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Abstract. We introduce a generalized quarter-symmetric metric recurrent connection and study its ge-
ometrical properties. We also derive the Schur’s theorem for the generalized quarter-symmetric metric
recurrent connection.

1. Introduction

The concept of the semi-symmetric connection was introduced by Friedman and Schouten in [4] for
the first time. Hayden in [13] introduced the metric connection with torsion, and Yano in [15] defined a
semi-symmetric metric connection and studied its properties. De, Han and Zhao in [1] recently studied
the semi-symmetric no-metric connection. A quarter-symmetric connection in [5] was defined and studied.
Afterwards, several types of a quarter-symmetric metric connection were studied ([3, 9, 14, 16–18]). On
the other hand, the Schur’s theorem of a semi-symmetric non-metric connection is well known ([10, 11])
based only on the second Bianchi identity. A semi-symmetric metric connection that is a geometrical model
for scalar-tensor theories of gravitation was studied ([2]) and the Amari-Chentsov connection with metric
recurrent property was also studied ([12]). Recently, Han, Fu and Zhao in [7, 8] further studied the similar
topics in sub-Riemannian manifolds.

Based on the previous researches we define newly in this note the generalized quarter-symmetric
metric recurrent connection and study its properties. And the Schur’s theorem of the generalized quarter-
symmetric metric recurrent connection is posed and several types of the generalized quarter-symmetric
metric recurrent connections with constant curvature are discovered.
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2. A Generalized Quarter-symmetric Metric Recurrent Connection

Let (M, 1) be a Riemannian manifold (dim M ≥ 2), 1 be the Riemannian metric on M, and
◦

∇ be the
Levi-Civita connection with respect to 1. Let T(M) denote the collection of all vector fields on M.

Definition 2.1. A connection
R
∇ is called a quarter-symmetric metric recurrent connection, if it satisfies

(
R
∇Z1)(X,Y) = 2ω(Z)1(X,Y),

R
T(X,Y) = π(Y)ϕ(X) − π(X)ϕ(Y), (1)

whereϕ is a (1, 1)-type tensor field, andω, π are 1-form respectively. Ifϕ(X) = X, then
R
∇ is a semi-symmetric

metric recurrent connection studied in [17].

Definition 2.2. A linear connection ∇ is called a generalized quarter-symmetric metric recurrent connection, if it
satisfies{

(∇Z1)(X,Y) = −2(t − 1)ω(Z)1(X,Y) − tω(X)1(Y,Z) − tω(Y)1(Z,X),
T(X,Y) = π(Y)ϕ(X) − π(X)ϕ(Y). (2)

where t ∈ R.

Remark 2.3. By (2), it is obvious that there holds the following
When t = 0, then the generalized quarter-symmetric metric recurrent connection ∇ is a quarter-symmetric metric

recurrent connection
R
∇;

When ω = 0, then ∇ is a quarter-symmetric metric connection([9]);
When t = 1 and ϕ(X) = X, then ∇ is a semi-symmetric non-metric connection;
When t = 2 and ϕ(X) = 0, then ∇ is a special type of the Amari-Chentsov connection([12]);

When ω = 0 and T = 0, then ∇ is Levi-Civita connection
0
∇.

Let (xi) be the local coordinate, then 1,
0
∇,∇, ω, ϕ, π,T have the local expressions, 1i j, {ki j},Γ

k
i j, ωi, πi, ϕ

j
i ,T

j
i ,

respectively. At the same time the expression (2) can be rewritten as{
∇k1i j = −2(t − 1)ωk1i j − tωi1 jk − tω j1ki,
Tk

i j = π jϕk
i − πiϕk

j .
(3)

The coefficient of ∇ is given as

Γk
i j = {ki j} + (t − 1)ωiδ

k
j + (t − 1)ω jδ

k
i + 1i jω

k + π jUk
i − πiVk

j −Ui jπ
k, (4)

where Ui j = 1
2 (ϕi j + ϕ ji), Vi j = 1

2 (ϕi j − ϕ ji).
From (4), the curvature tensor of ∇, by a direct computation, is

