
Filomat 32:1 (2018), 197–206
https://doi.org/10.2298/FIL1801197W

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In this paper, a three-dimensional almost Kenmotsu manifold M3 satisfying the generalized
(κ, µ)′-nullity condition is investigated. We mainly prove that on M3 the following statements are equivalent:
(1) M3 is φ-symmetric; (2) the Ricci tensor of M3 is cyclic-parallel; (3) the Ricci tensor of M3 is of Codazzi
type; (4) M3 is conformally flat with scalar curvature invariant along the Reeb vector field; (5) M3 is locally
isometric to either the hyperbolic spaceH3(−1) or the Riemannian productH2(−4) ×R.

1. Introduction

As an extension of the well-known Kenmotsu manifolds (see [10]) and an analogy of almost Hermitian
manifolds for manifolds of odd dimension, almost Kenmotsu manifolds defined in [9] are becoming an
important research object in differential geometry of almost contact metric manifolds. For some recent
results regarding such manifolds we refer the reader to [6, 7], [11–13] and also [16, 17]. Almost Kenmotsu
manifolds satisfying the (κ, µ) and (κ, µ)′-nullity conditions were firstly introduced and studied by Dileo
and Pastore [7], where κ andµ both are constants. As a special case of the (κ, µ) and (κ, µ)′-nullity conditions,
κ-nullity condition defined on almost Kenmotsu manifolds was studied by Pastore and Saltarelli [12]. Later,
Pastore and Saltarelli in [11] extended the above three nullity conditions to the corresponding generalized
nullity conditions for which both κ and µ are assumed to be smooth functions. In particular, Saltarelli [13]
studied three-dimensional almost Kenmotsu manifolds satisfying the generalized (κ, µ) and (κ, µ)′-nullity
conditions and described locally such manifolds under the condition dκ∧ η = 0 and h , 0. We remark that
a Kenmotsu manifold always satisfies the above all kinds of nullity conditions.

Three-dimensional Kenmotsu manifolds have been studied by De et al. in [3–5] from various points
of view. In this paper, we aim to classify three-dimensional almost Kenmotsu manifolds satisfying the
generalized (κ, µ)′-nullity condition under some symmetry conditions. Our main results give some local
classifications of such manifolds with some symmetry conditions restriction and this generalizes some cor-
responding results obtained by De and others. Precisely, we state that on any three-dimensional generalized
(κ, µ)′-almost Kenmotsu manifold M3, the following assertions are equivalent to each other:

• M3 is φ-symmetric.
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• The Ricci tensor of M3 is cyclic-parallel.

• The Ricci tensor of M3 is of Codazzi type.

• M3 is conformally flat with its scalar curvature invariant along the Reeb vector field.

• M3 is locally isometric to either the hyperbolic spaceH3(−1) or the Riemannian productH2(−4) ×R.

2. Almost Kenmotsu Manifolds

By an almost contact metric structure defined on a smooth differentiable manifold M2n+1 of dimension
(2n + 1) we mean a (φ, ξ, η, 1)-structure satisfying

φ2 = −id + η ⊗ ξ, η(ξ) = 1, (1)

1(φX, φY) = 1(X,Y) − η(X)η(Y) (2)

for any vector fields X,Y, where φ is a (1, 1)-type tensor field, ξ is a vector field called the Reeb vector field
and η is a 1-form called the almost contact 1-form and 1 is a Riemannian metric called compatible metric with
respect to the almost contact structure.

From Janssens and Vanhecke [9], in this paper by an almost Kenmotsu manifold we mean an almost contact
metric manifold (M2n+1, φ, ξ, η, 1) satisfying dη = 0 and dΦ = 2η ∧ Φ, where the fundamental 2-form Φ of
the almost contact metric manifold M2n+1 is defined by Φ(X,Y) = 1(X, φY) for any vector fields X and Y on
M2n+1. We consider the product M2n+1

×R of an almost contact metric manifold M2n+1 andR and define on
it an almost complex structure J by

J
(
X, f

d
dt

)
=

(
φX − fξ, η(X)

d
dt

)
,

where X denotes a vector field tangent to M2n+1, t is the coordinate ofR and f is a C∞-function on M2n+1
×R.

