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Available at: http://www.pmf.ni.ac.rs/filomat

Approximate Analytical Solution of the Nonlinear System of
Differential Equations Having Asymptotically Stable Equilibrium

Mustafa Turkyilmazoglua

aDepartment of Mathematics, Hacettepe University, 06532-Beytepe, Ankara, TURKEY

Abstract. The present paper is concerned with the purely analytic solutions of the highly nonlinear systems
of differential equations possessing an asymptotically stable equilibrium. A methodology combined with
the homotopy analysis method is proposed. The methodology involves proper introduction of an auxiliary
linear operator and an auxiliary function during the implementation of the homotopy method so that it
can yield uniformly valid solutions, not affected from the existing parameters or initial conditions. The
technique is applied to the systems particularly appearing in mathematical biology. The obtained explicit
analytical expressions for the solution generate results that compare excellently with the numerically
computed ones.

1. Introduction

Finding analytical representation of the solutions of nonlinear differential equations has been a chal-
lenging problem over centuries. If the physical phenomenon at hand is modeled by a nonlinear system
of differential equations, obtaining the exact solution becomes even a worse problem. Although several
numerical techniques are available to serve in today’s computer world, looking for analytical means for the
solution has been an active research area in recent years.

There are some known simple nonlinear systems of differential equations that can be solved exactly [1].
On the other hand, specifically when the nonlinear equations exhibit a naturel strong nonlinearity, it is real
hard to achieve an analytical solution. This brought attention to the researchers to seek alternative methods
to find approximate solutions. One such method is the recently favorable homotopy analysis method first
published in 1992 by Liao [2]. Since then it has been tested on many nonlinear problems, see amongst them
[3, 4], [5] and the recent book by Liao [6]. The convergence issue of the homotopy method was successfully
outlined in this book, see Chapter 5 and in the papers [7, 8].

We in the present paper use homotopy analysis technique for the solution of nonlinear system of
differential equations having an asymptotically stable equilibrium solution. We particularly direct our
attention to the systems arising from the mathematical modeling of the real world problems in biology,
such as the Lotka-Volterra equations for the logistic determination of population in ecological system [9, 10],
the nonlinear systems representing the epidemiological diseases in a community [11], [12], [13], [14] [15]
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and equations modeling the plant-herbivore interactions in ecology [16] and [17]. We in priority admit that
such models were generally solved by means of numerical methods, like the Runge-Kutta integration or
finite-difference schemes. However, instead, the present interest is to locate uniformly valid approximate
analytic solutions regardless of the values of initial conditions, or the coefficients existing in the equation.
We are also aware of the fact that such systems have already been treated before by the homotopy method,
but without any methodology as presented here. The proposed homotopy analysis technique, when applied
to the popular equations in mathematical biology, results in approximate analytic formulas regarding the
solutions which asymptotically approach the numerical or full solutions.

2. The Homotopy Analysis Method

In this section we propose a methodology for solving the systems of highly nonlinear differential
equations within the perspective of homotopy analysis method, see [2, 18]. To serve to this purpose, let us
consider the nonlinear system of differential equations

du
dt

= N(u), u(0) = A, (1)

where u(t) is an unknown vector function, N is a given nonlinear function of u(t) and A is a prescribed con-
stant vector. Equation of the form (1) appears in many engineering applications as well as in mathematical
biology and dynamical systems.

We initially assume that system (1) has at least an asymptotically stable critical point, say,

u = u∗.

A homotopy for system (1) is then constructed via the homotopy analysis method in the following form

(1 − p)L[u − u0] + phH(t)[u′ −N(u)] = 0, (2)

where p ∈ [0, 1] is an embedding parameter, h is a constant to control the convergence rate of the subsequent
iterations, H(t) is an auxiliary function to adjust the solution in a required shape (if, for instance, iterative
solutions contain secular terms, then H(t) might be chosen to avoid the appearance of such terms). The
homotopy system (2) is subject to the initial conditions

u(0, p) −A = 0. (3)

Moreover, the auxiliary linear differential operator L in (2) is assigned to be in the form

L =
d
dt

+ c, (4)

where c is a positive constant to be determined later, so that L has the property

L(C1e−ct) = 0,

with C1 being an arbitrary constant vector. Furthermore, u0 in (2) is an initial approximation to the solution
of (1), whose appropriate form, taking into account of the mathematical structure of the equilibrium point
u∗, may be given by

u0 = (A − u∗)e−ct + u∗. (5)

