Filomat 32:1 (2018), 35–44 https://doi.org/10.2298/FIL1801035U

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Warped Product Submanifolds of Kaehler Manifolds with Pointwise Slant Fiber

Siraj Uddin^a, Mića S. Stanković^b

^aDepartment of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia ^bDepartment of Mathematics, Faculty of Sciences and Mathematics, University of Nis, Serbia

Abstract. It was shown in [15, 16] that there does not exist any warped product submanifold of a Kaehler manifold such that the spherical manifold of the warped product is proper slant. In this paper, we introduce the notion of warped product submanifolds with a slant function. We show that there exists a class of non-trivial warped product submanifolds of a Kaehler manifold such that the spherical manifold is pointwise slant by giving an example and a characterization theorem. We also prove that if the warped product is mixed totally geodesic then the warping function is constant.

1. Introduction

In [8], B.-Y. Chen and O.J. Garay introduced the notion of pointwise slant submanifolds of an almost Hermitian manifold and they have obtained many interesting result and gave a method how to construct such submanifolds in Euclidean space. They defined these submanifolds as follows: For any non-zero vector $X \in T_pM$, $p \in M$, the angle $\theta(X)$ between JX and the tangent space T_pM is called the *Wirtinger angle* of X. The Wirtinger angle gives rise a real-valued function $\theta : TM - \{0\} \rightarrow \mathbb{R}$, called a wirtinger function, defined on the set $T^*M = TM - \{0\}$ consisting of all nonzero vectors on M. A submanifold M of an almost Hermitian manifold \widetilde{M} is called *pointwise slant* if, at each point $p \in M$, the Wirtinger angle $\theta(X)$ is independent of the choice of the nonzero tangent vector $X \in T_p^*M$. In this case, θ can be regarded as a function on M, which is called the *slant function* of the pointwise slant submanifold. We note that the poitwise slant submanifolds have been studied in [11] by F. Etayo under the name of quasi-slant submanifolds. We also note that every slant submanifold is pointwise slant but converse may not be true. These submanifolds are also studied in [14].

On the other hand, the geometry of warped product submanifolds became an active field of research after Chen' papers on the geometry of warped product CR-submanifolds [4, 5]. He proved that there do not exist warped product submanifolds of the form $M_{\perp} \times_f M_T$ in a Kaehler manifold \widetilde{M} . Then he introduced the notion of CR-warped products of Kaehler manifolds as follows: A submanifold of a Kaehler manifold is called the CR-warped product if it is the warped product of the form $M_T \times_f M_{\perp}$, where M_T and M_{\perp} are holomorphic and totally real submanifolds of \widetilde{M} , respectively. He obtained several fundamental results

²⁰¹⁰ Mathematics Subject Classification. 53C15; 53C40; 53C42; 53B25

Keywords. slant submanifolds; pointwise slant; hemi-slant; pointwise hemi-slant; mixed totally geodesic; warped product; Kaehler manifolds

Received: 21 January 2017; Accepted:09 April 2017

Communicated by Dragan S. Djordjević

Email addresses: siraj.ch@gmail.com (Siraj Uddin), stmica@ptt.rs (Mića S. Stanković)

including, a characterization and a sharp inequality for the squared norm of the second fundamental form $||h||^2$. Later on, Sahin [15] proved that there do not exist warped product submanifolds of the form $M_T \times_f M_{\theta}$ and $M_{\theta} \times_f M_T$ such that M_T and M_{θ} are holomorphic and proper slant submanifolds of M, respectively. Using the notion of pointwise slant submanifolds, Sahin introduced pointwise semi-slant submanifolds of Kaehler manifolds and investigated their warped products [17].

Moreover, in [16], Sahin also proved the non-existence of warped product submanifolds $M_{\perp} \times_f M_{\theta}$ of a Kaehler manifold M, where M_{\perp} is a totally real submanifold and M_{θ} is a proper slant submanifold of M. Then he introduced the notion of hemi-slant warped products $M_{\theta} \times_f M_{\perp}$. He provided many examples of such submanifolds and obtained interesting results, including a characterization and an inequality. In this paper, first we define pointwise hemi-slant submanifolds of Kaehler manifolds and then we show that there exists a class of non-trivial warped product submanifolds of the form $M_{\perp} \times_f M_{\theta}$ in a Kaehler manifold M such that M_{\perp} and M_{θ} are totally real and proper pointwise slant submanifolds of M, respectively. We note that one of the characterization result of such warped products is given in [18] by using different technique. It is also notice that the warped product hemi-slant submanifolds of almost Hermitian manifolds were studied under the name of warped product pseudo-slant submanifolds in [18-20].