We denote by [φ,φ] the the Nijenhuis tensor of φ. If

[φ,φ] = −2dη ⊗ ξ

holds, or equivalently, J is integrable, then the almost contact metric structure is said to be normal. A normal
almost Kenmotsu manifold is said to be a Kenmotsu manifold (cf. [9, 10]). It is well-known that an almost
Kenmotsu manifold is a Kenmotsu manifold if and only if

(∇Xφ)Y = 1(φX,Y)ξ − η(Y)φX

for any vector fields X,Y.
Let M2n+1 be an almost Kenmotsu manifold. We consider three tensor fields l = R(·, ξ)ξ, h = 1

2Lξφ and
h′ = h ◦ φ on M2n+1, where R is the Riemannian curvature tensor of 1 and L is the Lie differentiation. From
Dileo and Pastore [6, 7], we know that the three (1, 1)-type tensor fields l, h′ and h are symmetric and satisfy
hξ = 0, lξ = 0, trh = 0, tr(h′) = 0 and hφ + φh = 0 and

∇Xξ = X − η(X)ξ + h′X, (3)

φlφ − l = 2(h2
− φ2), (4)

∇ξh = −φ − 2h − φh2
− φl, (5)

tr(l) = S(ξ, ξ) = 1(Qξ, ξ) = −2n − trh2, (6)

R(X,Y)ξ = η(X)(Y + h′Y) − η(Y)(X + h′X) + (∇Xh′)Y − (∇Yh′)X (7)

for any vector fields X,Y, where S, Q and∇ denote the Ricci curvature tensor, the Ricci operator with respect
to 1 and the Levi-Civita connection of 1, respectively.
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3. Generalized (κ, µ)′-Nullity and Symmetry Conditions on Almost Kenmotsu 3-Manifolds

We first give the definition of the generalized (κ, µ)′-nullity condition (cf. [11], [13]).

Definition 3.1. A three-dimensional almost Kenmotsu manifold is said to be a generalized (κ, µ)′-almost Kenmotsu
3-manifold if the Reeb vector field satisfies

R(X,Y)ξ = κ(η(Y)X − η(X)Y) + µ(η(Y)h′X − η(X)h′Y) (8)

for any vector fields X,Y on M3, where both κ and µ are smooth functions.

When both κ and µ in (8) are constants, then the generalized (κ, µ)′-nullity condition is just the (κ, µ)′-one
(cf. [7]). We also need the following proposition in proofs of main results.

Proposition 3.2 ([6]). An almost Kenmotsu 3-manifold is Kenmotsu if and only if h vanishes.

On a Kenmotsu manifold using h = 0 in (7) we have R(X,Y)ξ = −η(Y)X + η(X)Y for any vector fields
X,Y. Then we say that a Kenmotsu manifold always satisfies the (κ, µ)′-nullity condition with κ = −1 and
µ an arbitrary function.

On a generalized (κ, µ)′-almost Kenmotsu 3-manifold with h , 0, putting Y = ξ in (8) we obtain
l = −κφ2 + µh′. From (1), it follows that φlφ = κφ2 + µh′. Using this in (4) we obtain h2 = (κ + 1)φ2. We
denote by λ the positive eigenvalue of h′. It follows that λ =

√
−1 − κ and also −λ is another non-zero

eigenvalue of h′. Moreover, from [13, pp. 441] we have

ξ(κ) = −2(κ + 1)(µ + 2), ξ(λ) = −λ(µ + 2). (9)

Proposition 3.3 ([13, Proposition 5.1]). Let M3 be a generalized (κ, µ)′-almost Kenmotsu 3-manifold with h , 0.
Then we have

∇eξ = (1 + λ)e, ∇φeξ = (1 − λ)φe, ∇eφe = −
φe(λ)

2λ
e,

∇φee = −
e(λ)
2λ

φe, ∇ξe = 0, ∇ξφe = 0,

∇ee =
φe(λ)

2λ
φe − (1 + λ)ξ, ∇φeφe =

e(λ)
2λ

e − (1 − λ)ξ,

(10)

where e and φe denote two eigenvector fields of h′ corresponding the eigenvalues λ > 0 and −λ respectively.

On a generalized (κ, µ)′-almost Kenmotsu 3-manifold with h , 0 we also have (cf. [13, Lemma 3.3])

Q =
( r

2
− κ

)
id +

(
3κ −

r
2

)
η ⊗ ξ + µh′, h′(gradµ) = gradκ − ξ(κ)ξ, (11)

where r is the scalar curvature and grad denotes the usual gradient operator. From (11) and Proposition 3.3
we obtain

Qξ = 2κξ, Qe =
( r

2
− κ + λµ

)
e, Qφe =

( r
2
− κ − λµ

)
φe. (12)

Proposition 3.4. A generalized (κ, µ)′-almost Kenmotsu 3-manifold is Einstein if and only if it is locally isometric
to the hyperbolic spaceH3(−1).