Rl
i jk = Kl

i jk + δl
jaik − δ

l
ia jk + 1 jkbl

i − 1ikbl
j + Ul

jcik −Ul
ic jk + Uikcl

j −U jkcl
i

+Ul
i jπk −Ui jkπ

l
− Vl

kπi j + Vl
jkπi − Vl

ikπ j + (t − 1)δl
kωi j + Tl

i jωk (5)

+t(δl
jπi − δ

l
iπ j)V

p
kωp,

where Kl
i jk is the curvature tensor of the Levi-Civita connection

◦

∇, and the other notations are given as
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follows

aik = (t − 1)[
0
∇iωk − (t − 1)ωiωk + 1ikω

pωp + Uikωpπ
p
−Up

i ωpπk],

bik =
0
∇iωk + ωiωk + Uikω

pωp
−Uipω

pπk,

cik =
0
∇iωk + πiωk −Up

kπpπk +
1
2

Uikπ
pπp,

Ul
i j =

0
∇iUl

j −
0
∇ jUl

i, (6)

ωi j =
0
∇iω j −

0
∇ jωi,

πi j =
0
∇iπ j −

0
∇ jπi,

Vl
ik =

0
∇iVl

k + Vl
iωk − Vikω

l + UikVl
pπ

p + Ul
iV

p
kπp −Up

i Vl
pπk −UipVp

kπ
l

− δl
iV

p
kωp − 1ikVl

pω
p.

From (4), the coefficient of dual connection
∗

∇([6]) of the generalized quarter-symmetric metric recurrent
connection ∇ is

∗

Γ
k

i j = {ki j} − (t − 1)ωiδ
k
j − ω jδ

k
i − (t − 1)1i jω

k + π jUk
i − πiVk

j −Ui jπ
k, (7)

by using the expression (7), the curvature tensor of dual connection
∗

∇ is

∗

R
l

i jk = Kl
i jk + δl

ib jk − δ
l
jbik + 1ikal

i − 1 jkal
i + Ul

jcik −Ul
ic jk + Uikcl

j −U jkcl
i

+Ul
i jπk −Ui jkπ

l
− Vl

kπi j + Vl
jkπi − Vl

ikπ j − (t − 1)δl
kωi j − tTi jkωl (8)

+t(1 jkπi − 1ikπ j)Vl
pω

p.

Theorem 2.4. For a Riemannian manifold (M, 1), if a 1-formω is a closed form, then the semi-Ricci curvature tensor
Rs

ji of the generalized quarter-symmetric metric recurrent connection ∇ is zero, namely

Rs
ji = 0, (9)

where Rs
ji is said to be the semi-Ricci curvature tensor of ∇ defined by Rs

ji = Rαjiα = 1αβR jiαβ, the (classical) Ricci
curvature tensor of ∇ is defined as R ji = Rαα ji = 1αβRα jiβ.

Proof. Contracting the indices k and l of the expression (5), then we obtain

Rs
i j =

0
K

s

i j + ai j − a ji + bi j − b ji + Uk
j cik −Uk

i c jk + Uikc j
k −U jkck

i

+Uk
i jπk −Ui jkπ

k
− Vk

kπi j + Vk
jkπi − Vk

ikπ j + (t − 1)nωi j + tTk
i jωk (10)

+t(Vp
jπi − Vp

i π j)ωp,

where
0
K

s

i j is a semi-Ricci curvature tensor of Levi-Civita connection
0
∇. Notice that

0
K

s

i j = 0 and using the
expression (6), we obtain

ai j − a ji + bi j − b ji + t(Vp
jπi − Vp

i π j)ωp = t(ωi j − Tp
ijωp),

Uk
j cik −Uk

i c jk + Uikck
j −U jkck

i = 0,Uk
i jπk −Ui jkπ

k = 0,Vk
k = 0,Vk

jk = 0.
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Hence from the expression (10) we arrive at

Rs
i j = [(n + 1)t − n]ωi j. (11)

If a 1-form ω is a closed form, it is obvious that (9) is tenable.

