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Abstract. This paper is devoted to study the existence of solutions for a class of variational-hemivariational-
like inequalities in reflexive Banach spaces. Using the notion of the stable (φ, η)-quasimonotonicity, the
properties of Clarke’s generalized directional derivative and Clarke’s generalized gradient, we establish
some existence results of solutions when the constrained set is nonempty, bounded (or unbounded), closed
and convex. Moreover, a sufficient condition to the boundedness of the solution set and a necessary and
sufficient condition to the existence of solutions are also derived.

1. Introduction

In the early 1980s, Panagiotopulos introduced and studied the hemivariational inequalities as variational
expressions for several classes of mechanical problems with nonsmooth and nonconvex energy superpoten-
tials; see e.g., [27–29] and the references therein. The derivative of hemivariational inequality is base on the
mathematical notion of the generalized gradient of Clarke ([11]). The hemivariational inequalities appear
in a variety of mechanical problems, for example, the unilateral contact problems in nonlinear elasticity,
the problems describing the adhesive and frictional effects, the nonconvex semipermeability problems, the
masonry structures, and the delamination problems in multilayered composites ([5–7, 28, 29]). Carl [1], Carl
et al. [2, 3] and Xiao and Huang [35] studied the existence of solutions of some kinds of hemivariational
inequalities using the method of sub-super solutions. Migorski and Ochal [25], and Park and Ha [31, 32]
studied the problem using the regularized approximating method. Goelevan et al. [16] and Liu [22] proved
the existence of solutions using the method of the first eigenfunction. For more related works regarding
the existence of solutions for hemivariational inequalities, we refer to [4, 9, 10, 13, 21, 26, 28–30, 36, 38–45]
and the references therein.

Let K be a nonempty, closed and convex subset of a real reflexive Banach space X. Let η : X×X→ X be a
mapping, F : K→ X∗ be a nonlinear operator and φ : X→ R∪ {+∞} be a proper and lower semicontinuous
function such that Kφ := K ∩ domφ , ∅, where domφ := {x ∈ X : φ(x) < +∞} is the effective domain of φ.
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Let Ω be a bounded open set in RN and j : Ω × Rk
→ R be a function. Let T : X → Lp(Ω; Rk) be a linear

and continuous mapping, where 1 < p < ∞. We shall denote û := Tu and denote by j◦(x, y; h) Clarke’s
generalized directional derivative of a locally Lipschitz mapping j(x, ·) at the point y ∈ Rk with respect to
the direction h ∈ Rk, where x ∈ Ω.

In 2000, Motreanu and Radulescu [26] introduced and studied the following variational-hemivariational
inequality problem: find u ∈ K such that

〈F(u), v − u〉 + φ(v) − φ(u) +

∫
Ω

j◦(x, û(x); v̂(x) − û(x))dx ≥ 0, ∀v ∈ K. (1)

Using Mosco’s theorem, they proved that problem (1) admits a solution if the operator F is monotone and
hemicontinuous (see [26, Theorem 2]).

In 2010, applying KKM theorem, Costea and Lupu [13] extended the result above from the case of
single-valued to that of set-valued. If F : K→ 2X∗ is a set-valued mapping, then problem (1) reduces to the
following variational-hemivariational inequality problem:

Find u ∈ Kφ and u∗ ∈ F(u) such that

Problem (P): 〈u∗, v − u〉 + φ(v) − φ(u) +
∫

Ω
j◦(x, û(x); v̂(x) − û(x))dx ≥ 0, ∀v ∈ K.

To weaken the hypotheses of monotonicity, Costea and Radulescu [12] investigated a special case of
problem (1) with φ = IK, where IK is the indicator function over the set K, i.e., IK(x) = 0 if x ∈ K and
IK(x) = +∞ otherwise. The problem is formulated as finding u ∈ K such that

〈F(u), v − u〉 +
∫

Ω

j◦(x, û(x); v̂(x) − û(x))dx ≥ 0, ∀v ∈ K. (2)

Using the notion of stable pseudomonotonicity introduced by He [17, 18] and KKM theorem, the authors
obtained some existence results for problem (2).

In 2011, by introducing the notion of stable quasimonotonicity, Zhang and He [46] considered the
following hemivariational inequality: find u ∈ K and u∗ ∈ F(u) such that

〈u∗, v − u〉 +
∫

Ω

j◦(x, û(x); v̂(x) − û(x))dx ≥ 0, ∀v ∈ K. (3)

It is clear that problems (1)-(3) are special cases of problem (P). In brief, for a suitable choice of F, φ and T
one can obtain a wide class of inequality problems, including mixed variational inequality and Stampacchia
variational inequality. This shows that problem (P) is quite general and unifying in the same time.

Very recently, Tang and Huang [34] investigated the existence of solutions for problem (P) in reflexive
Banach spaces. Using the notion of the stable φ-quasimonotonicity, the properties of Clarke’s generalized
directional derivative and Clarke’s generalized gradient, they established some existence results of solutions
when the constrained set is nonempty, bounded (or unbounded), closed and convex. Also, they gave a
sufficient condition to the boundedness of the solution set and a necessary and sufficient condition to the
existence of solutions.

Moreover, many interesting problems in mechanics and applied mathematics lead to other types of
convex functionals φ other than the indicator function IK over the set K ([3]). Marano and Papageorgiou
[24] considered an elliptic variational-hemivariational inequality with φ(x) =

∫
Ω

G(x, v(x))dx, where ξ 7→
G(x, ξ), ξ ∈ R is nonnegative, proper, convex and lower semicontinuous for almost every x ∈ Ω. As pointed
out in Liu and Motreanu [19], problem (P) at resonance as well as nonresonance has a striking theoretic
interest and a strong motivation due to its applications in mechanics and engineering. Recently, problem
(P) has been studied by many authors, see e.g., [2, 5, 15, 21, 23, 26] and the references therein.

