)⇔ N(Am) ⊂ N(Ad)+R(An) for all n,m ∈N⇔ N(A)∩R(Ad) ⊂ N(A)∩R(Am)
for all m ∈N.

(ii) δ(A) = 0⇔ N(A) ⊂ R(Am) for all m ∈N.
(iii) If δ(A) < ∞, then for all n,m ∈N ∪ {0} we have that

N(Aδ(A)) + R(An) = N(Am+δ(A)) + R(An)

and

N(An) ∩ R(Aδ(A)) = N(An) ∩ R(Am+δ(A)).

As a direct consequence we get

Lemma 2.6. Let m ∈N. Then δ(A) ≤ mδ(Am).

Proof. The inequality is trivial if δ(Am) = ∞. Assume that 0 ≤ d := δ(Am) < ∞. Applying Lemma 2.5 (i)
we obtain that

R(Amd)∩N(A) = R(Amd)∩N(Am)∩N(A) ⊂ R(Amn)∩N(Am)∩N(A) ⊂ R(An)∩N(A) for all positive integer
n and hence md ∈ ∆(A). �

The notion of polynomial p(A) in A is introduced by Sandovici [12, (1.1)] as follows:

Definition 2.7. Let A be a linear relation in a linear space E, let n and mi, 1 ≤ i ≤ n be some positive integers, and
let λi ∈ K, 1 ≤ i ≤ n be some distinct constants. The polynomial p(A) in A is the linear relation

p(A) := un
i=1(A − λiI)mi .

The behaviour of the domain, the null space, the multivalued part and the range of p(A) is described in
the following useful lemma which is due to Sandovici [12, Theorems 3.2, 3.3, 3.4 and 3.6].

Lemma 2.8. Let p(A) be as in Definition 2.7. Then

(i) D(p(A)) = D(Am1+m2+...+mn ).
(ii) R(p(A)) = ∩n

i=1R((A − λiI)mi ).
(iii) N(p(A)) =

∑n
i=1 N((A − λiI)mi ).

(iv) p(A)(0) = Am1+m2+...+mn (0).

The following result concerning the degree of p(A) will be used to obtain the main theorem of section 5.

Lemma 2.9. Let p(A) = un
i=1(A−λiI)mi be as in Definition 2.7. Define d := δ(p(A)) and di := δ((A−λiI)mi ), 1 ≤ i ≤ n.

Then d = max{di : 1 ≤ i ≤ n}.
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Proof. Let us consider various possibilities for d:
Case 1: d = 0. By Lemma 2.5 (ii), N(p(A)n) ⊂ R(p(A)) for all positive integer n and thus we infer from

Lemma 2.8 (ii) and (iii) that N(A − λiI)min ⊂ N(p(A)n) ⊂ R(p(A)) ⊂ R(A − λiI) for all n ∈ N. Again applying
Lemma 2.5 (ii) we obtain that di = 0, 1 ≤ i ≤ n.

Case 2. 1 ≤ d < ∞. Then, the desired property is obtained by using Lemmas 2.1 and 2.2 and proceeding
exactly as in [4, Lemma 2.2]. �

For closed operators in Hilbert spaces the above lemma was proved in [4, Lemma 2.2].
We close this section recalling some basic properties about the notion of linear relation completely

reduced which are required for the proofs of the main results of this paper.
Let M be a subspace of E. The restriction AM is given by AM = {(x, y) ∈ A : x, y ∈M}. if M and N are two

subspaces of E such that E = M ⊕N(that is, E = M + N and {0} = M ∩N), then we say that A is completely
reduced by the pair (M,N) if A = AM ⊕ AN.

