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Abstract. We introduce a generalized quarter-symmetric metric recurrent connection and study its ge-
ometrical properties. We also derive the Schur’s theorem for the generalized quarter-symmetric metric
recurrent connection.

1. Introduction

The concept of the semi-symmetric connection was introduced by Friedman and Schouten in [4] for
the first time. Hayden in [13] introduced the metric connection with torsion, and Yano in [15] defined a
semi-symmetric metric connection and studied its properties. De, Han and Zhao in [1] recently studied
the semi-symmetric no-metric connection. A quarter-symmetric connection in [5] was defined and studied.
Afterwards, several types of a quarter-symmetric metric connection were studied ([3, 9, 14, 16-18]). On
the other hand, the Schur’s theorem of a semi-symmetric non-metric connection is well known ([10, 11])
based only on the second Bianchi identity. A semi-symmetric metric connection that is a geometrical model
for scalar-tensor theories of gravitation was studied ([2]) and the Amari-Chentsov connection with metric
recurrent property was also studied ([12]). Recently, Han, Fu and Zhao in [7, 8] further studied the similar
topics in sub-Riemannian manifolds.

Based on the previous researches we define newly in this note the generalized quarter-symmetric
metric recurrent connection and study its properties. And the Schur’s theorem of the generalized quarter-
symmetric metric recurrent connection is posed and several types of the generalized quarter-symmetric
metric recurrent connections with constant curvature are discovered.
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2. A Generalized Quarter-symmetric Metric Recurrent Connection

Let (M, g) be a Riemannian manifold (dim M > 2), g be the Riemannian metric on M, and V be the
Levi-Civita connection with respect to g. Let T(M) denote the collection of all vector fields on M.

R
Definition 2.1. A connection V is called a quarter-symmetric metric recurrent connection, if it satisfies
R R
(Vzg)(X,Y) = 2w(Z)9(X, Y), T(X, Y) = n(V)p(X) = (X)¢(Y), 1)

R
where @ isa (1, 1)-type tensor field, and w, 7 are 1-form respectively. If p(X) = X, then V is a semi-symmetric
metric recurrent connection studied in [17].

Definition 2.2. A linear connection V is called a generalized quarter-symmetric metric recurrent connection, if it
satisfies

(Vzg)(X, Y) = =2(t = Dw(2)g9(X, Y) ~ t(X)g(Y, Z) — tw(Y)g9(Z, X), @)
T(X,Y) = n(V)p(X) = n(X)p(Y).

where f € R.

Remark 2.3. By (2), it is obvious that there holds the following

When t = 0, then the generalized quarter-symmetric metric recurrent connection V is a quarter-symmetric metric
R
recurrent connection V;

When w = 0, then V is a quarter-symmetric metric connection([9]);
When t =1 and p(X) = X, then V is a semi-symmetric non-metric connection;
When t = 2 and p(X) = 0, then V is a special type of the Amari-Chentsov connection([12]);

0
When w =0and T = 0, then V is Levi-Civita connection V.

. 0 o
Let (x') be the local coordinate, then g, V,V, w, ¢, , T have the local expressions, Jijs {fj}, l"f.‘]., wj, T, (pl]., Tf ,
respectively. At the same time the expression (2) can be rewritten as

ngz'j ==2(t - 1)a)kgi]- —twigj — tw;Gki,
TE = 0k — gk ®)
ij Vi Byt
The coefficient of V is given as
r,kj = {fj} +(t— 1)a)i6’; +(t - Dok + gijo® + m;Uk - n,-V§f - Uy, 4)
where Uj; = 3(¢ij + @), Vij = 3(@ij = @j)-
From (4), the curvature tensor of V, by a direct computation, is
Ri’jk = Kﬁjk + 5?-51,‘1( - 65&1']( + g]'kbf- - gikb; + Ui.c,-k - Ufcjk + Uikcé. - Ujkcf
+U§jnk - Uijknl - V]l(T(l']' + V;kT(,' - kaﬂj + (t— 1)65((1),']' + Tlljwk (5)