We should remark here that, as Liao in [18] emphasized, the flexibility and freedom in the selection of
auxiliary variables h, H(t), L and u0 are great advantages of the homotopy approach in order for adjusting
the solution and controlling the rate of convergence. However, it should be stressed that the freedom does
not mean that the resulting solutions to system (1) are different. On the contrary, as Liao proved in [18],
alternative presentation of the unique solution is made possible within the approach. In addition to this,
since the system (1) has an asymptotically stable critical point at u∗, the corresponding linearized system has



M. Turkyilmazoglu / Filomat 31:9 (2017), 2633–2641 2635

a Jacobian matrix J whose real eigenvalues are all negative. Thus, despite the fact that it is not obligatory,
the value of c can be chosen in the manner (note that the value of c is not unique in general)

c ≈ max{Eigenvalues of J}, (6)

or around this point. Such a choice of c plays a crucial role in the determination of the solutions as will be
readily justified later.

We observe that p = 0 gives the initial approximation u0(t) = u(t, 0), whereas p = 1 results in the exact
solution u(t) = u(t, 1) to equation (1). The kth-order equations regarding the deformation are obtained by
successive differentiation of (2) in the following manner

L(uk − κkuk−1) = −hH(t)Rk, (7)

complemented with the initial conditions

uk(0) = 0. (8)

κk in (7) is defined by

κk =

{
0, k ≤ 1,
1, k > 1,

and Rk is given depending upon the shape of the nonlinear term N in (1), which will be calculated separately
for each equation to be treated soon.

By means of the Taylor expansion, it is straightforward to get

u(t) = u0(t) +

∞∑
k=1

uk(t), (9)

where uk are defined by uk = 1
k!
∂u
∂p |p=0. A close inspection of (9) reveals the fact that solution of system (1)

was obtained in an analytic form which can be improved by computing as many terms in the solution series
as required.

3. Application to Systems

Three popular systems in mathematical biology are treated in this section by means of the technique as
outlined in §2. The accuracy is measured via∫

∞

0
|u(t) − ue(t)|dt, (10)

where ue(t) stands for the numerical solution. Moreover, the auxiliary parameter h is fixed as -1 for the
examples considered, although this is not an obligation and an optimal value of h can always be found as
described in [19] that was recently implemented in [20–25] amongst many others. We instead concentrate
on the methodology combined with the homotopy analysis method.

3.1. A Lotka-Volterra system
Here we consider a specific case of the well-known Lotka-Volterra system

x′ = 14x − 2x2
− xy, x(0) = a, (11)

y′ = 16y − 2y2
− xy, y(0) = b,

that may physically represent the logistic population interaction and the predator-prey model of a competing
species x(t) and y(t) within time t in a population. It is straightforward to see that system (11) has four critical
points; (0,0), (0,8), (7,8) and (4,6) respectively. Moreover, the point (4,6) constitutes an asymptotically stable



M. Turkyilmazoglu / Filomat 31:9 (2017), 2633–2641 2636

equilibrium solution of (11), that will balance the population without none of being extinct. The eigenvalues
of the Jacobian matrix around this point are simply −2(5 ±

√
7), so the value of c for the linear operator in

(4) can be fixed as c = 6.
Now let’s look for the solution of (11) together with the prescribed initial conditions (a, b) = (8, 1). Taking

all these into consideration, the initial approximations (5) take the form

x0 = 4e−6t + 4, (12)
y0 = −5e−6t + 6.

Moreover, Rk = (Rx
k ,R

y
k ) in equation (7) can be written as

Rx
k = x′k−1 − 14xk−1 +

k−1∑
j=0

x j(2xk−1− j + yk−1− j), (13)

Ry
k = y′k−1 − 16yk−1 +

k−1∑
j=0

y j(2yk−1− j + xk−1− j).

In addition to this, if the solution sought for (11) is preferred in purely exponential form, then it is better
to choose the auxiliary function H(t) = e−t so that no secular terms will appear in the next-order solutions.
The homotopy analysis method (2-9) then generates the subsequent result at the approximate level k = 3

x = 4 + 318e−27t

343 −
5204e−21t

245 + 9042e−20t

343 + 349e−15t

21 −
3426e−14t

49 + 20064e−13t

343 − 68e−9t + 726e−8t

7 −
3579e−7t

49 + 154774e−6t

5145 ,

y = 6 + 1950e−27t

343 −
5503e−21t

245 −
1482e−20t

343 + 4195e−15t

42 −
19905e−14t

196 + 15783e−13t

343 − 104e−9t + 765e−8t

7 −
1287e−7t

98 −
419743e−6t

20580 ,

Figure 1 demonstrates this and other homotopy solutions that graphically match perfectly with the numer-
ical solution.