Lemma 2.10. [13, Lemma 8.1, Theorems 8.2 and 8.3]
(i) Assume that A is completely reduced by the pair (M,N). Then, for all n ∈ N,An is completely reduced by the

pair (M,N) and An = An
M⊕An

N. Further, asc(A) < ∞ if and only if asc(AM) and asc(AN) are both finite. Similar
property for des(A).

(ii) If E = R(Ap) ⊕N(Ap) for some nonnegative integer p, then asc(A) ≤ p, des(A) ≤ p and A is completely reduced
by the pair (R(Ap),N(Ap)).

In the sequel H will be a Hilbert space with the inner product <,>H.

3. Range Space and Quasi-Fredholm Relations

We commence this section recalling some basic properties of range space relations in H. A subspace M
of H is said to be a range subspace of H if there exists an inner product < . >+ on M such that (M, < . >+) is
a Hilbert space and c ‖ u ‖H≤‖ u ‖+,u ∈M for some c > 0. In that case we say that M is a Hilbert space with
its own norm.

Following [10, Definition 4.1] we say that a linear relation A in H is closed if it is a closed subspace of
H ×H and A is called a range space relation in H if A is a range subspace of H ×H. This notion is a useful
generalization of the notion of closed linear relation as we can deduce from the following lemma.

Lemma 3.1. [10, Lemmas 4.2 and 4.10, Propositions 4.7 and 4.8] Let A and B be two range space relations in H.
(i) The subspaces D(A),N(A),A(0) and R(A) are range subspaces of H.

(ii) If M is a range subspace of H, then AM is a range space relation in M.
(iii) A + B,A ⊕ B and AB are range space relations.

The following result is very useful: it gives circumstances under which one can conclude the closedness
of range space relations.

Lemma 3.2. [10, Corollaries 4.4 and 4.6] Let A be a range space relation in H.
(i) If A is an everywhere defined operator, then A is bounded and, hence, closed.

(ii) If N(A) and R(A) are closed, then A is closed.

The adjoint A∗ of A is defined by

A∗ := {(u, v) ∈ H ×H :< v, x >H=< u, y >H for all (x, y) ∈ A}

so that A∗ is a closed linear relation in H.
For a subspace M of H we write BM := {x ∈M :‖ x ‖H≤ 1} and M⊥ := {x ∈ H :< x, y >H= 0 for all y ∈M}.
We note that N(A∗) = R(A)⊥ and if A is closed then R(A) is closed if and only if R(A∗) is closed if and

only if γ(A) > 0 where γ(A) := sup{λ ≥ 0 : λBR(A) ⊂ ABD(A)}.
In the second part of this section, our interest concentrates to develop some properties about the notion

of quasi-Fredholm relation which will play an important role in the following sections.
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Definition 3.3. [10, Definition 5.1] We say that a linear relation A in H is a quasi-Fredholm relation in H, denoted
by A ∈ qφ(H), if A is a range space relation and there exists a nonnegative integer d for which

(i) d = δ(A).
(ii) N(A) ∩ R(Ad) is closed in H.
(iii) N(Ad) + R(A) is closed in H.

In that case, the relation A is called quasi-Fredholm relation of degree d.
As an immediate consequence of Lemma 2.5 (ii) we get

Lemma 3.4. A range space relation A in H is quasi-Fredholm of degree 0 if and only if the following conditions are
satisfied:

(i) N(A) ⊂ R(An) for all positive integer n.
(ii) N(A) and R(A) are closed subspaces of H.

We now list some properties of quasi-Fredholm relations for future use.

Lemma 3.5. [10, Theorems 5.2 and 7.3, Proposition 7.4] Let A ∈ qφ(H) of degree d. Then

(i) A is closed and N(Am) + R(An) = (N(A∗)n
∩ R((A∗)m))⊥ for all n,m ∈ N ∪ {0} with n + m ≥ d. Particularly,

R(An) is closed for all n ≥ d
(ii) A∗ ∈ qφ(H) of degree d.

We observe that by virtue of Lemmas 3.4 and 3.5, every quasi-Fredholm relation in H of degree 0 is a
regular linear relation in H in the sense of [2, Definition 10].