Now let us recall some important techniques for mixed variational(-like) inequality problems. Let H
be a real Hilbert space. In 2007, Schaible, Yao and Zeng [33] extended the auxiliary principle technique to
develop an iterative algorithm for mixed variational-like inequality problem (MVLIP) in H by using the
following hypotheses on the mapping η : H ×H→ H involved by the (MVLIP):



L. C. Ceng et al. / Filomat 32:10 (2018), 3609–3622 3611

(a) η is Lipschitz continuous with constant λ > 0, i.e., ‖η(u, v)‖ ≤ λ‖u − v‖, ∀u, v ∈ H;
(b) η(u, v) + η(v,u) = 0, ∀u, v ∈ H;
(c) η(u, v) = η(u,w) + η(w, v), ∀u, v,w ∈ H;
(d) η is affine in the first variable.

Furthermore, by employing the notion of φ-pseudomonotonicity of the operator, Zhong and Huang [47]
studied the stability of Minty mixed variational inequality. Indeed, various kinds of generalized mono-
tonicity of the operator play an important role in the theory of variational inequalities. For example, we
can refer to [8, 12, 33, 37] for more details.

Motivated and inspired by the research work mentioned above, in this paper, we investigate the existence
of solutions for a class of variational-hemivariational-like inequality problems in reflexive Banach spaces,
that is, the following variational-hemivariational-like inequality problem:

(VHVLIP) Find u ∈ Kφ and u∗ ∈ F(u) such that

〈u∗, η(v,u)〉 + φ(v) − φ(u) +

∫
Ω

j◦(x, û(x); (Tη(v,u))(x))dx ≥ 0, ∀v ∈ K.

Using the notion of the stable (φ, η)-quasimonotonicity, the properties of Clarke’s generalized directional
derivative and Clarke’s generalized gradient, some existence results of solutions are proved when the
constrained set is a nonempty, bounded (or unbounded), closed and convex set. Moreover, a sufficient
condition to the boundedness of the set of solutions and a necessary and sufficient condition to the existence
of solutions are also derived. The results presented in this paper generalize and improve some known
results.

The rest of the paper is organized in the following way. In the next section, we recall some definitions
and necessary materials. In Sect. 3, we recall and introduce some kinds of generalized η-monotonicity of
the operator. Moreover, we discuss the relations of these generalized η-monotonicity in details. Section 4
is devoted to proving our main results. We show the existence of solutions in the case when the constraint
set K is bounded and unbounded in Theorems 3.2 and 3.5, respectively. Theorem 3.7 provides a sufficient
condition to the boundedness of the solution set. Theorem 3.8 gives a necessary and sufficient condition to
the existence of solutions of (VHVLIP).

2. Preliminaries

Let X be a real reflexive Banach space with the norm denoted by ‖ · ‖ and X∗ be its dual space. Let u0 and
{un} be a point and a sequence in X, respectively. We use the notations un → u0 and un ⇀ u0 to indicate the
strong convergence of {un} to u0 and the weak convergence of {un} to u0, respectively. Moreover, we denote
by 〈·, ·〉 the duality pairing between X and its dual X∗. For a nonempty, closed and convex subset K of X
and every r > 0, we define

Br := {u ∈ K : ‖u‖ ≤ r}.

Let η : X × X→ X be a mapping. η is said to be skew if η(u, v) + η(v,u) = 0 for all u, v ∈ X.
Let T : X → Lp(Ω; Rk) be a linear compact operator, where 1 < p < ∞ and k ≥ 1, and Ω be a bounded

open set in RN. Denote by q the conjugated exponent of p, i.e., 1
p + 1

q = 1. Let j : Ω × Rk
→ R be a function

where the mapping

j(·, y) : Ω→ R is measurable, for every y ∈ Rk. (4)

We assume that at least one of the following conditions holds: either there exists l ∈ Lq(Ω; R) such that

| j(x, y1) − j(x, y2)| ≤ l(x)|y1 − y2|, ∀x ∈ Ω,∀y1, y2 ∈ Rk, (5)

or

the mapping j(x, ·) is locally Lipschitz, ∀x ∈ Ω, (6)
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and there exists C > 0 such that

|z| ≤ C(1 + |y|p−1), ∀x ∈ Ω,∀z ∈ ∂ j(x, y). (7)

Recall that f ◦(x; v) denotes Clarke’s generalized directional derivative of the locally Lipschitz function
f : X → R at the point x ∈ X with respect to the direction v ∈ X, while ∂ f (x) is the Clarke’s generalized
gradient of f at x ∈ X ([11]), i.e.,

f ◦(x; v) = lim sup
y→x,t→0+

f (y + tv) − f (y)
t

and

∂ f (x) = {ξ ∈ X∗ : 〈ξ, v〉 ≤ f ◦(x; v), ∀v ∈ X}.

Let J : Lp(Ω; Rk) → R be an arbitrary locally Lipschitz functional. For each u ∈ X there exists (see e.g.,
[11]) zu ∈ ∂J(û) such that

J◦(û; ξ) = 〈zu, ξ〉 = max{〈w, ξ〉 : w ∈ ∂J(û)}. (8)

Denoting by T∗ : Lq(Ω; Rk)→ X∗ the adjoint operator of T, we define the subset U(J,T) of X∗ as follows:

U(J,T) = {−z∗u : u ∈ K, z∗u = T∗zu}. (9)

It follows from (8) that J◦(û; v̂) = 〈z∗u, v〉.