As we know that there exist nontrivial warped product submanifolds of the from $M_{\theta} \times_f M_{\perp}$ in a Kaehler manifold M such that M_{θ} is proper slant (see [16]) and if we assume that M_{θ} is pointwise then the warped product poitwise hemi-slant submanifolds of the form $M_{\theta} \times_f M_{\perp}$ is a special case of warped product hemislant submanifolds $M_{\theta} \times_f M_{\perp}$. Thus, we shall leave this case for the repetition purpose i.e., there is no meaning to study warped product pointwise hemi-slant submanifolds of the form $M_{\theta} \times_f M_{\perp}$; while M_{θ} is pointwise slant. For the survey on this topic we refer to Chen's books [6, 9] and his survey article [7]. We also note that, in [21], we studied warped product bi-slant submanifolds of Kaehler manifolds which is a more general case of warped product submanifolds.

The paper is organised as follows: In Section 2 we give basic information needed for this paper. In Section 3, we define and studied pointwise hemi-slant submanifolds of Kaehler manifolds. In Section 4, we study warped product pointwise hemi-slant submanifolds of the form $M_{\perp} \times_f M_{\theta}$ in Kaehler manifolds such M_{\perp} is a totally real submanifold and M_{θ} is a pointwise submanifold. In this section, we provide an example and present a characterization theorem for such warped products.

2. Preliminaries

Let (M, I, q) be an almost Hermitian manifold with almost complex structure I and a Riemannian metric *q* such that

$$J^2 = -I,\tag{1}$$

$$g(JX, JY) = g(X, Y) \tag{2}$$

for all $X, Y \in \mathcal{X}(\widetilde{M})$, where *I* is the identity map.

Let $\widetilde{\nabla}$ denote the Levi-Civita connection on \widetilde{M} . If the almost complex structure *J* satisfies

$$(\nabla_X J)Y = 0 \tag{3}$$

for $X, Y \in X(\overline{M})$, then \overline{M} is called a *Kaehler manifold*.

Let *M* be a Riemannian manifold isometrically immersed in *M*. Then *M* is called a *complex* submanifold if $J(T_xM) \subseteq T_xM$ for any $x \in M$, where T_xM is the tangent space of M at x. The submanifold M is called totally real if $J(T_xM) \subseteq T_x^{\perp}M$ for any $x \in M$, where $T_x^{\perp}M$ denotes the normal space of M at x.

Let M be a Riemannian manifold isometrically immersed in M and denote by the same symbol g the Riemannian metric induced on *M*. Let $\Gamma(TM)$ be the Lie algebra of vector fields in *M* and $\Gamma(T^{\perp}M)$, the set of all vector fields normal to M. Let ∇ be the Levi-Civita connection on M, then the Gauss and Weingarten formulas are respectively given by

$$\nabla_X Y = \nabla_X Y + h(X, Y) \tag{4}$$

and

$$\overline{\nabla}_X N = -A_N X + \nabla_X^\perp N \tag{5}$$

for any $X, Y \in \Gamma(TM)$ and $N \in \Gamma(T^{\perp}M)$, where ∇^{\perp} is the normal connection in the normal bundle $T^{\perp}M$ and A_N is the shape operator of M with respect to N. Moreover, $h : TM \times TM \to T^{\perp}M$ is the second fundamental form of M in \widetilde{M} . Furthermore, A_N and h are related by [22]

$$g(h(X,Y),N) = g(A_N X,Y)$$
(6)

for any $X, Y \in \Gamma(TM)$ and $N \in \Gamma(T^{\perp}M)$.

For any *X* tanget to *M*, we write

$$JX = PX + FX,$$
(7)

where *PX* and *FX* are the tangential and normal components of *JX*, respectively. Then *P* is an endomorphism of tangent bundle *TM* and ω is a normal bundle valued 1-form on *TM*. Similarly, for any vector field *N* normal to *M*, we put

$$JN = tN + fN,$$
(8)

where *tN* and *fN* are the tangential and normal components of *JN*, respectively. Moreover, from (2) and (7), we have g(PX, Y) = -g(X, PY), for any $X, Y \in \Gamma(TM)$.

A submanifold *M* of a locally product Riemnnian manifold \overline{M} is said to be *totally umbilical submanifold* if h(X, Y) = g(X, Y)H, for any $X, Y \in \Gamma(TM)$, where $H = \frac{1}{n} \sum_{i=1}^{n} h(e_i, e_i)$, the mean curvature vector of *M*. A submanifold *M* is said to be totally geodesic if h(X, Y) = 0. A totally umbilical submanifold of dimension greater than or equal to 2 with non-vanishing parallel mean curvature vector is called an *extrinsic sphere*.

A (differentiable) distribution \mathcal{D} defined on a submanifold M of (M, J, g) is called pointwise θ -slant if, for each point $p \in M$, the Wirtinger angle $\theta(X)$ between JX and \mathcal{D} is independent of the choice of the nonzero vector $X \in \mathcal{D}$ (cf. [2, 3, 8]). A pointwise θ -slant distribution is called slant if θ is globally constant. Also, it is holomorphic or complex if $\theta = 0$; and it is called totally real if $\theta = \frac{\pi}{2}$, globally. A poitwise θ -slant distribution is called proper pointwise slant whenever $\theta \neq 0$, $\frac{\pi}{2}$ and θ is not a constant.