Quasi-Fredholm relations in H are completely characterized in terms of an algebraic decomposition.
Such a decomposition will be essential for the proofs of the main results of the present paper.

Proposition 3.6. [10, Theorems 5.2 and 6.4] Assume that A is a range space relation in H and let d ∈N ∪ {0}. The
following properties are equivalent:

(i) A ∈ qφ(H) of degree d.
(ii) There exist two closed subspaces M and N of H such that

(1) H = M ⊕N with R(Ad) ⊂M,N ⊂ N(Ad) and, if d ≥ 1, then N is not contained in N(Ad−1).
(2) A is completely reduced by the pair (M,N).
(3) AM is a quasi-Fredholm relation in M of degree 0 and AN is a bounded operator on N (that is, AN is
everywhere defined and continuous) and Ad

N is the zero operator in N.

The pair (M,N) of invariant subspaces under A which appears in the proposition above is called a Kato
decomposition of degree d associated with A.

For a linear relation A in H, the root manifold R∞(A) is defined by R∞(A) := ∩∞n=1R(An).

Remark 3.7.

Assume that A is quasi-Fredholm of degree d and let (M,N) be a Kato decomposition of A of degree d
established in Proposition 3.6. Then

(i) R∞(A) = A(D(A) ∩ R∞(A)) = R∞(AM) is closed.
Indeed, since A ∈ qφ(H) of degree d and Ad

N is the zero operator on N, we have that for all n ≥ d,
R(An

M) = R(An) is closed and, hence R∞(A) = R∞(AM) is closed. These properties together with the fact that
AM ∈ qφ(M) of degree 0 and [2, Lemma 20] ensure that A(D(A) ∩ R∞(A)) = R∞(A). Therefore (i) holds.

(ii) For all n ≥ d,N(A) ∩ R(An) = N(AM) = N(A) ∩ R∞(A).
It is proved in [10, Theorem 5.2 (5.37)].
(iii) For all n ≥ d,N(An) + R(A) = R(AM) ⊕N.
Follows immediately from [10, Theorem 5.2 (5.34) and Corollary 2.6]. �
We close this section with a result concerning the powers of a quasi-Fredholm relation. In order to prove

such a result, we first give the following lemma
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Lemma 3.8. Let A be a range space relation in H with ρ(A) , ∅. Then N(A) is closed.

Proof. Let β ∈ ρ(A) and we write S := (A − βI)−1. From [5, (9) and Proposition I.4.2 (e)] it follows that
SA = (A − βI)−1((A − βI) + βI) = I + βS which implies that SA is an everywhere defined operator. On the
other hand, one finds by Lemma 3.1 (iii) that SA is a range space relation. So that, SA is closed by Lemma
3.2 (i) and hence, N(SA) = N(A) is closed. �

Proposition 3.9. Let A be a range space relation in H with ρ(A) , ∅. The following properties are equivalent:

(i) A ∈ qφ(H).
(ii) An

∈ qφ(H) for all nonnegative integer n.
(iii) Am

∈ qφ(H) for some nonnegative integer m.

Proof. (i)⇒(ii) Let (M,N) be a Kato decomposition of degree d of A established in Proposition 3.6 and
let n ∈ N. Since AM is closed and it has a nonempty resolvent set, we infer from [7, Lemma 3.1] that An

M is
closed. This property together with [2, Proposition 11] and Lemma 3.4 ensures that An

M is a quasi-Fredholm
relation in M of degree 0.

On the other hand, it is clear that An
N is a bounded operator on N such that An

N = 0 if d ≤ n and Ank
N = 0

if n ≤ d for (k − 1)n ≤ d ≤ nk. Hence (M,N) is a Kato decomposition associated with An which implies by
Proposition 3.6 that An

∈ qφ(H).
(ii)⇒ (iii) It is obvious.
(iii)⇒(i) Let m be a positive integer for which Am is a quasi-Fredholm relation of degree r. From Lemma

2.6 we have that δ(A) ≤ mr, so that mr ∈ ∆(A). According to Lemma 2.5 (iii) to prove that A ∈ qφ(H) it is
enough to verify that N(A) ∩ R(Amr) and N(Amr) + R(A) are both closed subspaces of H. The closedness of
N(A) ∩ R(Amr) follows immediately from Lemmas 3.5 (i) and 3.8.