Lemma 2.1. ([11, Proposition 2.1.1]) Let f : X→ R be Lipschitz of rank M near x. Then

(i) the function v 7→ f ◦(x; v) is finite, positively homogeneous and subadditive on X, and satisfies

| f ◦(x; v)| ≤M‖v‖;

(ii) f ◦(x; v) is upper semicontinuous as a function of (x, v) and, as a function of v alone, is Lipschitz of rank M on
X;

(iii) f ◦(x;−v) = (− f )◦(x; v).

Lemma 2.2. ([11, Proposition 2.7.5]) If J(ϕ) =
∫

Ω
j(x, ϕ(x))dx, and j satisfies the conditions (4) and (5) or (4) and

(6)-(7), then J is uniformly Lipschitz on bounded subsets, and one has

∂J(ϕ) ⊂
∫

Ω

∂ j(x, ϕ(x))dx.

Further, if j is regular at (x, ϕ(x)) then J is regular at ϕ and equality holds.

Lemma 2.3. ([14]) Let K be a nonempty subset of a Hausdorff topological vector space E and let G : K → 2E be a
set-valued mapping satisfying the following properties:

(i) G is a KKM mapping;
(ii) G(x) is closed in E for every x ∈ K;

(iii) G(x0) is compact in E for some x0 ∈ K.

Then
⋂

x∈K G(x) , ∅.

Definition 2.4. The mapping F : K→ 2X∗ is said to be

(i) lower semicontinuous at u0 if, for any u∗0 ∈ F(u0) and sequence {un} ⊂ K with un → u0, a sequence u∗n ∈ F(un)
can be determined which converges to u∗0;



L. C. Ceng et al. / Filomat 32:10 (2018), 3609–3622 3613

(ii) lower hemicontinuous if, the restriction of F to every line segment of K is lower semicontinuous with respect to
the weak topology in X∗.

Remark 2.5. If F is lower hemicontinuous, then it is known that for any u, v ∈ K and u∗ ∈ F(u), a sequence u∗n ∈ F(un)
can be determined which converges weakly to u∗, where un := u + 1

n (v − u) for all n ≥ 1.

Definition 2.6. Let η : X × X → X be a mapping and φ : X → R ∪ {+∞} be a proper, convex and lower
semicontinuous function such that Kφ , ∅. The mapping F : K→ 2X∗ is said to be

(i) η-monotone if, for each pair of points u, v ∈ K,

〈v∗ − u∗, η(v,u)〉 ≥ 0, ∀u∗ ∈ F(u) and v∗ ∈ F(v);

(ii) η-pseudomonotone if, for each pair of points u, v ∈ K,

〈u∗, η(v,u)〉 ≥ 0 ⇒ 〈v∗, η(v,u)〉 ≥ 0, ∀u∗ ∈ F(u) and v∗ ∈ F(v);

(iii) η-quasimonotone if, for each pair of points u, v ∈ K,

〈u∗, η(v,u)〉 > 0 ⇒ 〈v∗, η(v,u)〉 ≥ 0, ∀u∗ ∈ F(u) and v∗ ∈ F(v);

(iv) stably η-pseudomonotone with respect to the set U ⊂ X∗ if, F and F(·) − ξ are η-pseudomonotone for every
ξ ∈ U;

(v) stably η-quasimonotone with respect to the set U ⊂ X∗ if, F and F(·) − ξ are η-quasimonotone for every ξ ∈ U;
(vi) (φ, η)-pseudomonotone if, for each pair of points u, v ∈ K,

〈u∗, η(v,u)〉 + φ(v) − φ(u) ≥ 0 ⇒ 〈v∗, η(v,u)〉 + φ(v) − φ(u) ≥ 0, ∀u∗ ∈ F(u) and v∗ ∈ F(v);

(vii) (φ, η)-quasimonotone if, for each pair of points u, v ∈ K,

〈u∗, η(v,u)〉 + φ(v) − φ(u) > 0 ⇒ 〈v∗, η(v,u)〉 + φ(v) − φ(u) ≥ 0, ∀u∗ ∈ F(u) and v∗ ∈ F(v);

(viii) stably (φ, η)-pseudomonotone with respect to the set U ⊂ X∗ if, F and F(·) − ξ are (φ, η)-pseudomonotone for
every ξ ∈ U;

(ix) stably (φ, η)-quasimonotone with respect to the set U ⊂ X∗ if, F and F(·)−ξ are (φ, η)-quasimonotone for every
ξ ∈ U.

3. Existence theorems

Let J : Lp(Ω; Rk) → R be the function J(ϕ) =
∫

Ω
j(x, ϕ(x))dx, and T : X → Lp(Ω; Rk) be a linear compact

operator, where 1 < p < ∞, k ≥ 1 and Ω is a bounded open set in RN.

Definition 3.1. The Clarke’s generalized directional derivative J◦(·; ·) is said to be bi-sequentially weakly upper
semicontinuous w.r.t. T if, for any {un} and {vn} in X with un ⇀ u and vn ⇀ v, one has lim supn→∞ J◦(ûn; v̂n) ≤
J◦(û; v̂).

Theorem 3.2. Let η : X × X → X be a skew mapping that is affine in the first variable and weakly continuous
in the second variable. Let the Clarke’s generalized directional derivative J◦(·; ·) be bi-sequentially weakly upper
semicontinuous w.r.t. linear compact operator T. Assume that K is a nonempty, closed, bounded and convex subset of
X. Let φ : X→ R∪ {+∞} be a proper, convex and lower semicontinuous function such that Kφ , ∅. Let F : K→ 2X∗

be a lower hemicontinuous set-valued mapping and stably (φ, η)-quasimonotone w.r.t. the set U(J,T), where U(J,T)
is defined as (9). Further, we suppose j satisfies the conditions (4) and (5) or (4) and (6)-(7). Then the (VHVLIP)
admits at least one solution.
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Proof. For any v ∈ Kφ define a set-valued mapping G : Kφ → 2X as follows:

G(v) := {u ∈ Kφ : inf
v∗∈F(v)

〈v∗, η(v,u)〉 + φ(v) − φ(u) + J◦(û; Tη(v,u)) ≥ 0}.