Remark 2.5. Theorem 2.4 shows that the semi-Ricci flat condition of the generalized quarter-symmetric metric
recurrent connection is independent of a quarter-symmetric component ϕ j

i , and that it is dependent only on a metric
recurrent component ϕi.

It is well known that if a sectional curvature at a point P in a Riemannian manifold is independent of
Π(a 2-dimensional subspace of Tp(M)), the curvature tensor is

Ri jkl = k(P)(1il1 jk − 1ik1 jl). (12)

In this case, if k(P)=const, then the Riemannian manifold is a constant curvature manifold.

Theorem 2.6. Suppose that (Mn, 1) (n ≥ 3) is a connected Riemannian manifold associated with a generalized
isotropic quarter-symmetric metric recurrent connection. If there holds

tωh = 2(ωh + sh), (13)

then (Mn, 1,∇) is a constant curvature manifold, where sh = 1
n−1 Tp

hp (generalized Schur’s theorem).

Proof. Substituting the expression (12) into the second Bianchi identity of the curvature tensor of the
generalized quarter-symmetric metric recurrent connection, we get

∇hRl
i jk + ∇iRl

jhk + ∇ jRl
hik = Tm

hiR
l
jmk + Tm

ij R
l
hmk + Tm

jhRl
imk,

then we have

[∇hK − K(t − 2)ωh](1il1 jk − 1ik1 jl) + [∇iK − K(t − 2)ωi](1 jl1hk − 1 jk1hl)
+[∇ jK − K(t − 2)ω j](1hl1ik − 1hk1il) = K[πh(1ilϕ jk − 1ikϕ jl + ϕil1 jk − ϕik1 jk)
+πi(1 jlϕhk − 1 jkϕhl + ϕ jl1hk − ϕ jk1hl) + π j(1hlϕik − 1hkϕil + ϕhl1ik − ϕhk1il)].

Multiplying both sides of this equation above by 1 jk and contracting the indices j, k, then we obtain

(n − 1)[∇hK − K(t − 2)ωh]1il − (n − 1)[∇iK − K(t − 2)ωi]1hl

+[∇ jK − K(t − 2)ω j](δ
j
i1hl − δ

j
h1il) = K{πh((n − 2)ϕil + 1ilϕ

p
p)

−πi((n − 2)ϕhl − 1hlϕ
p
p) + π j(1hlϕ

j
i − δ

j
hϕil + δ j

iϕhl − 1ilϕ
j
h)}.

Multiplying both sides of this expression again by 1il and contracting the indices i, l, then we have

(n − 1)(n − 2)[∇hK − K(t − 2)ωh] = 2(n − 2)K(πhϕ
p
p − πpϕ

p
h).

From this equation above we obtain
∇hK = K((t − 2)ωh − 2sh).

Consequently, we know from that K=const if and only if tωh = 2(ωh + sh).

By Theorem 2.6 and using (13), the expression (3) for the generalized quarter-symmetric recurrent
connection shows

∇k1i j = −2(ωk + 2sk)1i j − 2(ωi + si)1 jk − 2(ω j + s j)1ki,Tk
i j = π jϕ

k
i − πiϕ

k
j . (14)

Similarly, the formula (4) for ∇ shows

Γk
i j = {ki j} + (ωi + 2si)δk

j + (ω j + 2s j)δk
i + 1i jω

k + π jUk
i − πiVk

j −Ui jπ
k. (15)
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3. Quarter-symmetric Metric Recurrent Connection

The local expression of the relation (1) is

R
∇k1i j = 2ωk1i j, Tk

i j = π jϕ
k
i − π jϕ

k
j , (16)

and its coefficient is

R
Γ

k

i j = {ki j} − ωiδ
k
j − ω jδ

k
i + 1i jω

k + π jUk
i − πiVk

j −Ui jπ
k. (17)