We now claim that N(Amr) + R(A) is closed. Let β ∈ ρ(A) \ {0} since if β = 0 then the desired property is
trivially true. We write S := (A− βI)−1 and D := Sm−1Am−1. Since Am−1 = ((A− βI) + βI)m−1 =

∑m−1
k=0 ck(A− βI)k

where ck, 0 ≤ k ≤ m − 1 are constants, we infer from [, Proposition I.4.2 (e)] and Lemma 3.2 (i) that
(3.1) D := Sm−1Am−1 =

∑m−1
k=0 ckCm−1−k is a bounded operator where S := (A − βI)−1.

It follows immediately from the definitions and Lemma 2.1 (iii) that
(3.2) Let xn ∈ D(A), tn ∈ Axn and yn ∈ N(Amr) such that tn + yn → z for some z ∈ H. Then Dtn ∈ R(Am)

and Dyn ∈ N(Amr).
A combination of (3.1), (3.2) and the fact that N(Amr) + R(Am) is closed leads to Dz ∈ Amx + y for some

x ∈ D(Am) and y ∈ N(Amr). Let Dz = u + y with u ∈ Amx. Then there exists v ∈ Ax such that u ∈ Am−1v
and, therefore y = Dz− u ∈ Sm−1Am−1z−Am−1v ⊂ Am−1Sm−1z−Am−1v (Lemma 2.1 (iii)) ⊂ Am−1(Sm−1z− v) ([5,
Proposition I.4.2 (e)]) and since y ∈ N(Amr) we obtain that 0 ∈ Amr+m−1(Sm−1z − v) which implies that

(3.3) There exists v ∈ R(A) such that Sm−1z − v ∈ N(Amr+m).
Now, since N(Amr+m) ⊂ N(Amr) + R(A) by virtue of Lemma 2.5 (i) one deduces from (3.3) that Sm−1z ∈

N(Amr) + R(A) and since S is an invertible operator we conclude that N(Amr) + R(A) is closed. The proof is
completed. �

Proposition 3.9 was proved in [4, Proposition 2.4] for closed operators.

4. Ascent and Descent of a Quasi-Fredholm Relation

The first main result of this section represents an extension of [11, Lemma 1.4] to linear relations.

Theorem 4.1. Let A ∈ qφ(H) of degree d. There exists η > 0 such that if 0 <| λ |< η then

(i) A − λI is quasi-Fredholm of degree d.
(ii) dimN(A − λI) = dim(N(A) ∩ R(Ad)).

(iii) codimR(A − λI) = codim(N(Ad) + R(A)).
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Proof. (i) Write A = AM ⊕ AN with M,N,AM and AN as in Proposition 3.6; in particular Ad
N is the zero

operator on N which implies by Lemma 2.2 (ii) that AN −αIN is an invertible operator for all nonzero scalar
α.

On the other hand, since AM is quasi-Fredholm of degree 0, we infer from Lemma 3.5 (i) combined
with [2, Theorem 23] that there exists η > 0 for which AM − λIM is quasi-Fredholm of degree 0 whenever
0 <| λ |< η. Therefore, A − λI = (A − λI)M ⊕ (A − λI)N is a quasi-Fredholm relation in H of degree 0 if
0 <| λ |< η.