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

t

x,
y

Figure 1: Solution (x(t), y(t)) of Lotka-Volterra equation (11): the numerical solution (straight curve), the homotopy solution of k = 15
(dashed curve), the homotopy solution of k = 3 (dot-dashed curve) and the initial approximation (dotted curve).
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Table 1 gives error (10) occurred at different orders. As expected, increasing iteration level in the
homotopy method helps the solution quickly to recover the numerical one.

k = 3 k = 5 k = 10 k = 15 k = 20 k = 25
0.176608 0.085831 0.0186456 0.00431826 0.00118063 0.00051083

Table 1: The errors (10) for problem (11) at different truncation levels.

3.2. A plant-herbivore population dynamic system
As a second example we consider the initial-value system

x′ = x(1 − 2x) − x2y, x(0) = a, (14)
y′ = x2y − y, y(0) = b,

that may represent physically the dynamics of a plant-herbivore interaction, such as that of a mammalian
browser and its plant forage species, see for instance [17]. Among the four critical points, (1/2,0) is the
asymptotically stable one. The eigenvalues of the Jacobian matrix around this point can be computed as
(− 3

4 ,−1), hence allowing c to be chosen as c = 3/4 for this example.
If we explore the solution of (14) together with the specified initial conditions (a, b) = (1, 1/2), the initial

guesses (5) are written by

x0 =
1
2

e−3t/4 +
1
2
, (15)

y0 =
1
2

e−3t/4.

Moreover, distinct from the Lotka-Volterra system (11), Rk = (Rx
k ,R

y
k ) in equation (7) should take the form

Rx
k = x′k−1 − xk−1 +

k−1∑
j=0

2x jxk−1− j +

k−1∑
j=0

j∑
i=0

xix j−iyk−1− j, (16)

Ry
k = y′k−1 + yk−1 +

k−1∑
j=0

j∑
i=0

xix j−iyk−1− j.

As for the Lotka-Volterra system (11), if the solution to (14) is sought in purely exponential form, then it
is better to choose the auxiliary function H(t) = e−3t/4 so that no secular terms will appear in the next-order
solutions. The homotopy analysis method (2-9) then generates an approximate analytic solution, whose
third-order correspondence is

x = 1
2 −

e−15t/2

8748 + 31e−27t/4

6480 + 407e−6t

4536 + 2107e−21t/4

7290 −
8
45 e−9t/2

−
311
648 e−15t/4 + 10253e−3t

29160 + 7
81 e−9t/4 + 92

135 e−3t/2
−

422797e−3t/4

1224720

y = e−15t/2

8748 −
53e−27t/4

19440 −
13e−6t

360 −
4

729 e−21t/4 + 23
243 e−9t/2

−
1
8 e−15t/4

−
653e−3t

29160 −
121e−9t/4

2430 + 22631e−3t/4

34992 .

This third-order solution, fifteenth-order solution, initial approximation (15) and the numerical solution are
compared in Figure 2.
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Figure 2: Solution (x(t), y(t)) of population equation (14): the numerical solution (straight curve), the homotopy solution of k = 15
(dashed curve), the homotopy solution of k = 3 (dot-dashed curve) and the initial approximation (dotted curve).

A fair agreement between the fifteenth-order homotopy solution and the numerical solution can be
evidently observed, valuing such homotopy approximations. The total errors accumulated at various
orders of homotopy approximations are tabulated in Table 2. Again the error decays, but slower than the
previous case.

k = 3 k = 5 k = 10 k = 15 k = 20 k = 25
0.0660502 0.0281901 0.0130761 0.00488995 0.00360455 0.00258002

Table 2: The errors (10) for problem (14) at different truncation levels.