From the expression (17) we know that the curvature tensor of
R
∇ is

R
R

l

i jk = Kl
i jk + δl

ih jk − δ
l
jhik + 1 jkhl

i − 1ikhl
j + Ul

jcik −Ul
ic jk + Uikcl

j −U jkcl
i

+ Ul
i jπk −Ui jkπ

l
− δl

kωi j − Vl
kπi j + Vl

jkπi − Vl
ikπ j, (18)

where hik =
R
∇iωk +ωiωk + Uikωpπp

−Up
i ωpπk −

1
21ikωpπp. From the expression (17) the connection coefficient

of dual connection
R
∇
∗ of the quarter-symmetric metric recurrent connection

R
∇ is

R
Γ∗

k

i j = {ki j} + ωiδ
k
j − ω jδ

k
i + 1i jω

k + π jUk
i − πiVk

j −Ui jπ
k,

and the curvature tensor of
R
∇

∗

is

R
R∗

k

i j = Kl
i jk + δl

ih jk − δ
l
jhik + 1 jkhl

i − 1ikhl
j + Ul

jcik −Ul
ic jk + Uikcl

j −U jkcl
i

+ Ul
i jπk −Ui jkπ

l + δl
kωi j − Vl

kπi j + Vl
jkπi − Vl

ikπ j. (19)

Theorem 3.1. If a 1-form ω is a closed form, then the curvature tensor of the quarter-symmetric metric recurrent

connection
R
∇ on a Riemannian manifold (M, 1) is a conjugate symmetric.

Proof. From the expression (18) and (19), we obtain

∗

R
l

i jk = Rl
i jk + 2δl

kωi j. (20)

If a 1-formω is a closed form, thenωi j = 0. Hence from the expression (20), we have
∗

R
l

i jk = Rl
i jk. Consequently,

the quarter-symmetric metric recurrent connection
R
∇ is a conjugate symmetry.

Remark 3.2. According to Theorem 2.6, for the quarter-symmetric metric recurrent connection
R
∇, the formula (13)

is

ωh = −sh. (21)

Using the expression (21), the quarter-symmetric metric recurrent connection
R
∇ satisfying the generalized Schur’s

theorem satisfies the relation

R
∇k1i j = −2sk1i j, Tk

i j = π jϕ
k
i − πiϕ

k
j . (22)



W. Tang, T. Ho,K. Ri, F. Fu, P. Zhao / Filomat 32:1 (2018), 207–215 212

From (15), the connection coefficient of
R
∇ is

R
Γ

k

i j = {ki j} + siδ
k
j − s jδ

k
i + 1i jsk + π jUk

i − πiVk
j −Ui jπ

k, (23)

it is easy to see that by Theorem 2.6, for the quarter-symmetric metric recurrent connection
R
D, the expression (13) is

ωh = fπh.

Example 3.3. The quarter-symmetric metric recurrent connection
R
D satisfying the generalized Schur’s theorem

implies the following
R
Dk1i j = 2 fπk1i j, Tk

i j = f (π jδ
k
i − πiδ

k
j).

For a 1-form π is a closed form, it was pointed out in [2] that this connection is a geometrical model for scalar-tensor
theories of gravitation.

4. Special Type of the Generalized Quarter-Symmetric Metric Recurrent Connection

In this subsection we study the geometrical characteristics of a manifold associated with a generalized
quarter-symmetric metric recurrent connection ∇ satisfying the condition ϕ(X) = f X( f ∈ C∞(M)). This
connection is denoted as D. The connection D is a special type of the generalized quarter-symmetric metric
recurrent connection ∇.