From Chen's result (Lemma 2.1) of [8], it is known that M is a pointwise slant submanifold of an almost Hermitian manifold \widetilde{M} if and only if

$$P^2 = -(\cos^2\theta)I,\tag{9}$$

for some real-valued function θ defined on *M*, where *I* denotes the identity transformation of the tangent bundle *TM* of *M*. The following relations are the consequences of (9) as

$$g(PX, PY) = \cos^2 \theta \, g(X, Y),\tag{10}$$

$$q(FX, FY) = \sin^2 \theta \, q(X, Y) \tag{11}$$

for any $X, Y \in \Gamma(TM)$. Another important relation for a poitwise slant submanifold of an almost Hermitian manifold is obtained by using (1), (7), (8) and (9) as

$$tFX = -(\sin^2 \theta)X, \quad fFX = -FPX \tag{12}$$

for any $X \in \Gamma(TM)$.

3. Pointwise Hemi-slant Submanifolds

In this section, we study pointwise hemi-slant submanifolds of Kaehler manifolds. First, we define these submanifolds as follows.

Definition 3.1. Let \widetilde{M} be a Kaehler manifold and M a real submanifold of \widetilde{M} . Then, we say that M is a pointwise hemi-slant submanifold if there exists a pair of orthogonal distributions \mathcal{D}^{\perp} and \mathcal{D}^{θ} on M such that

- (*i*) The tangent space TM admits the orthogonal direct decomposition $TM = \mathcal{D}^{\perp} \oplus \mathcal{D}^{\theta}$.
- (ii) The distribution \mathcal{D}^{\perp} is totally real, i.e. $J(\mathcal{D}^{\perp}) \subset T^{\perp}M$.
- (iii) The distribution \mathcal{D}^{θ} is pointwise slant with slant function θ .

In the above definition, the angle θ is called the slant function of the pointwise slant distribution \mathcal{D}^{θ} . The totally real distribution \mathcal{D}^{\perp} of a pointwise hemi-slant submanifold is a pointwise slant distribution with slant function $\theta = \frac{\pi}{2}$. If we denote the dimensions of \mathcal{D}^{\perp} and \mathcal{D}^{θ} by m_1 and m_2 , respectively, then we have the following possible cases:

(i) If $m_1 = 0$, then *M* is a pointwise slant submanifold.

- (ii) If $m_2 = 0$, then *M* is a totally real submanifold.
- (iii) If $m_1 = 0$ and $\theta = 0$, then *M* is a holomorphic submanifold.
- (iv) If θ is constant on *M*, then *M* is a hemi-slant submanifold with slant angle θ .
- (v) If θ = 0, then *M* is a CR-submanifold.

We note that a pointwise hemi-slant submanifold is proper if $m_1 \neq 0$ and θ is not a constant. The normal bundle $T^{\perp}M$ of a pointwise hemi-slant submanifold M is decomposed by

 $T^{\perp}M = \varphi \mathcal{D}^{\perp} \oplus F \mathcal{D}^{\theta}, \ \varphi \mathcal{D}^{\perp} \perp F \mathcal{D}^{\theta}.$

Now, we give the following useful lemma.

Lemma 3.2. Let *M* be a pointwise hemi-slant submanifold of a Kaehler manifold \widetilde{M} . Then the totally real distribution \mathcal{D}^{\perp} is always integrable.

The proof of Lemma 3.2 is similar to Theorem 3.5 of [16].

Lemma 3.3. Let M be a pointwise hemi-slant submanifold of a Kaehler manifold \widetilde{M} . Then

(*i*) For any $X, Y \in \Gamma(\mathcal{D}^{\theta})$ and $Z \in \Gamma(\mathcal{D}^{\perp})$, we have

$$\cos^2 \theta \, g(\nabla_X Y, Z) = g(A_{JZ} PY, X) - g(A_{FPY} Z, X). \tag{13}$$

(*ii*) For any $Z, V \in \Gamma(\mathcal{D}^{\perp})$ and $X \in \Gamma(\mathcal{D}^{\theta})$, we have

$$\cos^2 \theta \, q(\nabla_Z V, X) = q(A_{FPX} V, Z) - q(A_{IV} PX, Z). \tag{14}$$

Proof. We prove (i) and (ii) in a similar way. For any $X, Y \in \Gamma(\mathcal{D}^{\theta})$ and $Z \in \Gamma(\mathcal{D}^{\perp})$, we have

$$g(\nabla_X Y, Z) = g(\widetilde{\nabla}_X Y, Z) = g(J\widetilde{\nabla}_X Y, JZ).$$

Using (3) and (7), we obtain

$$g(\nabla_X Y, Z) = g(\overline{\nabla}_X PY, JZ) + g(\overline{\nabla}_X FY, JZ)$$
$$= g(h(X, PY), JZ) - g(\overline{\nabla}_X JFY, Z)$$