Proof. Let M3 be a generalized (κ, µ)′-almost Kenmotsu 3-manifold. If M3 is Einstein and h , 0, from (12)
we directly get

µ = 0 and r = 6κ,
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where we have used λ > 0. Since the scalar curvature of an Einstein manifold of dimension greater than
two is a constant, it follows from the second term of the above relation that κ is also a constant. Using
this in (9) gives µ = −2, a contradiction. If h = 0, from Proposition 3.2 it is seen that M3 is a Kenmotsu
3-manifold. It is known that any three-dimensional Einstein manifold is of constant sectional curvature.
Furthermore, K. Kenmotsu in [10, Corollary 6] proved that a locally symmetric Kenmotsu manifold is of
constant sectional curvature −1. This completes the proof.

Recently, Y. Wang [16] and J. T. Cho [2] gave a complete classification of almost Kenmotsu 3-manifolds
under local symmetry condition.

Proposition 3.5 ([16, Theorem 3.4]). An almost Kenmotsu 3-manifold is locally symmetric if and only if the
manifold is locally isometric to either the hyperbolic spaceH3(−1) or the productH2(−4) ×R.

Next we study almost Kenmotsu 3-manifolds under some symmetry conditions. Firstly, we give

Definition 3.6 ([14]). An almost contact metric manifold is called φ-symmetric if

φ2(∇VR)(X,Y)Z = 0 (13)

for any vector fields X,Y,Z,V.

Obviously, local symmetry condition (i.e., ∇R = 0) implies φ-symmetry but the converse is not neces-
sarily true. Applying the above preliminaries, we show that the above two kinds of symmetry on some
almost Kenmotsu 3-manifolds are equivalent to each other.

Theorem 3.7. A generalized (κ, µ)′-almost Kenmotsu 3-manifold is φ-symmetric if and only if it is locally isometric
to eitherH3(−1) orH2(−4) ×R.

Proof. It is well-known that the curvature tensor R of a three-dimensional Riemannian manifold is given by

R(X,Y)Z = 1(Y,Z)QX − 1(X,Z)QY + 1(QY,Z)X − 1(QX,Z)Y −
r
2

(1(Y,Z)X − 1(X,Z)Y) (14)

for any vector fields X,Y,Z, where r is the scalar curvature. Taking the covariant derivative of the above
relation along V gives

(∇VR)(X,Y)Z

=1(Y,Z)(∇VQ)X − 1(X,Z)(∇VQ)Y + 1((∇VQ)Y,Z)X − 1((∇VQ)X,Z)Y −
1
2

V(r)(1(Y,Z)X − 1(X,Z)Y)
(15)

for any vector fields X,Y,Z,V. From (15) we see that local symmetry and Ricci symmetry (i.e., ∇Q=0)
are equivalent. On the other hand, from (1) and (13) we see that an almost contact metric manifold is
φ-symmetric if and only if

(∇VR)(X,Y)Z = 1((∇VR)(X,Y)Z, ξ)ξ (16)

for any vector fields X,Y,Z,V.
Let M3 be a generalized (κ, µ)′-almost Kenmotsu 3-manifold. If h = 0 from Proposition 3.2 it is seen that

M3 is a Kenmotsu manifold. U. C. De [3, Theorem 3.1] proved that a φ-symmetric Kenmotsu manifold is
Einstein. Then, the proof follows from Proposition 3.4.

Next we consider the other case, i.e., non-Kenmotsu case. Let us assume that h , 0, or equivalently,
κ < −1. Applying (12) and Proposition 3.3 we get

(∇ξQ)ξ = 2ξ(κ)ξ. (17)

(∇ξQ)e =
(1

2
ξ(r) − ξ(κ) + µξ(λ) + λξ(µ)

)
e. (18)
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(∇ξQ)φe =
(1

2
ξ(r) − ξ(κ) − µξ(λ) − λξ(µ)

)
φe. (19)

(∇eQ)ξ = 2e(κ)ξ + (1 + λ)
(
3κ −

r
2
− λµ

)
e. (20)

(∇eQ)e = (1 + λ)
(
3κ −

r
2
− λµ

)
ξ +

(1
2

e(r) − e(κ) + µe(λ) + λe(µ)
)

e + µφe(λ)φe. (21)