1 ! p
+t(6]-n,- = 0,1)V, wp,

o
where Kﬁ].k is the curvature tensor of the Levi-Civita connection V, and the other notations are given as
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0
ai = (t = D[Viwy = (t = Dwwi + g’ wp, + Ugw,m? — Ufa)pnk],
0
bix = Viwg + wiwy + Ugwf o — Uy,

0 1
Cir = Viwy + Tiwy — UZT(pﬂk + Ell,-kn”n,,,

U = v - v (6)
ij — Yty 1=
0 0
wij = Via)]- — V]'a),‘,
0 0

77,']' = V,‘ﬂ]' - Vjﬂ,',
1 0 1 1 ! 1._p Iy /P Pyl (-
Vik = Vin + Vl'wk - V' + U,-kVpn + Uinnp - Ul. VpT(k - Ul‘kaT[

Iy7P 1
- o,Viwp - gikpr”.

From (4), the coefficient of dual connection V([6]) of the generalized quarter-symmetric metric recurrent
connection V is

«k

T = {f],} —(t- 1)@6’; — w0 = (t = Dgijo® + Uk - nivjf - Uy, 7)

by using the expression (7), the curvature tensor of dual connection V is
* 1 /
Rijk = Ki]‘k
+U£j7'(k - Uijknl - V]l{T(,']' + Vékni - kanj - (f - 1)65((4),-]- — tT,-]-ka)l (8)

1 1 ! 1 1 1 ! !
+ 61'bjk — 5jbik + Jikd; — gjka,. + chik - UiCjk + UikC]- - U]'kCi

+t(gjk77i - giknj)V;,a)”.

Theorem 2.4. For a Riemannian manifold (M, g), if a 1-form w is a closed form, then the semi-Ricci curvature tensor
Rj.i of the generalized quarter-symmetric metric recurrent connection V is zero, namely

Rj’i =0, (9)

where RS is said to be the semi-Ricci curvature tensor of V defined by R% =R, = 9% Rjiap, the (classical) Ricci

jia

curvature tensor of V is defined as Rj; = Rgﬁ = !]a’BRa]‘iﬁ‘

Proof. Contracting the indices k and [ of the expression (5), then we obtain

OS

k k j k
R?j = Kij + ajj — aji + b,']' - b]'l' + U].cik - Ui Cjk + Uikc]]( - u]‘kCl-
k k k... k . Yk _ - k
+U,~]~7Tk = Uiprt” — Vi + V].knl Viurt + (= Dnw;j + tTl.ja)k (10)
P P
+t(V]. i — Vim)wy,
05 0 05

where K;; is a semi-Ricci curvature tensor of Levi-Civita connection V. Notice that K;; = 0 and using the

expression (6), we obtain

aij — aji + bij - b]',' + f(V;’ﬂ,' - anj)wp = t(a)i]' - Tf.’].a),,),

k k k k k k 3 k
U]-Cik - ui Cjk + Uikc]. - u]'kci =0, Ul-]-‘l'[k - Uijkn =0, Vk =0, ij =0.
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Hence from the expression (10) we arrive at
RS = [(n + 1)t — n]wi;. (11)
If a 1-form w is a closed form, it is obvious that (9) is tenable. [

Remark 2.5. Theorem 2.4 shows that the semi-Ricci flat condition of the generalized quarter-symmetric metric

recurrent connection is independent of a quarter-symmetric component !, and that it is dependent only on a metric
recurrent component @;.

It is well known that if a sectional curvature at a point P in a Riemannian manifold is independent of
I1(a 2-dimensional subspace of T,(M)), the curvature tensor is

Riju = k(P)(gagx — 9igj1)- (12)
In this case, if k(P)=const, then the Riemannian manifold is a constant curvature manifold.

Theorem 2.6. Suppose that (M",g) (n > 3) is a connected Riemannian manifold associated with a generalized
isotropic quarter-symmetric metric recurrent connection. If there holds

twy = 2(wp + sn), (13)
then (M", g, V) is a constant curvature manifold, where s, = ﬁTZp (generalized Schur’s theorem).