Then from (8), we get

$$g(\nabla_X Y, Z) = g(h(A_{JZ} PY, X) - g(\widetilde{\nabla}_X tFY, Z) - g(\widetilde{\nabla}_X fFY, Z).$$

Thus from (12), we derive

$$g(\nabla_X Y, Z) = g(h(A_{JZ}PY, X) + g(\nabla_X \sin^2 \theta Y, Z) + g(\nabla_X FPY, Z)).$$

= $g(h(A_{FZ}PY, X) + \sin^2 \theta g(\widetilde{\nabla}_X Y, Z) + \sin 2\theta X(\theta) g(Y, Z))$
- $g(A_{FPY}X, Z).$

Then by the orthogonality of two distributions and the symmetry of the shape operator, we get (i). In a similar way we can prove (ii). \Box

4. Warped Products $M_{\perp} \times_f M_{\theta}$ in Kaehler Manifolds

In [1], Bishop and O'Neill introduced the notion of warped product manifolds as follows: Let M_1 and M_2 be two Riemannian manifolds with Riemannian metrics g_1 and g_2 , respectively, and a positive differentiable function f on M_1 . Consider the product manifold $M_1 \times M_2$ with its projections $\pi_1 : M_1 \times M_2 \to M_1$ and $\pi_2 : M_1 \times M_2 \to M_2$. Then their warped product manifold $M = M_1 \times_f M_2$ is the Riemannian manifold $M_1 \times M_2 = (M_1 \times M_2, g)$ equipped with the Riemannian structure such that

$$g(X,Y) = g_1(\pi_{1\star}X,\pi_{1\star}Y) + (f \circ \pi_1)^2 g_2(\pi_{2\star}X,\pi_{2\star}Y)$$

for any vector field *X*, *Y* tangent to *M*, where \star is the symbol for the tangent maps. A warped product manifold $M = M_1 \times_f M_2$ is said to be *trivial* or simply a *Riemannian product manifold* if the warping function *f* is constant. Let *X* be an unit vector field tangent to M_1 and *Z* be an another unit vector field on M_2 , then from Lemma 7.3 of [1], we have

$$\nabla_X Z = \nabla_Z X = X(\ln f)Z \tag{15}$$

where ∇ is the Levi-Civita connection on *M*. If $M = M_1 \times_f M_2$ be a warped product manifold then the base manifold M_1 is totally geodesic in *M* and the fiber M_2 is totally umbilical in *M* [1, 4].

Analogous to CR-warped products introduced in [4], we define the notion of warped product pointwise hemi-slant submanifolds as follows.

Definition 4.1. A warped product $M_{\perp} \times_f M_{\theta}$ of totally real and pointwise slant submanifolds M_{\perp} and M_{θ} of an almost Hermitian manifold (\widetilde{M} , J, q) is called a *warped product pointwise hemi-slant submanifold*.

A warped product pointwise hemi-slant submanifold $M_{\perp} \times_f M_{\theta}$ is called *proper* if M_{θ} is proper pointwise slant and M_{\perp} is totally real in \widetilde{M} . Otherwise, $M_{\perp} \times_f M_{\theta}$ is called *non-proper*.

In [16], Sahin proved that there are no warped product hemi-slant submanifolds of the form $M_{\perp} \times_f M_{\theta}$ in a Kaehler manifold \widetilde{M} such that M_{θ} is proper slant. But if we assume that M_{θ} is a pointwise slant submanifold of \widetilde{M} , then there exists a class of nontrivial warped products.

Next, we provide an example of warped product pointwise hemi-slant submanifold of the form $M_{\perp} \times_f M_{\theta}$ such M_{θ} is a pointwise slant submanifold.

Let \mathbb{E}^{2n} be the Euclidean 2*n*-space with the standard metric and let \mathbb{C}^n denote the complex Euclidean *n*-space (\mathbb{E}^{2n} , *J*) equipped with the canonical complex structure *J* defined by

$$J(x_1, y_1, \ldots, x_n, y_n) = (-y_1, x_1, \ldots, -y_n, x_n).$$

Thus we have

$$J\left(\frac{\partial}{\partial x_i}\right) = -\frac{\partial}{\partial y_i}, \quad J\left(\frac{\partial}{\partial y_i}\right) = \frac{\partial}{\partial x_i}, \quad i = 1, \dots, n.$$
(16)

Example 4.2. Consider a submanifold *M* of \mathbb{R}^{10} defined by

$$\phi(u, v, w) = (u \cos v, u \sin v, u \cos w, u \sin w, -v + w, v + w, -u \cos v, u \sin v, -u \cos w, u \sin v)$$

such that $u \neq 0$ is a real valued function on *M*. It is easy to see that the tangent bundle *TM* of *M* is spanned by the following vectors