From the expression (3), the local expression of the generalized quarter-symmetric metric recurrent
connection D is

Dk1i j = −2(t − 1)ωk1i j − tωi1 jk − tω j1ik, Tk
i j = f (π jδ

k
i − πiδ

k
j), (24)

and from (4) the coefficient of D is

Γk
i j = {ki j} + (t − 1)ωiδ

k
j +

(
(t − 1)ω j + fπ j

)
δk

i + 1i j(ωk
− fπk). (25)

By the equation (25), it is easy to see that the curvature tensor of D is

Rl
i jk = Kl

i jk + δl
jdik − δ

l
id jk + 1 jkel

i − 1ikel
j + (t − 1)δl

kωi j, (26)

where dik and eik are denoted by

dik =
0
∇i

[
(t − 1)ωk + fπk

]
−

[
(t − 1)ωi + fπi

][
(t − 1)ωk + fπk

]
− 1ik

[
(t − 1)ωp + fπp

]
(ωp − fπp),

eik =
0
∇i(ωk + fπk) + (ωi − fπi)(ωk − fπk).

From the expression (25), the coefficient of
∗

D of dual connection of the connection D is

∗

Γ
k

i j = {ki j} − (t − 1)ωiδ
k
j − (ω j − fπ j)δk

i − 1i j

[
(t − 1)ωk + fπk

]
,

and the curvature tensor of
∗

D is
∗

R
l

i jk = Kl
i jk − δ

l
jeik + δl

ie jk − 1 jkdl
i + 1ikdl

j − (t − 1)δl
kωi j. (27)

Theorem 4.1. A Riemannian manifold (Mn, 1) (n ≥ 3) associated with a generalized quarter-symmetric metric
recurrent connection D with a constant curvature is conformally flat.
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Proof. Adding the expressions (26) and (27), we obtain

Rl
i jk +

∗

R
l

i jk = 2Kl
i jk − δ

l
iβ jk + δl

jβik − 1 jkβ
l
i + 1ikβ

l
j, (28)

where β jk = d jk − e jk. Contracting the indices i and l of (28), we get

R jk +
∗

R jk = 2K jk − (n − 2)β jk − 1 jkβ
i
i. (29)

Multiplying both sides of (29) by 1 jk, then we arrive at

R +
∗

R = 2K − 2(n − 1)βi
i.

From this expression above we have

βi
i =

1
2(n − 1)

[
2K − (R +

∗

R)
]
.

Using the expression from (29), we have

β jk =
1

n − 2

{
2K jk − (R jk +

∗

R jk) −
1 jk

2(n − 1)
[2K − (R +

∗

R)]
}
.

Substituting this expression into (28) and putting

Cl
i jk = Rl

i jk −
1

n − 2
(δl

iR jk − δ
l
jRik + 1 jkRl

i − 1ikRl
j) −

R
(n − 1)(n − 2)

(δl
i1 jk − δ

l
j1ik),

∗

C
l

i jk =
∗

R
l

i jk −
1

n − 2
(δl

i

∗

R jk − δ
l
j

∗

Rik + 1 jk
∗

R
l

i − 1ik
∗

R
l

j) −

∗

R
(n − 1)(n − 2)

(δl
i1 jk − δ

l
j1ik),

0
C

l

i jk = Kl
i jk −

1
n − 2

(δl
iK jk − δ

l
jKik + 1 jkKl

i − 1ikKl
j) −

K
(n − 1)(n − 2)

(δl
i1 jk − δ

l
j1ik).

then by a direct computation, we obtain

Cl
i jk +

∗

C
l

i jk = 2
0
C

l

i jk. (30)

By using the constant curvature assumption in Theorem 4.1, we have Cl
i jk =

∗

C
l

i jk = 0, hence it holds

0
C

l

i jk = 0.

This means consequently that the Riemannian manifold is conformally flat.

Theorem 4.2. The generalized quarter-symmetric metric recurrent connection D on a Riemannian manifold (M, 1)
is a conjugate symmetry if and only if its Ricci curvature tensor is equal to that of its dual connection.

Proof. From the expressions (26) and (27) we obtain

∗

R
l

i jk = Rl
i jk + δl

iγ jk − δ
l
jγik + 1ikγ

l
j − 1 jkγ

l
i − 2(t − 1)δl

kωi j, (31)

where γ jk = d jk + e jk. By using the contraction of the indices i and l in (31), we have

∗

R jk = R jk + nγ jk − 1 jkγ
l
l + 2(t − 1)ω jk. (32)
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Alternating the indices j and k in this expression and using γ jk − γkj = tω jk, we arrive at

ω jk =
1

nt + 4(t − 1)

[
(
∗

R jk −
∗

Rkj) − (R jk − Rkj)
]
.