(ii) Define A∞ := AR∞(A) and I∞ := IR∞(A).
By Lemma 3.5 (i) A is closed and thus it follows from Remark 3.7 (i) that A∞ is a closed surjective

linear relation in R∞(A) which implies by [5, Theorem III.7.4 and Corollary V.15.7] that A∞ −λI∞ is a closed
surjective linear relation in R∞(A) with i(A∞) = i(A∞ − λI∞) whenever 0 <| λ |< γ(A∞). This combined with
Lemma 2.2 (ii) and Remark 3.7 (ii) leads to

dimN(A − λI) = dim(N(A − λI) ∩ R∞(A)) = i(A∞ − λI∞) = i(A∞) = dimN(A∞) = dim(N(A) ∩ R∞(A)) =
dim(N(A) ∩ R(Ad)) if 0 <| λ |< γ(A∞).

(iii) By Lemma 3.5 (ii) A∗ is quasi-Fredholm of degree d and therefore, one finds by part (ii) combined
with Lemma 3.5 (i) that

codimR(A − λI) = dimN(A∗ − λI) = dim(N(A∗) ∩ R((A∗)d) = codim(N(A∗) ∩ R((A∗)d))⊥ = codim(N(Ad) + R(A)).

The proof is completed. �

Proposition 4.2. Let A be a range space relation in H with a nonempty resolvent set.

(i) If des(A) = q < ∞, then there exists ε > 0 such that des(A − λI) = 0 and dimN(A − λI) = dim(N(A) ∩ R(Aq))
if 0 <| λ |< ε.

(ii) If asc(A) = p < ∞ and R(Ap+1) is closed, then there exists µ > 0 such that asc(A−λI) = 0 and codimR(A−λI) =
dim(R(Ap) ∩ R(Ap+1)⊥) if 0 <| λ |< µ.

Proof. We first note that by virtue of Lemma 3.1, for all positive integer n, An is a range space relation in
H and R(An) is a range subspace of H. So that, R(An) is a Hilbert space with its own norm.

(i) Define Aq := AR(Aq) and Iq := IR(Aq).
Then we infer from Lemma 3.1 (ii) that Aq is a range space relation in R(Aq) and since des(A) = q we

obtain that Aq is a closed surjective linear relation in the Hilbert space R(Aq) endowed with its own norm.
This fact combined with [5, Theorem III.7.4 (ii) and Corollary V.15.7] ensures that there exists ε > 0 for
which Aq − λIq is surjective with dimN(Aq − λIq) = dimN(Aq) whenever 0 <| λ |< ε. Hence

dimN(A − λI) = dim(N(A − λI) ∩ R(Aq)) = dimN(Aq − λIq) = dimN(Aq) = dim(N(A) ∩ R(Aq)).
R(Aq) = R(Aq+1) = R(Aq) = R(Aq − λIq) = R((A − λI)Aq) ⊂ R(A − λI).
Now, applying Lemma 2.3 (iii), we deduce that R(A − λI) = H, that is, des(A − λI) = 0.
(ii) Since R(Ap+1) is a closed subspace of H and R(Ap) is a range subspace of H with R(Ap+1) ⊂ R(Ap) we

infer easily from the definitions that R(Ap+1) is a closed subspace of R(Ap) as a range subspace. Hence
(4.1) R(Ap) = R(Ap+1) ⊕ (R(Ap) ∩ R(Ap+1)⊥) where R(Ap) is the Hilbert space with its own norm.
Let λ ∈ K \ {0}. A combination of Lemmas 2.2 (ii), 2.3 (i) and [5, Exercise I.6.5] implies that
codimR(A − λI) = dim(D((A − λI)p) + R(A − λI))/R(A − λI) = dim(D(Ap) + R(A − λI))/R(A − λI) =

dimD(Ap)/(D(Ap) ∩ R(A − λI)) = dimR(Ap)/Ap(D(Ap) ∩ R(A − λI)).
Hence
(4.2) codimR(A − λI) = dimR(Ap)/R((A − λI)Ap) for all nonzero scalar λ.
Define Ap := AR(Ap) and Ip := IR(Ap).
Then, Ap is a range space relation in R(Ap) by Lemma 3.1 (ii), N(Ap) := N(A) ∩ R(Ap) = {0} by Lemmas