$$Z_{1} = \cos v \frac{\partial}{\partial x_{1}} + \sin v \frac{\partial}{\partial y_{1}} + \cos w \frac{\partial}{\partial x_{2}} + \sin w \frac{\partial}{\partial y_{2}} - \cos v \frac{\partial}{\partial x_{4}} + \sin v \frac{\partial}{\partial y_{4}} - \cos w \frac{\partial}{\partial x_{5}} + \sin w \frac{\partial}{\partial y_{5}},$$
$$Z_{2} = -u \sin v \frac{\partial}{\partial x_{1}} + u \cos v \frac{\partial}{\partial y_{1}} - \frac{\partial}{\partial x_{3}} + \frac{\partial}{\partial y_{3}} + u \sin v \frac{\partial}{\partial x_{4}} + u \cos v \frac{\partial}{\partial y_{4}},$$
$$Z_{3} = -u \sin w \frac{\partial}{\partial x_{2}} + u \cos w \frac{\partial}{\partial y_{2}} + \frac{\partial}{\partial x_{3}} + \frac{\partial}{\partial y_{3}} + u \sin w \frac{\partial}{\partial x_{5}} + u \cos w \frac{\partial}{\partial y_{5}}.$$

Then, using the canonical complex structure (16) of \mathbb{R}^{10} , we have

$$JZ_{1} = -\cos v \frac{\partial}{\partial y_{1}} + \sin v \frac{\partial}{\partial x_{1}} - \cos w \frac{\partial}{\partial y_{2}} + \sin w \frac{\partial}{\partial x_{2}} + \cos v \frac{\partial}{\partial y_{4}} + \sin v \frac{\partial}{\partial x_{4}} + \cos w \frac{\partial}{\partial y_{5}} + \sin w \frac{\partial}{\partial x_{5}},$$
$$JZ_{2} = u \sin v \frac{\partial}{\partial y_{1}} + u \cos v \frac{\partial}{\partial x_{1}} + \frac{\partial}{\partial y_{3}} + \frac{\partial}{\partial x_{3}} - u \sin v \frac{\partial}{\partial y_{4}} + u \cos v \frac{\partial}{\partial x_{4}},$$
$$JZ_{3} = u \sin w \frac{\partial}{\partial y_{2}} + u \cos w \frac{\partial}{\partial x_{2}} - \frac{\partial}{\partial y_{3}} + \frac{\partial}{\partial x_{3}} - u \sin w \frac{\partial}{\partial y_{5}} + u \cos w \frac{\partial}{\partial x_{5}}.$$

It is clear that JZ_1 is orthogonal to TM. Thus $\mathcal{D}^{\perp} = \text{Span}\{Z_1\}$ is a totally real distribution. Moreover, it is easy to see that $\mathcal{D}^{\theta} = \text{Span}\{Z_2, Z_3\}$ is a pointwise slant distribution with slant function $\theta = \cos^{-1}\left(\frac{1}{1+u^2}\right)$. It is easy to verify that both distributions \mathcal{D}^{\perp} and \mathcal{D}^{θ} are completely integrable. Let M_{\perp} and M_{θ} be the integral manifolds of \mathcal{D}^{\perp} and \mathcal{D}^{θ} , respectively. Then the metric tensor of M is given by

$$g = 4du^{2} + (2 + 2u^{2})(dv^{2} + dw^{2}) = g_{M_{\perp}} + (\sqrt{2(1 + u^{2})})^{2} g_{M_{\theta}},$$

where $g_{M_{\theta}}$ and $g_{M^{\perp}}$ are the metric tensors of M_{θ} and M_{\perp} , respectively. Consequently, $M = M_{\perp} \times_f M_{\theta}$ is a warped product pointwise hemi-slant submanifold of \mathbb{R}^{10} with warping function $f = \sqrt{2(1 + u^2)}$ and the slant function $\theta = \cos^{-1}(\frac{1}{1+u^2})$.

Now, we investigate the geometry of the warped product pointwise hemi-slant submanifolds of form $M_{\perp} \times_f M_{\theta}$. First, we prove the following useful lemma for later use.

Lemma 4.3. Let $M = M_{\perp} \times {}_{f}M_{\theta}$ be a warped product pointwise hemi-slant submanifold of a Kaehler manifold \overline{M} . Then

(i) g(h(Z, V), FX) = g(h(X, Z), JV);(ii) $g(h(X, Y), JZ) = Z(h_X, f_X) = g(h(X, Z), JZ)$

 $(ii) \ g(h(X,Y),JZ) = Z(\ln f) \ g(X,PY) + g(h(X,Z),FY)$

for any $Z, V \in \Gamma(TM_{\perp})$ and $X, Y \in \Gamma(TM_{\theta})$.