Consider two cases regarding G:

(i) G is not a KKM mapping, and
(ii) G is a KKM mapping.

(i) If G is not a KKM mapping, then, by the definition of KKM mapping, there exist ui ∈ Kφ and λi ∈

[0, 1], i = 1, 2, ...,n with
∑n

i=1 λi = 1 and u0 :=
∑n

i=1 λiui ∈ co{u1, ...,un} such that u0 <
⋃n

i=1 G(ui), that is,

inf
u∗i∈F(ui)

〈u∗i , η(ui,u0)〉 + φ(ui) − φ(u0) + J◦(û0; Tη(ui,u0)) < 0, ∀i ∈ {1, 2, ...,n}. (10)

In addition, from ui ∈ Kφ, i = 1, 2, ...,n and the convexity of φ, it follows that φ(u0) ≤
∑n

i=1 λiφ(ui) < ∞,
which leads to u0 ∈ Kφ.

We claim that there exists a neighborhood U of u0 such that for all v ∈ U ∩ Kφ,

inf
u∗i∈F(ui)

〈u∗i , η(ui, v)〉 + φ(ui) − φ(v) + J◦(v̂; Tη(ui, v)) < 0, ∀i ∈ {1, 2, ...,n}. (11)

If not, for any neighborhood U of u0, there exist v0 ∈ U ∩ Kφ and i0 ∈ {1, 2, ...,n} such that

inf
u∗i0
∈F(ui0 )

〈u∗i0 , η(ui0 , v0)〉 + φ(ui0 ) − φ(v0) + J◦(v̂0; Tη(ui0 , v0)) ≥ 0.

Taking U = B(u0, 1
n ), we obtain that there exists vn ∈ B(u0, 1

n ) ∩ Kφ such that

inf
u∗i0
∈F(ui0 )

〈u∗i0 , η(ui0 , vn)〉 + φ(ui0 ) − φ(vn) + J◦(v̂n; Tη(ui0 , vn)) ≥ 0.

By the bi-sequentially weakly upper semicontinuity of J◦(·, ·) w.r.t. operator T, the weak continuity of η in
the second variable, vn → u0 and the lower semicontinuity of φ, we have

inf
u∗i0
∈F(ui0 )

〈u∗i0 , η(ui0 ,u0)〉 + φ(ui0 ) − φ(u0) + J◦(û0; Tη(ui0 ,u0)) ≥ 0.

This contradicts (10) and so the claim holds.
From (11), there exists a neighborhood U of u0 such that for all v ∈ U ∩ Kφ, for all i

inf
u∗i∈F(ui)

〈u∗i , η(ui, v)〉 + φ(ui) − φ(v) + J◦(v̂; Tη(ui, v)) = inf
u∗i∈F(ui)

〈u∗i , η(ui, v)〉 + φ(ui) − φ(v) + 〈z∗v, η(ui, v)〉 < 0,

which can be rewritten as

inf
u∗i∈F(ui)

〈u∗i − (−z∗v), η(ui, v)〉 + φ(ui) − φ(v) < 0.

Using the stable (φ, η)-quasimonotonicity of F w.r.t. the set U(J,T) and the skew property of η, we get that

sup
v∗∈F(v)

〈v∗ − (−z∗v), η(ui, v)〉 + φ(ui) − φ(v) ≤ 0, ∀i ∈ {1, 2, ...,n}.

It is equivalent to

sup
v∗∈F(v)

〈v∗, η(ui, v)〉 + φ(ui) − φ(v) + J◦(v̂; Tη(ui, v)) ≤ 0, ∀i ∈ {1, 2, ...,n}.
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By (i) of Lemma 2.1, the affinity of η in the first variable and the convexity of φ, taking into account that
u0 =

∑n
i=1 λiui ∈ co{u1, ...,un} and T is a linear operator, we deduce that

sup
v∗∈F(v)

〈v∗, η(u0, v)〉 + φ(u0) − φ(v) + J◦(v̂; Tη(u0, v))

= sup
v∗∈F(v)

〈v∗, η(
n∑

i=1

λiui, v)〉 + φ(
n∑

i=1

λiui) − φ(v) + J◦(v̂; Tη(
n∑

i=1

λiui, v))

≤ sup
v∗∈F(v)

〈v∗,
n∑

i=1

λiη(ui, v)〉 +
n∑

i=1

λi(φ(ui) − φ(v)) + J◦(v̂;
n∑

i=1

λiTη(ui, v))

≤

n∑
i=1

λi[ sup
v∗∈F(v)

〈v∗, η(ui, v)〉 + φ(ui) − φ(v) + J◦(v̂; Tη(ui, v))]

≤ 0.

(12)

Again from (i) of Lemma 2.1 and the skew property of η and the linearity of T, it follows that

J◦(v̂; Tη(v,u0)) + J◦(v̂; Tη(u0, v)) ≥ J◦(v̂; T(η(v,u0) + η(u0, v))) = J◦(v̂; 0) = 0,

which together with (12) and the skew property of η, yields

inf
v∗∈F(v)

〈v∗, η(v,u0)〉 + φ(v) − φ(u0) + J◦(v̂; Tη(v,u0)) ≥ 0, ∀v ∈ U ∩ Kφ. (13)

Let v′ ∈ Kφ be arbitrarily fixed and define un = u0 + 1
n (v′ − u0). Then there exists N ∈ N such that for any

n ≥ N, we have un ∈ U∩Kφ. For any u∗0 ∈ F(u0), since F is lower hemicontinuous, a sequence u∗n ∈ F(un) can
be determined which converges weakly star to u∗0. It follows from (13) that for any n ≥ N,

〈u∗n, η(un,u0)〉 + φ(un) − φ(u0) + J◦(ûn; Tη(un,u0)) ≥ 0.