(∇eQ)φe = µφe(λ)e +
(1

2
e(r) − e(κ) − µe(λ) − λe(µ)

)
φe. (22)

(∇φeQ)ξ = 2φe(κ)ξ + (1 − λ)
(
3κ −

r
2

+ λµ
)
φe, (23)

(∇φeQ)e =
(1

2
φe(r) − φe(κ) + µφe(λ) + λφe(µ)

)
e − µe(λ)φe. (24)

(∇φeQ)φe = (1 − λ)
(
3κ −

r
2

+ λµ
)
ξ − µe(λ)e +

(1
2
φe(r) − φe(κ) − µφe(λ) − λφe(µ)

)
φe. (25)

Putting X = ξ, Y = e and Z = φe in (15) and using (16) give

1((∇VQ)ξ, φe) = 0 (26)

for any vector field V. Putting V = φe in (26) and using (23) we have

(1 − λ)
(
3κ −

r
2

+ λµ
)

= 0. (27)

Similarly, putting X = ξ, Y = φe and Z = e in (15) and using (16) give

1((∇VQ)ξ, e) = 0 (28)

for any vector field V. Putting V = e in (28) and using (20) we have

3κ −
r
2
− λµ = 0, (29)

where we have used λ > 0. Putting (29) in (27) gives (1 − λ)(6κ − r) = 0.
We assume that r = 6κ holds and hence using this in (29) we get µ = 0. Now putting X = ξ and Y = Z = e

in (15) and using (16) give

(∇VQ)ξ = 0

for any vector field V, where we have used (28). Putting V = ξ in the above relation and using (17) give
ξ(κ) = 0. In view of (9) and µ = 0 we have κ = −1. This implies h = 0 and M3 is a Kenmotsu manifold, a
contradiction. Thus we conclude that λ = 1 and hence κ = −1 − λ2 = −2. Applying this in (9) gives µ = −2.
Also, it follows from (29) that r = −8. Finally, by a simple calculation we get from (17)-(25) that the Ricci
tensor is parallel and hence the manifold is locally symmetric. Then the proof follows from Proposition 3.5.
This completes the proof.

Remark 3.8. Theorem 3.7 is an extension of De [4, Theorem 3.1] for Kenmotsu 3-manifolds.

Definition 3.9. The Ricci tensor of an almost contact metric manifold is said to be cyclic-parallel if

1((∇XQ)Y,Z) + 1((∇YQ)Z,X) + 1((∇ZQ)X,Y) = 0 (30)

for any vector fields X,Y,Z.

If the Ricci tensor is parallel (i.e., ∇Q = 0), then (30) holds trivially. But the converse is not always true.
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Theorem 3.10. The Ricci tensor of any generalized (κ, µ)′-almost Kenmotsu 3-manifold is cyclic-parallel if and only
if the manifold is locally isometric to eitherH3(−1) orH2(−4) ×R.

Proof. It is well-known that on a Riemannian manifold there holds

1
2

X(r) = trace{ei → (∇ei Q)X}, (31)

where {ei} is a local orthogonal basics of the tangent space at certain point.
Applying (31) in (30) we obtain that the scalar curvature r is a constant. J. Inoguchi in [8, Proposition 3.1]

proved that a Kenmotsu 3-manifold is of constant scalar curvature if and only if it is of constant sectional
curvature −1. Then, the proof for Kenmotsu case follows.

Next, let M3 be a generalized (κ, µ)′-almost Kenmotsu 3-manifold with h , 0. Putting X = Y = Z = ξ in
(30) gives

1((∇ξQ)ξ, ξ) = 0.

Using (17) and (9) we have µ = −2, where we have used the assumption κ < −1. Similarly, putting X = ξ
and Y = Z = e in (30) gives

1((∇ξQ)e, e) + 21((∇eQ)e, ξ) = 0.

Using (18) and (21) in the above relation gives

3κ −
r
2

+ 2λ = 0, (32)

where we have used µ = −2, λ > 0 and r = constant. Similarly, putting X = ξ and Y = Z = φe in (30) gives

1((∇ξQ)φe, φe) + 21((∇φeQ)φe, ξ) = 0.

Using (19) and (25) in the above relation gives

(1 − λ)
(
3κ −

r
2
− 2λ

)
= 0,

where we have usedµ = −2 and r = constant. Putting (32) into the previous relation we obtain (1−λ)(6κ−r) =
0. Let us assume that r = 6κ. Using this in (32) we may obtain λ = 0, a contradiction. Thus, it follows
that λ = 1 and hence κ = −2. The remaining proof follows from Theorem 3.7 and Proposition 3.5. This
completes the proof.