Proof. Substituting the expression (12) into the second Bianchi identity of the curvature tensor of the
generalized quarter-symmetric metric recurrent connection, we get

V,R!

RI pl _ pmpl mpl m pl
zjk+v1R +V]R _Thiijk+Tinhmk+Tth'

jhk hik imk’
then we have

[ViK = K(t = 2)wnl(gagjx — gigj) + [ViK = K(t = 2)wil(g 191 — 9jxgn)
+[V;K = K(t = 2)w;l(gngi — gnkgi) = Klrmn(gapjx — g jt + Piagjx — Pixgjk)
+70(G 1P = Gk Pri + P jignk = P jegnt) + T (GuPix — Gk @it + Pugic — Pukgin)l-
Multiplying both sides of this equation above by g/ and contracting the indices j, k, then we obtain
(n = D[V,K = K(t = 2)wplgn — (n = D[V:K = K(t — 2)wilgm
+[ViK = K(t = 216} — 8, a) = K{ruu((n = 2)pi + 7))
—1((1 = 2)pu — guly) + ﬂj(!]m@{ - 5£¢il + 6{(Phl - f]ﬂ@i)k
Multiplying both sides of this expression again by g' and contracting the indices i,/, then we have

(n = 1)(n = 2)[ViK = K(t = 2)wy] = 2(n - 2)K(ru¢p), — mp0).

From this equation above we obtain
VK = K((t — 2)wy, — 2sy,).

Consequently, we know from that K=const if and only if twy, = 2(wy, +s,). O

By Theorem 2.6 and using (13), the expression (3) for the generalized quarter-symmetric recurrent
connection shows

ngij = _2((L)k + ZSk)gi]' - 2((4),‘ + Si)gjk - 2(60] + Sj)gkir Tf] = T(](pf - T[i(p];. (14)
Similarly, the formula (4) for V shows

Fi.‘]. = {i(]} + (a)i + ZSi)(SI; + (a)]' + ZS]')(S? + gija)k + T[]'Uf - ﬂiV;-( - Uijnk. (15)
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3. Quarter-symmetric Metric Recurrent Connection

The local expression of the relation (1) is

R k k k

Vigij = 2wigij, Ty = 107 = 9}, (16)
and its coefficient is

Rk

l”ij = {f]} - wiél; - w](Sf( + g,‘]'a)k + TCJUf( - T(,‘V? - u,']'T(k. (17)

R
From the expression (17) we know that the curvature tensor of V is

r!

_ 1
Rijk - Kijk

] o sl
+ lll.].rck—ll,]kT( OLwij anz]"‘vjknl Vi, (18)

1 1 1 1 1 1 1 1
+ 6ihjk - 6]-hik + gjkhi - gikh]- + Lljc,-k - U,.cjk + U,-kc]. - ujkCl'

R

where hj = Viwy + wjwi + Ugw,m? — Llf.’ WpTl = % gixw,t’. From the expression (17) the connection coefficient
R R

of dual connection V* of the quarter-symmetric metric recurrent connection V is

k
R
« _ qk sk <k, ok ark _ vk 7.k
l"ij—{ij}+cu,6]- w;b; + gijw" + ;U] anj u;m,
R*_
and the curvature tensor of V is

1 1 Iy,. ol ol 1. 17, g7
i = Kijk+6ihfk_6jh1k+g]khi g,khj+ujc,k uiC]k+ulij Ujkcl.

1 Y I (RS
+ Uijnk—ll,-jkn + Oy wij an,]+ijn, V. (19)

=~
|

Theorem 3.1. If a 1-form w is a closed form, then the curvature tensor of the quarter-symmetric metric recurrent

R
connection V on a Riemannian manifold (M, g) is a conjugate symmetric.