Taking into account that T is a linear operator and η is affine in the first variable with η(u0,u0) = 0, by (i) of
Lemma 2.1 and the convexity of φ, we obtain

0 ≤ 〈u∗n, η(u0 +
1
n

(v′ − u0),u0)〉 + φ(u0 +
1
n

(v′ − u0)) − φ(u0) + J◦(ûn; Tη(u0 +
1
n

(v′ − u0),u0))

= 〈u∗n,
1
n
η(v′,u0)〉 + φ(u0 +

1
n

(v′ − u0)) − φ(u0) + J◦(ûn;
1
n

Tη(v′,u0))

≤
1
n

[〈u∗n, η(v′,u0)〉 + φ(v′) − φ(u0) + J◦(ûn; Tη(v′,u0))].

Multiplying the inequality above by n and passing to the limit as n→∞, from (ii) of Lemma 2.1, we have

〈u∗0, η(v′,u0)〉 + φ(v′) − φ(u0) + J◦(û0; Tη(v′,u0)) ≥ 0, ∀v′ ∈ Kφ. (14)

Since J(ϕ) =
∫

Ω
j(x, ϕ(x))dx and j satisfies the conditions (4) and (5) or (4) and (6)-(7), by Lemma 2.2, we have∫

Ω

j◦(x, û(x); (Tη(v,u))(x))dx ≥ J◦(û; Tη(v,u)), ∀u, v ∈ X

and so

〈u∗0, η(v′,u0)〉 + φ(v′) − φ(u0) +

∫
Ω

j◦(x, û0(x); (Tη(v′,u0))(x))dx ≥ 0, ∀v′ ∈ Kφ. (15)

If v′ ∈ K \ domφ, then φ(v′) = +∞ and thus the inequality in (15) holds automatically. This together with
(15) shows that u0 ∈ Kφ is a solution of (VHVLIP).
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(ii) G is a KKM mapping. Since φ is convex and lower semicontinuous, we know that it is weakly
lower semicontinuous. For any v ∈ Kφ, by the bi-sequentially weakly upper semicontinuity of J◦(·, ·) w.r.t.
operator T, and the weak continuity of η in the second variable, we conclude that u 7→ infv∗∈F(v)〈v∗, η(v,u)〉+
φ(v) − φ(u) + J◦(û; Tη(v,u)) is weakly upper semicontinuous. Then G(v) is weakly closed. It follows from
the convexity and lower semicontinuity of φ that domφ is convex and closed. This, together with the fact
that K is a bounded, closed and convex subset in reflexive Banach space, implies that Kφ = domφ ∩ K , ∅
is weakly compact. Since G(v) ⊂ Kφ, we obtain that G(v) is weakly compact for each v ∈ Kφ. Thus, all
conditions of Lemma 2.3 are satisfied in the weak topology and so we have ∩v∈KφG(v) , ∅.

Taking u0 ∈ ∩v∈KφG(v), we get u0 ∈ G(v) for each v ∈ Kφ. Thus,

inf
v∗∈F(v)

〈v∗, η(v,u0)〉 + φ(v) − φ(u0) + J◦(û0,Tη(v,u0)) ≥ 0, ∀v ∈ Kφ. (16)

Let v′ ∈ Kφ be arbitrarily fixed and define un := u0 + 1
n (v′ − u0). Then it follows from the convexity of Kφ

that un ∈ Kφ for all n ∈ N. For any u∗0 ∈ F(u0), since F is lower hemicontinuous, a sequence u∗n ∈ F(un) can be
determined which converges weakly star to u∗0.

From (16), for any n ∈ N, we have

〈u∗n, η(un,u0)〉 + φ(un) − φ(u0) + J◦(û0,Tη(un,u0)) ≥ 0.

Taking into account that T is a linear operator and φ is a convex function, by (i) of Lemma 2.1 and the
affinity of η in the first variable with η(u0,u0) = 0, we obtain

0 ≤ 〈u∗n, η(u0 +
1
n

(v′ − u0),u0)〉 + φ(u0 +
1
n

(v′ − u0)) − φ(u0) + J◦(û0; Tη(u0 +
1
n

(v′ − u0),u0))

= 〈u∗n,
1
n
η(v′,u0)〉 + φ(u0 +

1
n

(v′ − u0)) − φ(u0) + J◦(û0;
1
n

Tη(v′,u0))

≤
1
n

[〈u∗n, η(v′,u0)〉 + φ(v′) − φ(u0) + J◦(û0; Tη(v′,u0))].

Multiplying the inequality above by n and passing to the limit as n→∞, we get

〈u∗0, η(v′,u0)〉 + φ(v′) − φ(u0) + J◦(û0; Tη(v′,u0)) ≥ 0, ∀v′ ∈ Kφ. (17)

Since J(ϕ) =
∫

Ω
j(x, ϕ(x))dx and j satisfies the conditions (4) and (5) or (4) and (6)-(7), by Lemma 2.2, we have∫

Ω

j◦(x, û(x); (Tη(v,u))(x))dx ≥ J◦(û; Tη(v,u)), ∀u, v ∈ X.

Combining with (17), we obtain

〈u∗0, η(v′,u0)〉 + φ(v′) − φ(u0) +

∫
Ω

j◦(x, û0(x); (Tη(v′,u0))(x))dx ≥ 0, ∀v′ ∈ Kφ. (18)

If v′ ∈ K \ domφ, then φ(v′) = +∞ and thus the inequality in (18) holds automatically. This together with
(18) shows that u0 ∈ Kφ is a solution of (VHVLIP).