Proof. For any $Z, V \in \Gamma(TM_{\perp})$ and $X \in \Gamma(TM_{\theta})$, we have

$$g(h(Z, V), FX) = g(\nabla_Z V, FX)$$

= $g(\widetilde{\nabla}_Z V, JX) - g(\widetilde{\nabla}_Z V, PX)$
= $-g(\widetilde{\nabla}_Z JV, X) - g(\widetilde{\nabla}_Z PX, V).$

Then from (4), (5) and (15), we obtain

 $q(h(Z, V), FX) = q(A_{IV}Z, X) + Z(\ln f) q(PX, V).$

From the orthogonality of the vector fields and (5), we find

$$g(h(Z, V), FX) = -g(h(X, Z), JV)$$

which is (i). For the second part of the lemma, we have

$$g(h(X, Y), JZ) = g(\widetilde{\nabla}_X Y, JZ) = -g(\widetilde{\nabla}_X JY, Z)$$

for any $X, Y \in \Gamma(TM_{\theta})$ and $Z \in \Gamma(TM_{\perp})$. Using (7) and (5), we obtain

$$g(h(X, Y), JZ) = -g(\widetilde{\nabla}_X PY, Z) - g(\widetilde{\nabla}_X FY, Z)$$
$$= g(\widetilde{\nabla}_X Z, PY) + g(A_{FY} X, Z).$$

Thus, (ii) follows from the above relation by using (6) and (15), which proves the lemma completely. \Box

If we interchange *X* by *PX* and *Y* by *PY* in Lemma 4.3 (ii), for any $X, Y \in \Gamma(TM_{\theta})$, then by using (9) and (10), we have the following relations

$$g(h(PX,Y),JZ) = \cos^2\theta Z(lnf) g(X,Y) + g(h(PX,Z),FY),$$
(17)

$$g(h(X, PY), JZ) = -\cos^2\theta Z(lnf) g(X, Y) + g(h(X, Z), FPY)$$
(18)

and

$$q(h(PX, PY), JZ) = \cos^2 \theta Z(lnf) g(X, PY) + g(h(PX, Z), FPY).$$
⁽¹⁹⁾

Lemma 4.4. Let $M = M_{\perp} \times_f M_{\theta}$ be a proper warped product pointwise hemi-slant submanifold of a Kaehler manifold \widetilde{M} . Then

$$g(A_{FPX}Y - A_{FY}PX, Z) = 2\cos^2\theta Z(\ln f) g(X, Y)$$

for any $Z \in \Gamma(TM_{\perp})$ and $X, Y \in \Gamma(TM_{\theta})$.

Proof. Interchanging X by Y in Lemma 4.3 (ii), we have

$$g(h(X, Y), JZ) = Z(\ln f) g(Y, PX) + g(h(Y, Z), FX)$$

= -Z(ln f) g(X, PY) + g(h(Y, Z), FX) (20)

Subtracting (20) from Lemma 4.3 (ii), thus we derive

$$g(h(Y,Z),FX) - g(h(X,Z),FY) = 2Z(\ln f) g(X,PY).$$
(21)

Interchange X by PX in (21) and using (10), we obtain

$$2\cos^2\theta Z(\ln f) g(X,Y) = g(h(Y,Z),FPX) - g(h(PX,Z),FY).$$
(22)

Hence, the result follows from (22) by using (6). \Box

A warped product manifold $M = M_1 \times_f M_2$ is said to be *mixed totally geodesic* if h(X, Z) = 0, for any $X \in \Gamma(TM_1)$ and $Z \in \Gamma(TM_2)$.

The following corollary is an immediate consequence of the above lemma.

Corollary 4.5. There does not exist any proper warped product mixed totally geodesic submanifold of the form $M = M_{\perp} \times_f M_{\theta}$ of a Kaehler manifold \widetilde{M} such that M_{\perp} is a totally real submanifold and M_{θ} is a proper pointwise slant submanifold of \widetilde{M} .

Proof. The proof of the corollary follows from (22) by using the mixed totally geodesic condition. \Box

We note that the above corollary is also given in [18] as a remark.

Lemma 4.6. Let $M = M_{\perp} \times_f M_{\theta}$ be a proper warped product pointwise hemi-slant submanifold of a Kaehler manifold \widetilde{M} . Then

$$g(h(X,Z),FY) - g(h(Y,Z),FX) = 2\tan\theta Z(\theta) g(PX,Y)$$
⁽²³⁾

for any $Z \in \Gamma(TM_{\perp})$ and $X, Y \in \Gamma(TM_{\theta})$.

Proof. For any $X, Y \in \Gamma(TM_{\theta})$ and $Z \in \Gamma(TM_{\perp})$, we have

$$g(\nabla_Z X, Y) = g\nabla_Z X, Y) = Z(\ln f) g(X, Y).$$
(24)

On the other hand, for any $X, Y \in \Gamma(TM_{\theta})$ and $Z \in \Gamma(TM_{\perp})$, we also have

$$g(\nabla_Z X, Y) = g(J\nabla_Z X, JY) = g(\nabla_Z JX, JY).$$

Using (2),(4), (7) and (15), we get

$$g(\overline{\nabla}_Z X, Y) = g(\overline{\nabla}_Z P X, PY) + g(\overline{\nabla}_Z P X, FY) + g(\overline{\nabla}_Z F X, JY)$$
$$= \cos^2 \theta Z(\ln f) g(X, Y) + g(h(Z, PX), FY) - g(\overline{\nabla}_Z JFX, Y).$$