Proof. From the expression (18) and (19), we obtain

<l

Rij = Rij + 20, (20)

ol
Ifal-form wisaclosed form, then w;; = 0. Hence from the expression (20), we have R; ik = Ri.].k. Consequently,

R
the quarter-symmetric metric recurrent connection V is a conjugate symmetry. []

R
Remark 3.2. According to Theorem 2.6, for the quarter-symmetric metric recurrent connection V, the formula (13)
is

wy = —85y. (21)

R
Using the expression (21), the quarter-symmetric metric recurrent connection V satisfying the generalized Schur’s
theorem satisfies the relation

e N S
Vigij = =2s¢gij, Ti; = 105 — TUp;- (22)



W. Tang, T. Ho,K. Ri, F. Fu, P. Zhao / Filomat 32:1 (2018), 207-215 212

R
From (15), the connection coefficient of V is

k
R
ri]’ = {f]} + Sl‘él; - S]‘(Si-{ + g,‘jSk + ﬂjUf - niV;f - Uiijk/ (23)
. . . . . R . .
it is easy to see that by Theorem 2.6, for the quarter-symmetric metric recurrent connection D, the expression (13) is

wy = fry.

R
Example 3.3. The quarter-symmetric metric recurrent connection D satisfying the generalized Schur’s theorem
implies the following

Do = ok e sk sk
Dygij = 2fmugij, Tij = f(n;0; ”15]')-

For a 1-form 1 is a closed form, it was pointed out in [2] that this connection is a geometrical model for scalar-tensor
theories of gravitation.

4. Special Type of the Generalized Quarter-Symmetric Metric Recurrent Connection

In this subsection we study the geometrical characteristics of a manifold associated with a generalized
quarter-symmetric metric recurrent connection V satisfying the condition ¢(X) = fX(f € C*(M)). This
connection is denoted as D. The connection D is a special type of the generalized quarter-symmetric metric
recurrent connection V.

From the expression (3), the local expression of the generalized quarter-symmetric metric recurrent
connection D is

Dygij = =2(t = Dawygij — twig i — tw;gi, Tfj = f(r;0f - 7'[1‘6};)/ (24)
and from (4) the coefficient of D is

T8 = {51+ (¢ = Dok + (¢ = Daj + fr)08 + gig(ot = fr. (25)
By the equation (25), it is easy to see that the curvature tensor of D is

Rg]‘k = Kzl-]-k + 5;d1‘k — 6i'djk + gjkeﬁ - gike; + (t— 1)620)1']', (26)

where djx and ej are denoted by

0
di = Vit = Dax+ fr] = [t = Day + fru| [t = Deon + frue]
- g,-k[(t - Dw, +fnp](a)p — frf),
ek = %z’(wk + fre) + (wi = fri)(wy — frig).

From the expression (25), the coefficient of D of dual connection of the connection D is

k
Ty = () = (¢ = Deid = (w; = fr))8 - gij[(t - Do + fﬂk]/

.
and the curvature tensor of D is
I
*

Rijk = Kf]k - 6§eik + (352]'}{ - g]kdf + gikdé - (t - 1)6;{&)1] (27)
Theorem 4.1. A Riemannian manifold (M",g) (n > 3) associated with a generalized quarter-symmetric metric

recurrent connection D with a constant curvature is conformally flat.
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Proof. Adding the expressions (26) and (27), we obtain

w1
R+ Ry = 2K, — 6Bjc + 8Bk — g6l + gl (28)

where B = dj — ej. Contracting the indices i and [ of (28), we get
Rji + Rje = 2Kji = (1 = 2)fji = 9P (29)
Multiplying both sides of (29) by g/, then we arrive at
R+ R = 2K - 2(n - 1),
From this expression above we have

Bl = ﬁ[x - (R+R)].