Remark 3.3. Theorem 3.2 generalizes and improves some recent results. In fact,
(i) Theorem 3.2 generalizes and extends Theorem 4.1 of Tang and Huang [34] from the variational-hemivariational

inequality problem (VHVIP) to the variational-hemivariational-like inequality problem (VHVLIP);
(ii) Theorem 3.2 generalizes and extends Theorem 3.1 of Zhang and He [46] from the hemivariational inequality

problem (HVIP) to the variational-hemivariational-like inequality problem (VHVLIP);
(iii) Compared with [13], the stable (φ, η)-quasimonotonicity of F in Theorem 3.2 is more general than the

η-monotonicity of F (with η(u, v) = u − v,∀u, v ∈ X) in Theorem 2 of [13];
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(iv) Theorem 3.2 generalizes and extends Corollary 1 of Costea and Radulescu [12] from the hemivariational
inequality problem (HVIP) to the variational-hemivariational-like inequality problem (VHVLIP) and by relaxing
the stable η-pseudomonotonicity of F (with η(u, v) = u − v,∀u, v ∈ X) in Corollary 1 of [12] to F being stably
(φ, η)-quasimonotone;

(v) Theorem 3.2 generalizes and improves Theorem 2 of Motreanu and Radulescu [26] by extending F from the
single-valued case to the set-valued one and by relaxing the monotonicity of F in Theorem 2 of [26] to F being stably
(φ, η)-quasimonotone;

(vi) If η(u, v) = u − v,∀u, v ∈ X, φ = IK and the mapping F is single-valued, then Theorem 3.2 generalizes and
improves Theorem 2 of [30] by relaxing the monotonicity of F in [30] to F being stably (φ, η)-quasimonotone and by
extending F from the single-valued case to the set-valued one.

Relaxing the constraint set K to the unbounded case, we need to introduce some notions of coercivity.

Proposition 3.4. Let η : X × X→ X be a skew mapping. Consider the following coercivity conditions:

(A) There exists a nonempty subset V0 contained in a weakly compact subset V1 of Kφ such that the set

D = {u ∈ Kφ : inf
v∗∈F(v)

〈v∗, η(v,u)〉 + φ(v) − φ(u) + J◦(û; Tη(v,u)) ≥ 0, v ∈ V0}

is weakly compact or empty.
(B) There exists n0 ∈ N such that for every u ∈ Kφ \ Bn0 , there exists some v ∈ Kφ with ‖v‖ < ‖u‖ such that

sup
u∗∈F(u)

〈u∗, η(v,u)〉 + φ(v) − φ(u) + J◦(û; Tη(v,u)) ≤ 0.

(C) There exists n0 ∈ N such that for every u ∈ Kφ \ Bn0 , there exists some v ∈ Kφ with ‖v‖ < ‖u‖ such that

sup
u∗∈F(u)

〈u∗, η(v,u)〉 + φ(v) − φ(u) +

∫
Ω

j◦(x, û(x); Tη(v,u)(x)) < 0.

Then we have

(i) (A)⇒(B), if F is stably (φ, η)-quasimonotone with respect to the set U(J,T).
(ii) (C)⇒(B), if J(ϕ) =

∫
Ω

j(x, ϕ(x))dx, j satisfies the conditions (4) and (5) or (4) and (6)-(7).

Proof. (i) If D = ∅, since V0 is nonempty and contained in a weakly compact subset V1 of Kφ, then there
exists a number number M < ∞ such that ‖z‖ < M for all z ∈ V0. Taking n0 = M, we obtain that for every
u ∈ Kφ \ Bn0 , there exists some v ∈ V0 , ∅ such that v ∈ Bn0 and

inf
v∗∈F(v)

〈v∗, η(v,u)〉 + φ(v) − φ(u) + J◦(û; Tη(v,u)) < 0. (19)

If D , ∅, then D is weakly compact. Since D ∪ V0 ⊂ D ∪ V1, which is a weakly compact subset, we
conclude that there exists a number number M < ∞ such that ‖z‖ < M for all z ∈ D ∪ V0. Taking n0 = M,
for every u ∈ Kφ \ Bn0 , we deduce that u < D and so there exists some v ∈ V0 , ∅ such that v ∈ Bn0 and (19)
holds.

Hence, no matter the set D is empty or not, there exists n0 ∈ N such that, for any u ∈ Kφ \Bn0 , there exists
v ∈ Bn0 such that (19) holds. Therefore,

inf
v∗∈F(v)

〈v∗, η(v,u)〉 + φ(v) − φ(u) + J◦(û; Tη(v,u)) = inf
v∗∈F(v)

〈v∗, η(v,u)〉 + φ(v) − φ(u) + 〈z∗u, η(v,u)〉 < 0, (20)

which together with the skew property of η, implies that

sup
v∗∈F(v)

〈v∗ − (−z∗u), η(u, v)〉 + φ(u) − φ(v) > 0.
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Using the stable (φ, η)-quasimonotonicity of F with respect to the set U(J,T), we have

inf
u∗∈F(u)

〈u∗ − (−z∗u), η(u, v)〉 + φ(u) − φ(v) ≥ 0,

which together with the skew property of η, implies that

sup
u∗∈F(u)

〈u∗, η(v,u)〉 + φ(v) − φ(u) + J◦(û; Tη(v,u)) ≤ 0.

This verifies (B).
(ii) By Lemma 2.2, we have∫

Ω

j◦(x, û(x); Tη(v,u)(x))dx ≥ J◦(û; Tη(v,u)), ∀u, v ∈ X.

Combining with (C), we get (B).