2.3 and 2.4 (i) and R(Ap) = R(Ap+1) is closed by hypothesis. So that, Ap is closed in R(Ap) by Lemma 3.2 (ii).
The use of these properties together with [5, Theorem III.7.4 (i) and Corollary VI.15.7] leads to

(4.3) Ap − λIp is closed, injective with closed range and i(Ap) = i(Ap − λIp) if 0 <| λ |< γ(Ap).
Now, it follows from (4.1), (4.2) and (4.3) that N(A−λI) = {0} and codimR(A−λI) = dim(R(A)∩R(Ap+1)⊥)

if 0 <| λ |< γ(Ap).
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Hence (ii) holds. The proof is completed. �

Proposition 4.2 generalizes Lemmas 3.4 and 3.5 in [10].
Now, we are in the position to give the second fundamental result of this section.

Theorem 4.3. Let A be a quasi-Fredholm relation in H of degree d such that ρ(A) , ∅. The following properties are
equivalent:

(i) 0 is an element of the boundary of σ(A).
(ii) 0 is an isolated point of σ(A).

(iii) asc(A) = des(A) = d.
(iv) H = N(Ad) ⊕ R(Ad) where both subspaces are closed.

Proof. Let σ(A)b denote the boundary of σ(A).
(i) ⇒ (ii) By Theorem 4.1, there is η > 0 such that dimN(A − λI) and codimR(A − λI) are constants if

0 <| λ |< η and since 0 ∈ σ(A)b we obtain that {λ ∈ K : 0 <| λ |< η} ∩ ρ(A) , ∅. So that, dimN(A − λI) =
codimR(A − λI) = 0 whenever 0 <| λ |< η which implies that 0 is an isolated point of the spectrum of A.

(ii) ⇒ (iii) Since 0 is an isolated point of σ(A) we infer from Theorem 4.1 that N(A) ∩ R(Ad) = {0} and
H = N(Ad) + R(Ad). The use of these equalities together with Lemmas 2.3 (i) and 2.4 (i), (ii) and (iii) proves
that asc(A) = des(A) ≤ d. Accordingly, it only remains to verify that asc(A) = d. For this, let (M,N) be a Kato
decomposition of degree d associated with A established in Proposition 3.6. By Lemma 2.10 (i), asc(AM) < ∞
and thus one finds from Lemma 2.4 (iv) that AM is injective. The use of this property combined with the
facts that H = M ⊕ N, N contained in N(Ad) and N is not contained in N(Ad−1) makes us to conclude that
N = N(An) for all n ≥ d and N is not contained in N(Ad−1). Therefore, asc(A) = d, as desired.

(iii) ⇒ (iv) The equality H = N(Ad) ⊕ R)Ad) follows immediately from Lemmas 2.3 (ii) and 2.4 (i).
Furthermore, since A is quasi-Fredholm of degree d, we infer from Lemma 3.5 (i) that N(Ad) and R(Ad) are
closed subspaces of H.

(iv)⇒ (i) Proceeding as in the proof of (ii)⇒ (iii) we obtain that asc(A) = des(A) := p ≤ d. This together
with the equality H = N(Ad) ⊕ R(Ad) with p ≤ d and again Lemma 2.4 (i) proves that H = N(Ad) ⊕ R(Ap+1)
and since one has from Proposition 3.9 that An

∈ qφ(H) for all n ∈N, we deduce from Lemma 3.5 (i) and [7,
Lemma 3.2] that R(Ap+1) is closed. After that, using Proposition 4.2 we get that there exists ε > 0 such that
A − λI is invertible if 0 <| λ |< ε, so that 0 ∈ σ(A)b. �

Theorem 4.3 provides an extension of Proposition 3.6 in [11] to linear relations.