Then from (8), we derive

$$g(\widetilde{\nabla}_Z X, Y) = \cos^2 \theta Z(\ln f) g(X, Y) + g(h(Z, PX), FY) - g(\widetilde{\nabla}_Z tFX, Y) - g(\widetilde{\nabla}_Z fFX, Y).$$

Using (12), we obtain

$$\begin{split} g(\widetilde{\nabla}_Z X, Y) &= \cos^2 \theta \, Z(\ln f) \, g(X, Y) + g(h(Z, PX), FY) - g(\widetilde{\nabla}_Z \sin^2 \theta X, Y) \\ &+ g(\widetilde{\nabla}_Z FPX, Y) \\ &= \cos^2 \theta \, Z(\ln f) \, g(X, Y) + g(h(Z, PX), FY) + \sin^2 \theta \, g(\widetilde{\nabla}_Z X, Y) \\ &+ \sin 2\theta \, Z(\theta) \, g(X, Y) - g(A_{FPX} Z, Y), \end{split}$$

which on using (6), the above equation takes the form

$$\cos^{2} \theta g(\bar{\nabla}_{Z}X, Y) = \cos^{2} \theta Z(\ln f) g(X, Y) + g(h(Z, PX), FY) + \sin 2\theta Z(\theta) g(X, Y) - g(h(Y, Z), FPX).$$
(25)

From (24) and (25), we derive

$$g(h(Y,Z), FPX) - g(h(Z, PX), FY) = \sin 2\theta Z(\theta) g(X, Y).$$
(26)

Interchanging X by PX in (26) and then using (9), we get the desired result. Hence, the proof is complete. \Box

Now, we have the following useful theorem.

Theorem 4.7. Let $M = M_{\perp} \times_f M_{\theta}$ be a warped product pointwise hemi-slant submanifold of a Kaehler manifold \widetilde{M} such that M_{\perp} is a totally real submanifold and M_{θ} is a pointwise slant submanifold with slant function θ of \widetilde{M} . Then

 $Z(\ln f) = \tan \theta \, Z(\theta)$

for any $Z \in \Gamma(TM_{\perp})$.

Proof. From (21) and (23), we have

$$(\tan \theta Z(\theta) - Z(\ln f)) g(PX, Y) = 0.$$
⁽²⁷⁾

Interchanging *Y* by *PY* in (27) and using (10), we obtain

$$\cos^2\theta \left(\tan\theta Z(\theta) - Z(\ln f)\right) g(X, Y) = 0.$$
⁽²⁸⁾

Since *M* is proper, therefore $\cos^2 \theta \neq 0$, thus the proof follows from (28). \Box

As an application, we have the following consequences of the above theorem.

1. If we assume $\theta = 0$ in Theorem 4.7, then the warped product is of the form $M = M_{\perp} \times_f M_T$, where M_T and M_{\perp} are holomorphic and totally real submanifolds of a Kaehler manifold \widetilde{M} , respectively. Thus, the Theorem 3.1 of [4] is a special case of Theorem 4.7 as follows.

Corollary 4.8. (Theorem 3.1 [4]). If $M = M_{\perp} \times_f M_T$ be a warped product CR-submanifold of a Kaehler manifold M such that M_{\perp} is a totally real submanifold and M_T is a holomorphic submanifold of \widetilde{M} , then M is a CR-product.

2. Also, if we assume that the slant function θ is a constant, i.e., M_{θ} is a proper slant submanifold, then the warped product $M = M_{\perp} \times_f M_{\theta}$ is a hemi-slant warped product submanifold of a Kaehler manifold \widetilde{M} , where M_{\perp} and M_{θ} are totally real and proper slant submanifolds of \widetilde{M} , respectively. Then, Theorem 4.2 of [16] is a special case of Theorem 4.7 as follows.

Corollary 4.9. (Theorem 4.2 [16]). Let \widetilde{M} be a Kaehler manifold. Then there exist no warped product submanifolds $M = M_{\perp} \times_f M_{\theta}$ of \widetilde{M} such that M_{\perp} is a totally real submanifold and M_{θ} is a proper slant submanifold of \widetilde{M} .

In order to give another characterization we need the following well known result of S. Hiepko [12].

Hiepko's Theorem. Let \mathcal{D}_1 and \mathcal{D}_2 be two orthogonal distribution on a Riemannian manifold M. Suppose that \mathcal{D}_1 and \mathcal{D}_2 both are involutive such that \mathcal{D}_1 is a totally geodesic foliation and \mathcal{D}_2 is a spherical foliation. Then M is locally isometric to a non-trivial warped product $M_1 \times_f M_2$, where M_1 and M_2 are integral manifolds of \mathcal{D}_1 and \mathcal{D}_2 , respectively.

The following result gives a characterization of warped product pointwise hemi-slant submanifolds.