Theorem 3.5. Let η : X × X → X be a skew mapping that is affine in the first variable and weakly continuous
in the second variable. Let the Clarke’s generalized directional derivative J◦(·, ·) be bi-sequentially weakly upper
semicontinuous w.r.t. linear compact operator T. Assume that K is a nonempty, closed, unbounded and convex
subset of X and φ : X → R ∪ {+∞} be a proper, convex and lower semicontinuous function such that Kφ , ∅. Let
F : K → 2X∗ be a lower hemicontinuous set-valued mapping and stably (φ, η)-quasimonotone w.r.t. the set U(J,T),
where U(J,T) is defined as (9)(2.6). Further, we suppose j satisfies the conditions (4) and (5) or (4) and (6)-(7). If the
condition (B) holds, then the (VHVLIP) admits at least one solution.

Proof. Take m > n0. Since Bm is bounded and convex, from (14) or (17) in Theorem 3.2, we conclude that
there exist um ∈ Bm ∩ domφ and u∗m ∈ F(um) such that

〈u∗m, η(v,um)〉 + φ(v) − φ(um) + J◦(ûm; Tη(v,um)) ≥ 0, ∀v ∈ Bm ∩ domφ. (21)

(i) If ‖um‖ = m, then ‖um‖ > n0. Since the condition (B) holds, there is some v0 ∈ Kφ with ‖v0‖ < ‖um‖

such that

〈u∗m, η(v0,um)〉 + φ(v0) − φ(um) + J◦(ûm; Tη(v0,um)) ≤ 0. (22)

Let v ∈ Kφ be arbitrarily fixed. Since ‖v0‖ < ‖um‖ = m, there is t ∈ (0, 1) such that vt := v0 + t(v − v0) ∈
Bm ∩ domφ. Note that T is a linear mapping and φ is convex. It follows from (21), (22), Lemma 2.1 (i) and
the affinity of η in the first variable that

0 ≤ 〈u∗m, η(vt,um)〉 + φ(vt) − φ(um) + J◦(ûm; Tη(vt,um))
= 〈u∗m, η(v0 + t(v − v0),um)〉 + φ(v0 + t(v − v0)) − φ(um) + J◦(ûm; Tη(v0 + t(v − v0),um))
≤ (1 − t)[〈u∗m, η(v0,um)〉 + φ(v0) − φ(um) + J◦(ûm; Tη(v0,um))]

+ t[〈u∗m, η(v,um)〉 + φ(v) − φ(um) + J◦(ûm; Tη(v,um))]
≤ t[〈u∗m, η(v,um)〉 + φ(v) − φ(um) + J◦(ûm; Tη(v,um))], ∀v ∈ Kφ.

(23)

Therefore, this together with t ∈ (0, 1) implies that

〈u∗m, η(v,um)〉 + φ(v) − φ(um) + J◦(ûm; Tη(v,um)) ≥ 0, ∀v ∈ Kφ. (24)

(ii) If ‖um‖ < m, then for any v ∈ Kφ, there is some t ∈ (0, 1) such that vt := um + t(v − um) ∈ Bm ∩ domφ.
Note that T is a linear mapping and φ is a convex function. It follows from (21) and (i) of Lemma 2.1, that

0 ≤ 〈u∗m, η(vt,um)〉 + φ(vt) − φ(um) + J◦(ûm; Tη(vt,um))
≤ t[〈u∗m, η(v,um)〉 + φ(v) − φ(um) + J◦(ûm; Tη(v,um))], ∀v ∈ Kφ.
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Therefore, this together with t ∈ (0, 1) implies that (24) also holds.
Since J(ϕ) =

∫
Ω

j(x, ϕ(x))dx and j satisfies the conditions (4) and (5) or (4) and (6)-(7), by Lemma 2.2, we
have ∫

Ω

j◦(x, û(x); (Tη(v,u))(x))dx ≥ J◦(û; Tη(v,u)), ∀u, v ∈ X,

and so

〈u∗m, η(v,um)〉 + φ(v) − φ(um) +

∫
Ω

j◦(x, ûm(x); (Tη(v,um))(x))dx

≥ 〈u∗m, η(v,um)〉 + φ(v) − φ(um) + J◦(ûm; Tη(v,um))
≥ 0, ∀v ∈ Kφ.

(25)

If v′ ∈ K \ domφ, then φ(v′) = +∞ and thus the inequality in (25) holds automatically. This together with
(25) shows that um ∈ Kφ is a solution of (VHVLIP).

Remark 3.6. Theorem 3.5 generalizes and extends Theorem 4.2 of [34] from the variational-hemivariational inequality
problem (VHVIP) to the variational-hemivariational-like inequality problem (VHVLIP). It also generalizes and
extends Theorem 3.2 of [46] from the hemivariational inequality problem (HVIP) to the variational-hemivariational-
like inequality problem (VHVLIP). In addition, Theorem 3.5 also generalizes and improves Theorem 2 of [12] by
extending F from single-valued case to set-valued one and relaxing the corresponding coercivity condition and stable
η-pseudomonotonicity of the operator in [12] with η(u, v) = u − v,∀u, v ∈ X.

If the constraint set K is bounded, then the solution set of the (VHVLIP) is obviously bounded. In the
case when the constraint set K is unbounded, the solution set of the (VHVLIP) may be unbounded. In the
sequel, we provide a sufficient condition to the boundedness of the solution set of the (VHVLIP), when K
is unbounded. The following theorem generalizes and extends Theorem 4.3 of [34] from the variational-
hemivariational inequality problem (VHVIP) to the variational-hemivariational-like inequality problem
(VHVLIP). Meantime, it also generalizes and extends Theorem 3.3 of [46].