Theorem 4.4. Let A be a range space relation in H having a nonempty resolvent set and assume that 0 ∈ σ(A)b. The
following properties are equivalent:

(i) A ∈ qφ(H) of degree d.
(ii) asc(A) = d and R(Ad+1) is closed.

(iii) des(A) = d.
(iv) asc(A) = des(A) = d.
(v) H = N(Ad) ⊕ R(Ad).

Proof. (i)⇒ (ii) It is a direct consequence of Theorem 4.3.
(ii)⇒ (iii) Proposition 4.2 (ii) and the fact that 0 ∈ σ(A)b imply that R(Ad) ∩ R(Ad+1)⊥ = {0}. On the other

hand, R(Ad+1) closed implies that H = R(Ad+1) ⊕ R(Ad+1)⊥, so that R(Ad) = R(Ad+1) ⊕ (R(Ad) ∩ R(Ad+1)⊥).
Hence R(Ad) = R(Ad+1). So that, applying again Lemma 2.4 we get that des(A) = d.

(iii)⇒ (iv) The use of Proposition 4.2 (i) and the condition 0 ∈ σ(A)b proves that N(A)∩R(Ad) = {0}. This
fact combined with the assumption des(A) = d and Lemma 2.4 ensures that asc(A) = d.

(iv)⇒ (v) Follows immediately from Lemmas 2.3 (i) and 2.4 (i) and (iii).
(v)⇒ (i) By Lemma 3.1, N(Ad) and R(Ad) are range subspaces and since H = N(Ad)⊕R(Ad) by hypothesis

one deduces from the known Neubauer’s lemma that N(Ad) and R(Ad) are closed subspaces of H.
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On the other hand, we infer from Lemma 2.10 (ii) that asc(A) ≤ d, des(A) ≤ d and A is completely
reduced by the pair (R(Ad),N(Ad)), that is, A = AR(Ad) ⊕ AN(Ad). Furthermore, by Lemmas 2.4 and 3.4 the
range space relation AR(Ad) is quasi-Fredholm of degree 0. As an immediate consequence of the equality
H = N(Ad) ⊕ R(Ad) we obtain that AN(Ad)(0) = {0} equivalently AN(Ad) is an operator. So that, one has by
Lemma 3.2 (i) that AN(Ad) is a bounded operator on N(Ad) and clearly Ad

N(Ad)
= 0. Therefore, (R(Ad),N(Ad))

is a Kato decomposition of degree d associated with A. Thus, by Proposition 3.6 we get that A ∈ qφ(H) of
degree d. �

For closed operators the above Theorem 4.4 was proved by Mbekhta [11, Proposition 3.7].

5. Polynomial in a Quasi-Fredholm Relation

This section is to investigate the behaviour of the a polynomial in a quasi-Fredholm linear relation.

Proposition 5.1. Let A be a range space relation in H with ρ(A) , ∅. Let p(A) = un
i=1(A−λiI)mi be as in Definition

2.7 with n ≥ 2 and let d ∈N ∪ {0}. The following properties are equivalent:

(i) N(p(A)d) + R(p(A)) is closed.
(ii) For all i, 1 ≤ i ≤ n,N((A − λiI)mid) + R((A − λiI)mi ) is closed.

Proof. Let β ∈ ρ(A). We write C := (A − βI)−1 and B := Cp−mi u
n
j=1, j,i (A − λ j)m j where p :=

∑n
i=1 mi

(i) ⇒ (ii) Reasoning as in the proof of (3.1) and (3.2) in Proposition 3.9 we obtain that B is a bounded
operator in H and that if xn ∈ D((A − λiI)mi ), tn ∈ (A − λiI)mi xn and yn ∈ N((A − λiI)mid) with tn + yn → z for
some z ∈ H, then Btn ∈ R(p(A)) and Byn ∈ N(p(A)d). The rest of the proof is along the lines of the proof of
Theorem 2.5 (1)⇒ (2) in [4], with the appropriate modifications.