Remark 3.11. Theorem 3.10 is an extension of De and Pathak [4, Theorem 5]. An almost Kenmotsu 3-h-manifold
having a cyclic-parallel Ricci tensor was studied by W. Wang [15].

Definition 3.12. The Ricci tensor of an almost contact metric manifold is said to be of Codazzi type if

(∇XQ)Y = (∇YQ)X (33)

for any vector fields X,Y.

Notice that (33) holds if and only if the curvature tensor R is harmonic, i.e., divR = 0. Obviously, (33)
can be viewed as an extension of a parallel Ricci tensor tensor.

Theorem 3.13. The Ricci tensor of any generalized (κ, µ)′-almost Kenmotsu 3-manifold is of Codazzi type if and
only if the manifold is locally isometric to eitherH3(−1) orH2(−4) ×R.
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Proof. Applying (31) in (33) we see that the scalar curvature is a constant. Therefore, as seen in proof of
Theorem 3.10, the proof for Kenmotsu case follows from J. Inoguchi [8, Proposition 3.1].

Let M3 be a generalized (κ, µ)′-almost Kenmotsu 3-manifold with h , 0. Putting X = e and Y = ξ in (33)
gives

(∇ξQ)e = (∇eQ)ξ.

Using (18) and (20) in the above relation gives

e(κ) = 0, (1 + λ)
(
3κ −

r
2
− λµ

)
= −ξ(κ) + µξ(λ) + λξ(µ). (34)

Similarly, putting X = φe and Y = ξ in (33) gives

(∇ξQ)φe = (∇φeQ)ξ.

Using (19) and (23) in the above relation gives

φe(κ) = 0, (1 − λ)
(
3κ −

r
2

+ λµ
)

= −ξ(κ) − µξ(λ) − λξ(µ). (35)

Similarly, putting X = e and Y = φe in (33) gives

(∇eQ)φe = (∇φeQ)e.

Using (22) and (24) in the above relation gives

e(µ) = 0, φe(µ) = 0,

this means dµ∧ η = 0 and where we have used the first terms of (34) and (35) and r = constant. Adding the
second term of (34) to that of (35) gives

6κ − r = 2(κ + 1)(µ + 4), (36)

where we have used (9). Taking the action of ξ of (36), using again (9) and r = constant give

ξ(µ) = 2(µ + 1)(µ + 2). (37)

Subtracting the second term of (34) from that of (35) gives

−2λµ + λ(6κ − r) = 2µξ(λ) + 2λξ(µ).

Making use of (9), (36) and (37) in the above relation give

λ(κ − µ)(µ + 4) = 0.

Now we first consider the possible subcase µ = −4. Using this in (37) gives either µ = −1 or µ = −2, a
contradiction. In view of λ > 0, we conclude that κ = µ and hence (37) becomes ξ(κ) = 2(κ + 1)(κ + 2). On
the other hand, using κ = µ in (9) gives ξ(κ) = −2(κ+ 1)(κ+ 2). In view of k < −1, it follows that κ = µ = −2.
Then, the remaining proof follows from Theorem 3.7 and Proposition 3.5. This complete the proof.

It is well-known that a three-dimensional Riemannian manifold M is said to be conformally flat if its
Weyl-Schouten tensor is of Codazzi-type, or equivalently, its Ricci operator satisfies

(∇XQ)Y − (∇YQ)X =
1
4

(X(r)Y − Y(r)X) (38)

for any vector fields X,Y on M.
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Theorem 3.14. A generalized (κ, µ)′-almost Kenmotsu 3-manifold is conformally flat with scalar curvature invariant
along ξ if and only if the manifold is locally isometric to eitherH3(−1) orH2(−4) ×R.

Proof. Let M3 be a generalized (κ, µ)′-almost Kenmotsu 3-manifold. Let us first consider the case h = 0, i.e.,
M3 is a Kenmotsu manifold. Using h = 0 in (7) we have R(X,Y)ξ = −η(Y)X + η(X)Y for any vector fields
X,Y and hence Qξ = −2ξ. Applying this and putting Y = Z = ξ in (14) we obtain the Ricci operator

Q =
( r

2
+ 1

)
id −

( r
2

+ 3
)
η ⊗ ξ.