Substituting this expression above into (32) and by directly computation, one gets the following

γ jk =
1
n

{ ∗
R jk − R jk + 1 jkγ

l
l −

2(t − 1)
nt + 4(t − 1)

[(
∗

R jk −
∗

Rkj) − (R jk − Rkj)]
}
.

Substituting this expression into (31) and putting

Vl
i jk = Rl

i jk −
1
n

(δl
iR jk − δ

l
jRik − 1 jkRl

i + 1ikRl
j)

+
2(t − 1)

n(nt + 4(t − 1))

[
δl

i(R jk − Rkj) − δl
j(Rik − Rki) + 1ik(Rl

j − Rl
· j) − 1 jk(Rl

i − Rl
·i)

+ nδl
k(Ri j − R ji)

]
,

∗

V
l

i jk =
∗

R
l

i jk −
1
n

(δl
i

∗

R jk − δ
l
j

∗

Rik − 1 jk
∗

R
l

i + 1ik
∗

R
l

j)

+
2(t − 1)

n(nt + 4(t − 1))

[
δl

i(
∗

R jk −
∗

Rkj) − δl
j(
∗

Rik −
∗

Rki) + 1ik(
∗

R
l

j −
∗

R
l

· j) − 1 jk(
∗

R
l

i −
∗

R
l

·i)

+ nδl
k(Ri j − R ji)

]
.

where Rl
j = R js1

sl,
∗

R
l

j = R js1
sl, Rl

· j = Rsj1
sl,
∗

R
l

· j = Rsj1
sl.

Then we have

Vl
i jk =

∗

V
l

i jk. (33)

From the equation (33), it is easy to show that Rl
i jk =

∗

R
l

i jk if and only if R jk =
∗

R jk.

By Theorem 4.2 with sh = − fπh, the expression (13) is

tωh = 2(ωh − fπh). (34)

Using the expression (34) and the expression (14) the generalized quarter-symmetric metric recurrent
connection D satisfying the generalized Schur’s theorem satisfies

Dk1i j = −2(ωk − 2 fπk)1i j − 2(ωi − fπi)1 jk − 2(ω j − fπ j)1ik,Tk
i j = f (π jδ

k
i − πiδ

k
j), (35)

and from the expression (15) its connection coefficient is

Γk
i j = {ki j} + (ωi − 2 fπi)δk

j + (ω j − fπ j)δk
i + 1i j(ωk

− fπk). (36)

Example 4.3. Let (M, 1) be a Riemannian manifold (dim M ≥ 2), 1 be the Riemannian metric on M, and
◦

∇ be the
Levi-Civita connection with respect to 1. Let f1, f2 be functions in M, then the connection ∇ is given by

∇XY =
◦

∇XY + π(Y)ϕ1X − π(X)ϕ2Y − 1(ϕ1X,Y)U
− f1{ω(X)Y + ω(Y)X − 1(X,Y)V}
− f21(X,Y)V.

is a generalized quarter-symmetric metric recurrent connection, which satisfies

T(X,Y) = π(Y)ϕ(X) − π(X)ϕ(Y),
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and

(∇X1)(Y,Z) = 2 f1ω(X)1(Y,Z) + f2ω(Y)1(X,Z) + f2ω(Z)1(X,Y).

where π, ω are 1-form such that

π(X) = 1(U,X), ω(X) = 1(V,X),

where ϕ is a (1, 1) tensor field such that

1(ϕX,Y) = Φ(X,Y) = Φ1(X,Y) + Φ2(X,Y),

where Φ1 and Φ2 are symmetric and skew-symmetric parts of the (0, 2) tensor Φ, which satisfies Φ1(X,Y) = 1(ϕ1X,Y),
Φ2(X,Y) = 1(ϕ2X,Y).
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