(ii) ⇒ (i) Let xn ∈ D(p(A)d), tn ∈ p(A)dxn and yn ∈ N(p(A)d) such that tn + yn → z for some z ∈ H. Define
D := C(p−mi)d un

j=i, j,i (A − λ jI)m jd.
The same techniques used previously show that D is a bounded operator satisfying Dtn ∈ R((A− λiI)mi )

and Dyn ∈ N((A− λiI)mid). Now, the rest of the proof proceeds as in the proof of the implication (2)⇒ (1) in
Theorem 2.5 in [4] with only minor changes. �

Proposition 5.1 represents an improvement of [4, Theorem 2.5] to linear relations.

Proposition 5.2. Let A be a range space relation in H such that ρ(A) , ∅. Let p(A) = un
i=1(A − λiI)mi be as in

Definition 2.7 with n ≥ 2 and let d be a nonnegative integer. The following properties are equivalent:

(i) N(p(A)) ∩ R(p(A)d) is closed.
(ii) For all i, 1 ≤ i ≤ n,N((A − λiI)mi ) ∩ R((A − λiI)mid) is closed.

Proof. The proof may be sketched in a similar way as Proposition 5.1. �

Proposition 5.2 provides an extension of Theorem 2.6 in [4].
We are ready to give the main result of this section.

Theorem 5.3. Let A be a range space relation in H such that ρ(A) , ∅ and let p(A) = un
i=1(A − λiI)mi be as in

Definition 2.7. Then p(A) ∈ qφ(H) if and only if for all i, 1 ≤ i ≤ n,A − λiI ∈ qφ(H).

Proof. The case n = 1 is covered by Proposition 3.9. Accordingly, assume n ≥ 2.
Suppose that p(A) is a quasi-Fredholm relation in H of degree d and let β ∈ ρ(A). Let us consider two

possibilities for d.
Case 1: d = 0. By Lemmas 2.6 and 2.9 we have that δ(A − λiI) = 0. On the other hand, using Lemma 2.8

one deduces that N(A− λiI) ⊂ R((A− λiI)n) for all n ∈N and by Lemma 3.8, N(A− λiI) is closed. So that, in
order to apply Lemma 3.4 we only need to prove that R(A − λiI) is closed. For this, we first note that one
finds by Proposition 5.1 that R((A − λiI)mi ) is closed.
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Let xn ∈ D(A − λiI) and tn ∈ (A − λiI)xn such that tn → z for some z ∈ H. Define U := Cmi−1(A − λiI)mi−1

where C := (A − βI)−1. Then U is a bounded operator in H and Utn ∈ R((A − λiI)mi ). Consequently,
Uz ∈ (A − λiI)mi )w for some w ∈ D((A − λiI)mi ) which implies that

0 ∈ (A − λiI)mi−1(Cmi−1z − (A − λiI)w).
So, there exists y ∈ (A − λiI)w such that

Cmi−1z − y ∈ N((A − λiI)mi−1) ⊂ N(p(A)) ⊂ R(p(A)) ⊂ R(A − λiI)

and hence Cmi−1z ∈ R(A − λiI) and since C is invertible we conclude that R(A − λiI) is closed, as desired.
Assume now that for all i, 1 ≤ i ≤ n,A− λiI ∈ qφ(H). If A− λiI is quasi-Fredholm of degree 0, then it fol-

lows from [2, Theorem 21] that p(A) is quasi-Fredholm of degree 0. Suppose that A− λiI is quasi-Fredholm
with δ(A − λiI) ≥ 1. Then, applying Lemmas 2.6 and 2.8 together with Proposition 3.9 we deduce that
(A − λiI)mi ∈ qφ(H) and d := δ(p(A)) = maxdi. This implies by the use of Lemma 2.5 (iii) combined with
Propositions 5.1 and 5.2 that p(A) is a quasi-Fredholm relation in H. �

Theorem 5.3 provides an extension of Theorem 3.1 in [4] to range space relations.
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