Theorem 3.7. Let η : X × X → X be a skew mapping that is affine in the first variable and weakly continuous
in the second variable. Let the Clarke’s generalized directional derivative J◦(·, ·) be bi-sequentially weakly upper
semicontinuous w.r.t. linear compact operator T. Assume that K is a nonempty, closed, unbounded and convex
subset of X and φ : X → R ∪ {+∞} be a proper, convex and lower semicontinuous function such that Kφ , ∅. Let
F : K → 2X∗ be a lower hemicontinuous set-valued mapping and stably (φ, η)-quasimonotone w.r.t. the set U(J,T),
where U(J,T) is defined as (9). Further, we suppose j satisfies the conditions (4) and (5) or (4) and (6)-(7). If the
condition (C) holds, then the solution set of (VHVLIP) is nonempty and bounded.

Proof. From Proposition 3.4, we get (C)⇒(B). By Theorem 3.5, we know that the solution set of (VHVLIP) is
nonempty. If the solution set is unbounded, then there exist u0 ∈ Kφ and u∗0 ∈ F(u0) such that ‖u0‖ > n0 and

〈u∗0, η(v,u0)〉 + φ(v) − φ(u0) +

∫
Ω

j◦(x, û0(x); (Tη(v,u0))(x))dx ≥ 0, ∀v ∈ K. (26)

Since ‖u0‖ > n0, by the condition (C), there exists v0 ∈ Kφ with ‖v0‖ < ‖u0‖ such that

sup
u∗∈F(u0)

〈u∗, η(v0,u0)〉 + φ(v0) − φ(u0) +

∫
Ω

j◦(x, û0(x); (Tη(v0,u0))(x))dx < 0,

which contradicts (26). Hence, the solution set is bounded.

Using a similar technique to that used in [6, 30], we are also able to provide a necessary and sufficient
condition for the (VHVLIP).
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Theorem 3.8. Let η : X × X→ X be a skew mapping that is affine in the first variable. Let T : X→ Lp(Ω; Rk) be a
linear compact operator, where 1 < p < ∞, k ≥ 1 and Ω is a bounded open set in RN. Assume that K is a nonempty,
closed and convex subset of X and φ : X → R ∪ {+∞} be a proper, convex and lower semicontinuous function such
that Kφ , ∅. Further, we suppose j satisfies the conditions (4) and (5) or (4) and (6)-(7). Then a necessary and
sufficient condition for the (VHVLIP) to have a solution is that there exists r > 0 with the property that at least one
solution of the problem:

find ur ∈ Kφ ∩ Br and u∗r ∈ F(ur) such that

Problem Pr : 〈u∗r, η(v,ur)〉 + φ(v) − φ(ur) +
∫

Ω
j◦(x, ûr(x); (Tη(v,ur))(x))dx ≥ 0, ∀v ∈ K ∩ Br, (27)

satisfies the inequality ‖ur‖ < r.

Proof. The necessity is evident.
Let us now suppose that there exists a solution ur of the problem (Pr) with ‖ur‖ < r. We now prove that

ur is a solution of the (VHVLIP). For any fixed v ∈ K, we choose ε > 0 enough small so that w = ur +ε(v−ur)
satisfies ‖w‖ < r. Hence, it follows from (27), the linearity of T and the affinity of η in the first variable with
η(ur,ur) = 0 that

0 ≤ 〈u∗r, η(w,ur)〉 + φ(w) − φ(ur) +

∫
Ω

j◦(x, ûr(x); (Tη(w,ur))(x))dx

= 〈u∗r, εη(v,ur)〉 + φ(ur + ε(v − ur)) − φ(ur) +

∫
Ω

j◦(x, ûr(x); ε(Tη(v,ur))(x))dx.

Using the convexity of φ and the positive homogeneity of the map v 7→ j◦(u; v), the conclusion follows.

Remark 3.9. If η(u, v) = u− v for all u, v ∈ X, then Theorem 3.8 reduces to Theorem 4.4 of [34]. If F is single-valued
and φ = IK additionally, then Theorem 3.8 reduces to Theorem 3 of Panagiotopoulos et al. [30]. Theorem 3.8 is also a
generalization of Theorem 3.1.7 in [20].

4. Concluding remarks

In this paper, we study the existence of solutions for a class of variational-hemivariational-like inequal-
ities in reflexive Banach spaces. Using the notion of the stable (φ, η)-quasimonotonicity and the properties
of Clarke’s generalized directional derivative and Clarke’s generalized gradient, we prove some existence
results of solutions when the constrained set is nonempty, bounded (or unbounded), closed and convex. On
the other hand, a sufficient condition to the boundedness of the solution set and a necessary and sufficient
condition to the existence of solutions are also derived. The results presented in this paper generalize and
improve some known results in the earlier and recent literature.

The purpose of this paper is to generalize and extend the main results (i.e., Theorems 4.1-4.4) of
Tang and Huang [34] from the variational-hemivariational inequality problem (VHVIP) to the variational-
hemivariational-like inequality problem (VHVLIP). To accomplish this end, we make some requirements
which are more general than those in Theorems 4.1-4.4 of [34], for example, let η : X × X → X be a skew
mapping that is affine in the first variable and weakly continuous in the second variable; and let F : K→ 2X∗

be a stably (φ, η)-quasimonotone w.r.t. the set U(J,T), where U(J,T) is defined as (9). In addition, by assuming
the bi-sequentially weakly upper semicontinuity of J◦(·, ·) w.r.t. linear compact operator T, for Case (ii) in the
proof of Theorem 3.2, we make sure that the mapping u 7→ infv∗∈F(v)〈v∗, η(v,u)〉+φ(v)−φ(u) + J◦(û; Tη(v,u))
is weakly upper semicontinuous. So, it is known that G(v) is weakly compact for each v ∈ Kφ. Therefore,
the requirement that the Clarke’s generalized directional derivative J◦(·, ·) is bi-sequentially weakly upper
semicontinuous w.r.t. linear compact operator T, plays a crucial role in the generalization of Theorems
4.1-4.4 of Tang and Huang [34],
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