Using the expression from (29), we have

_ 1 * g]k *
B = m{21<]»k = R+ Rj) = 50— 2K~ R+ R)]}.
Substituting this expression into (28) and putting
1 R
1 _ pl ! ! ! ! ! !
Ci = Rije = =5 O = OjRic + gieR; = giRy) = 2=y =5 (0ig e = 03610,
1 1 1 ! * ! * 1 1 I*{ ! I
Ci = Ry = —5ORjk = OjRic + 7icR; — 7ixR ) = m(éi%k = 0,9ix),
gl = K- — (3K - K K} - giK}) — —————(8lgj — &'
ik = z’jk_n_z( iKje = 0Kk + gk = gik j)_(n_l)(n_z)( igjk — jgik)'
then by a direct computation, we obtain
. w1 ()l
Cijk + Cijk = ZCl]k (30)

ol
By using the constant curvature assumption in Theorem 4.1, we have Ci.jk = Cjjx = 0, hence it holds

Cijk =0.
This means consequently that the Riemannian manifold is conformally flat. [

Theorem 4.2. The generalized quarter-symmetric metric recurrent connection D on a Riemannian manifold (M, g)
is a conjugate symmetry if and only if its Ricci curvature tensor is equal to that of its dual connection.

Proof. From the expressions (26) and (27) we obtain

ol

Rij = Riy + 80y j = 05y + gy = gjcvi — 2(t = i, 31)
where yjx = djx + ejx. By using the contraction of the indices i and / in (31), we have

*

Rjk = R]'k +nyj— gjk)/é +2(t — 1)a)jk. (32)
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Alternating the indices j and k in this expression and using yjx — yk; = twj, we arrive at

Wik = [(R]k Rk]) (R]k Rk])]

nt + 4(t

Substituting this expression above into (32) and by directly computation, one gets the following

1(x 2(t - 1)

B 1 A
Vik = ;{Rjk - R+ gy, - m[(Rjk — Ryj) — (Rjx - Rkj)]}-

Substituting this expression into (31) and putting

Vf]k = 1]k (61 Rk — 8 le g]kR + grkR )
———L—EL—{amk Rij) = 8(Rix = Rig) + gn(R} = R')) = gju(R; = R')
n(nt +4(t - 1)L 1 i
+ nél (Rz] ji)]r
‘! *l . ol ol
Vik = Ryp— —(5 R]k 6'Rzk gikR; +gsz )

2t —1) . Al Al
m[éf(&k Rk]) (,k—sz)+gzk(R R;j) = gu(R; = R;)

+ néf((R,] - R]l)]

1 x1
where Rﬂ. = R],Sgsl, R], = R],Sgsl, R%j = Rs].gsl’ R'], = Rs],gsl.
Then we have

1

V! &= Vi (33)

wl *

From the equation (33), it is easy to show that Rf].k = R;j if and only if Rjx = Rj. [
By Theorem 4.2 with s, = —fm;, the expression (13) is
twy = 2(wp, — fri). (34)

Using the expression (34) and the expression (14) the generalized quarter-symmetric metric recurrent
connection D satisfying the generalized Schur’s theorem satisfies

Dygij = =2(wk = 2fm)gij — 2(wi = fre)gjx — 2w; = f))gie, Ty = f(0f = m05), (35)
and from the expression (15) its connection coefficient is
T = {5+ (@i = 2f1)dk + (@) = fri)of + gij(@* = f1°). (36)

Example 4.3. Let (M, g) be a Riemannian manifold (dim M > 2), g be the Riemannian metric on M, and V be the
Levi-Civita connection with respect to g. Let fi, f be functions in M, then the connection V is given by

VY = Vx¥+r(VeiX - n(X)g2Y - glpiX, V)U
filoX)Y + (V)X - 9(X, )V}

is a generalized quarter-symmetric metric recurrent connection, which satisfies

T(X,Y) = n(V)p(X) - n(X)p(Y),
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(Vxg)(Y,2) = 2fi0(X)g(Y, 2) + o (V)g(X, Z) + fro(Z)g(X, Y).

where 1, w are 1-form such that

n(X) = g(U, X), o(X) = g(V, X),

where @ is a (1, 1) tensor field such that

gJ@X,Y) = O(X,Y) = O1(X, Y) + D(X, Y),

where O and O, are symmetric and skew-symmetric parts of the (0, 2) tensor @, which satisfies ©1(X,Y) = g(p1X,Y),
D2(X,Y) = g(@2X,Y).
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