Using this in (31) we have ξ(r) = −2(6 + r). In view of the assumption of r invariant along the Reeb vector
field we get r = −6 and hence we see that M3 is Einstein. Then, the proof follows from Proposition 3.4.

Now we consider the other case h , 0. Putting X = e and Y = ξ in (38) we have

(∇eQ)ξ − (∇ξQ)e =
1
4

e(r)ξ,

where we have used the assumption ξ(r) = 0. Using (18) and (20) in the above relation gives

e(κ) =
1
8

e(r), (1 + λ)
(
3κ −

r
2
− λµ

)
+ ξ(κ) − µξ(λ) − λξ(µ) = 0. (39)

Similarly, putting X = φe and Y = ξ in (38) we have

(∇φeQ)ξ − (∇ξQ)φe =
1
4
φe(r)ξ,

where we have used the assumption ξ(r) = 0. Using (19) and (23) in the above relation gives

φe(κ) =
1
8
φe(r), (1 − λ)

(
3κ −

r
2

+ λµ
)

+ ξ(κ) + µξ(λ) + λξ(µ) = 0. (40)

Similarly, putting X = φe and Y = e in (38) we have

(∇φeQ)e − (∇eQ)φe =
1
4

(φe(r)e − e(r)φe).

Using (22) and (24) in the above relation gives

1
4

e(r) − e(κ) − λe(µ) = 0,
1
4
φe(r) − φe(κ) + λφe(µ) = 0. (41)

Taking the inner product of the second term of (11) with e and φe, respectively, we have e(κ) = λe(µ) and
φe(κ) = −λφe(µ). Applying this in (41) we get

e(µ) =
1

8λ
e(r), φe(µ) = −

1
8λ
φe(r), (42)

where λ =
√
−1 − κ > 0. Adding the second term of (39) to that of (40) and using (9) we have

6κ − r − 2(κ + 1)(µ + 4) = 0, (43)

where we have used (9).
Taking the action of e of (43) and using the first terms of (39) and (42) we get

1
4

(µ + 5 − λ)e(r) = 0.
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From this we may assume that e(r) , 0 holds on certain open subset of M3 and hence we get λ = µ + 5. In
view of λ =

√
−1 − κ, it follows that e(λ) = − 1

2λ e(κ) = e(µ). Making use of e(κ) = λe(µ) we obtain from the
first term of (42) that e(r) = 8λe(µ) = 0, a contradiction. Thus, we conclude that e(r) = 0 is true.

Taking the action of φe of (43) and using the first term of (40) and the second term of (42) we get

1
4

(µ + 5 + λ)φe(r) = 0.

From this we assume that φe(r) , 0 holds on some open subset of M3 and hence we get λ = −µ+ 5. In view
of λ =

√
−1 − κ, it follows that φe(λ) = − 1

2λφe(κ) = −φe(µ). Making use of φe(κ) = −λφe(µ) we obtain from
the second term of (42) that φe(r) = −8λφe(µ) = 0, a contradiction. Thus, here we conclude that φe(r) = 0 is
true.

Taking into account the assumption ξ(r) = 0 we see that the scalar curvature is a constant. From (38) it
is seen that the Ricci tensor of M3 is of Codazzi type. Then the proof follows from Theorem 3.13.

The classification of conformally flat almost Kenmotsu manifolds was rarely studied. Very recently,
Y. Wang in [17] proved that any CR-integrable almost Kenmotsu manifold of dimension > 3 with scalar
curvature invariant along the Reeb vector field is conformally flat if and only if it is of constant sectional
curvature −1.

Example 3.15. We denote by (x, y, z) the usual canonical coordinates of R3. Let us consider

M3 := {(x, y, z) ∈ R3
|z > 0}.

On M3 we define an almost contact metric structure (φ, ξ, η, 1) as the following:

ξ :=
∂
∂z
, η := dz,

1 = ze2zdx2 +
e2z

z
dy2 + dz2,

φ(ξ) = 0, φ
(
∂
∂x

)
= z

∂
∂y
, φ

(
∂
∂y

)
= −

1
z
∂
∂x
.

In [11, Section 6], it was shown that M3 is a generalized (k, µ)′-almost Kenmotsu 3-manifold with k = −1 − 1
4z2

and µ = −2 + 1
z . One can check that the scalar curvature of M3 is not a constant and hence the Ricci tensor of M3 is

not cyclic-parallel and not of Codazzi type. Moreover, M3 is neither φ-symmetric nor conformally flat.

Acknowledgement. The authors would like to thank the anonymous reviewer for his or her careful
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