Theorem 4.10. [18] Let M be a pointwise hemi-slant submanifold of a Kaehler manifold \overline{M} . Then M is locally a warped product submanifold of the form $M_{\perp} \times_f M_{\theta}$ if and only if

$$A_{FPX}V - A_{IV}PX = V(\mu)\left(\cos^2\theta\right)X, \quad \forall \ X \in \Gamma(\mathcal{D}^{\theta}), \ V \in \Gamma(\mathcal{D}^{\perp})$$
⁽²⁹⁾

for some smooth function μ on M satisfying $Y(\mu) = 0$, for any $Y \in \Gamma(\mathcal{D}^{\theta})$.

Remark 4.11. The inequality for second fundamental form of these kind of warped products may not be evaluated. The reason is that: To evaluate the squared norm of the second fundamental form $||h||^2$ from Lemma 4.3 and the relations (17)-(19), we have to assume that either M is mixed totally geodesic or to discuss the equality case M must be a mixed totally geodesic warped product and in both cases M is mixed totally geodesic, but in case of mixed totally geodesic, these warped products do not exist (Corollary 4.5).

43

Remark 4.12. Theorem 4.10 is valid only for the pointwise slant fiber. For example, if θ is constant i.e., M_{θ} is proper slant, then this is the case of non-existence of warped products (see Theorem 4.2 of [16]) and if $\theta = 0$, i.e., the fiber is a holomorphic submanifold, then again from Theorem 3.1 of [4], this is a case of non-existence of warped products.

References

- [1] R.L. Bishop and B. O'Neill, Manifolds of Negative curvature, Trans. Amer. Math. Soc. 145 (1969), 1-49.
- [2] B.-Y. Chen, Slant immersions, Bull. Austral. Math. Soc. 41 (1990), 135-147.
- [3] B.-Y. Chen, Geometry of slant submanifolds, Katholieke Universiteit Leuven, 1990.
- [4] B.-Y. Chen, Geometry of warped product CR-submanifolds in Kaehler manifolds, Monatsh. Math. 133 (2001), 177–195.
- [5] B.-Y. Chen, Geometry of warped product CR-submanifolds in Kaehler manifolds II, Monatsh. Math. 134 (2001), 103–119.
- [6] B.-Y. Chen, *Pseudo-Riemannian geometry*, δ-invariants and applications, World Scientific, Hackensack, NJ, 2011.
- [7] B.-Y. Chen, Geometry of warped product submanifolds: a survey. J. Adv. Math. Stud. 6 (2013), no. 2, 1–43.
- [8] B.-Y. Chen and O. Garay, Pointwise slant submanifolds in almost Hermitian manifolds, Turk. J. Math. 36 (2012), 630-640.
- [9] B.-Y. Chen, Differential Geometry of Warped Product Manifolds and Submanifolds, World Scientific, Hackensack, NJ, 2017.
- [10] B.-Y. Chen and S. Uddin Warped Product Pointwise Bi-slant Submanifolds of Kaehler Manifolds, Publ. Math. Debrecen 92 (1) (2018), 1-16.
- [11] F. Etayo, On quasi-slant submanifolds of an almost Hermitian manifold, Publ. Math. Debrecen 53 (1998), 217-223.
- [12] S. Hiepko, Eine inner kennzeichungder verzerrten produkte, Math. Ann. 241 (1979), 209-215.
- [13] N. Papaghiuc, Semi-slant submanifolds of Kaehlerian manifold, Ann. St. Univ. Iasi 9 (1994), 55-61.
- [14] K.S. Park, Pointwise almost h-semi-slant submanifolds, Int. J. Math., 26, 1550099 (2015), 26 pages.
- [15] B. Sahin, Nonexistence of warped product semi-slant submanifolds of Kaehler manifolds, Geom. Dedicata 117 (2006), 195–202.
- [16] B. Sahin, Warped product submanifolds of Kaehler manifolds with a slant factor, Ann. Pol. Math. 95 (2009), 207-226.
- [17] B. Sahin, Warped product pointwise semi-slant submanifolds of Kehler manifolds, Port. Math. 70 (2013), 252-268.
- [18] S. K. Srivastava and A. Sharma, Geometry of pointwise pseudo-slant warped product submanifolds in a Kaehler manifold, arXiv:1601.01714v2 [math.DG].
- [19] S. Uddin and A.Y.M. Chi, Warped product hemi-slant submanifolds of nearly Kaehler manifolds, An. St. Univ. Ovidius Constanta. 19 (3) (2011), 195–204.
- [20] S. Uddin, F.R. Al-Solamy and K.A. Khan, Geometry of warped product pseudo-slant submanifolds in nearly Kaehler manifolds, An. Ştiinţ. Univ. Al. I. Cuza Iaşi Mat (N.S.) Tome LXIII (2016), f₂ vol. 3, 927–938.
- [21] S. Uddin, B.-Y. Chen and F.R. Al-Solamy, Warped product bi-slant immersions in Kaehler manifolds, Mediterr. J. Math., 14: 95. https://doi.org/10.1007/s00009-017-0896-8.
- [22] K. Yano and M. Kon, Structures on manifolds, Series in Pure Mathematics, World Scientific Publishing Co., Singapore, 1984.