3.3. A system for some infectious epidemiological diseases

In this final demonstration, the following third-order system is considered

y′ = y(1 − ν − θ − y − z + θy − (ν + γ)q), y(0) = a, (17)
q′ = (1 + q)(θy − (ν + γ)q), q(0) = b,
z′ = γq − νz + z(θy − (ν + γ)q), z(0) = c,

that may represent physically recurrent outbreaks of some epidemic diseases such as influenza and measles,
see for instance [11] and [12]. Within this concept, in the above system, y(t), q(t) and z(t) denote the infected
(non isolated) individuals, the isolated individuals (in quarantine) and the recovered (immune) individuals
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in a population respectively. The appearing parameters are due to interaction and contact rate among the
portions. The asymptotically stable critical point of the system (17) can be worked out exactly as

(1 − θ − ν −
γθ − γθ2

− γθν

γθ + γν + ν2 ,−
θν(−1 + θ + ν)
γθ + γν + ν2 ,

γθ − γθ2
− γθν

γθ + γν + ν2 ).

The values of the parameters are taken as respectively, ν = 1/5, θ = 1/5 and γ = 1/2. The real eigenvalue of
the Jacobian matrix around this point is −0.7529, so c for L in (4) can be fixed as c = 3/4.

Now, if we seek the solution of (17) together with the initial conditions (a, b, c) = (7/10, 0, 0), the initial
approximations (5) take the form

y0 = 7(1 + e−3t/4)/20, (18)
q0 = (1 − e−3t/4)/10,
z0 = (1 − e−3t/4)/4.

Moreover, Rk = (Ry
k ,R

q
k,R

z
k) in equation (7) can be written as

Ry
k = y′k−1 + (−1 + ν + θ)yk−1 +

k−1∑
j=0

y j(zk−1− j + (1 − θ)yk−1− j + (ν + γ)qk−1− j), (19)

Rq
k = q′k−1 − θyk−1 + (ν + γ)qk−1 +

k−1∑
j=0

q j(−θyk−1− j + (ν + γ)qk−1− j),

Rz
k = z′k−1 − γqk−1 + νzk−1 +

k−1∑
j=0

z j(−θyk−1− j + (ν + γ)qk−1− j).

Taking H(t) = 1 in for the current problem, the homotopy analysis method (2-9) then produces an
approximate analytic solution, whose third-order correspondence is

y = 7
20 −

3976e−3t

6328125 + 66941e−9t/4

2109375 + 403354e−3t/2

2109375 + 3231739e−3t/4

25312500 + 50197e−9t/4t
2812500 + 139069e−3t/2t

703125

+ 2975273e−3t/4t
11250000 + 35637e−3t/2t2

500000 + 187607e−3t/4t2

2000000 + 104111e−3t/4t3

8000000 ,

q = 6377e−3t

12656250 −
322e−9t/4

703125 −
9149e−3t/2

156250 + 370244e−3t/4

6328125 + 1
10

(
1 − e−3t/4

)
+ 826e−9t/4t

234375

−
130249e−3t/2t

2812500 + 361789e−3t/4t
5625000 −

9163e−3t/2t2

1500000 + 6569e−3t/4t2

200000 + 69779e−3t/4t3

12000000 ,

z = 6377e−3t

5062500 −
6307e−9t/4

1687500 + 23359e−3t/2

562500 −
197687e−3t/4

5062500 + 1
4

(
1 − e−3t/4

)
−

679e−9t/4t
562500

+ 3549e−3t/2t
125000 −

419201e−3t/4t
2250000 + 539e−3t/2t2

200000 −
467e−3t/4t2

16000 + 813e−3t/4t3

1600000

Figure 3 and Table 3 are to display how the homotopy results match well with the numerical one. Indeed, the
error decays considerably for the Lotka-Volterra system (17) with increasing truncation level of homotopy
series.

k = 3 k = 5 k = 10 k = 15 k = 20 k = 25
0.279821 0.24643 0.0634668 0.0186309 0.00621743 0.00214597

Table 3: The errors (10) for problem (17) at different truncation levels.
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Figure 3: Solution (y(t), q(t), z(t)) of population equation (17): the numerical solution (straight curve), the homotopy solution of k = 15
(dashed curve), the homotopy solution of k = 3 (dot-dashed curve) and the initial approximation (dotted curve).

4. Concluding Remarks

The homotopy analysis method is taken into account in the present study to obtain approximate analytic
solutions of highly nonlinear system of differential equations. It is systematically shown that proper selec-
tion of the auxiliary linear operator and the other auxiliary parameters is essential to get the exponentially
decaying type of solutions for the systems possessing asymptotically stable equilibrium point. Examples
from the open literature in mathematical biology justify the success of the adopted approach. Hence, similar
nonlinear systems in different fields can also be safely treated via the procedure outlined here. However,
whenever the nonlinear dynamic systems are chaotic, the present approach may not be applicable.
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