Filomat 32:10 (2018), 3657–3665 https://doi.org/10.2298/FIL1810657A

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On the Graph of Modules Over Commutative Rings II

Habibollah Ansari-Toroghy^a, Shokoufeh Habibi^a, Masoomeh Hezarjaribi^b

^aDepartment of pure Mathematics, Faculty of mathematical Sciences, University of Guilan, P. O. Box 41335-19141 Rasht, Iran. ^bDepartment of Mathematics, Payame Noor University (PNU), P.O. Box 19395-3697, Tehran, Iran.

Abstract. Let *M* be a module over a commutative ring *R*. In this paper, we continue our study about the quasi-Zariski topology-graph $G(\tau_T^*)$ which was introduced in (On the graph of modules over commutative rings, Rocky Mountain J. Math. 46(3) (2016), 1–19). For a non-empty subset *T* of *Spec*(*M*), we obtain useful characterizations for those modules *M* for which $G(\tau_T^*)$ is a bipartite graph. Also, we prove that if $G(\tau_T^*)$ is a tree, then $G(\tau_T^*)$ is a star graph. Moreover, we study coloring of quasi-Zariski topology-graphs and investigate the interplay between $\chi(G(\tau_T^*))$ and $\omega(G(\tau_T^*))$.

1. Introduction

Throughout this paper *R* is a commutative ring with a non-zero identity and *M* is a unital *R*-module. By $N \le M$ (resp. N < M) we mean that *N* is a submodule (resp. proper submodule) of *M*.

Define $(N :_R M)$ or simply $(N : M) = \{r \in R | rM \subseteq N\}$ for any $N \leq M$. We denote ((0) : M) by $Ann_R(M)$ or simply Ann(M). *M* is said to be faithful if Ann(M) = (0).

Let $N, K \leq M$. Then the product of N and K, denoted by NK, is defined by (N : M)(K : M)M (see [3]).

A prime submodule of *M* is a submodule $P \neq M$ such that whenever $re \in P$ for some $r \in R$ and $e \in M$, we have $r \in (P : M)$ or $e \in P$ [13].

The prime spectrum of M is the set of all prime submodules of M and denoted by Spec(M).

There are many papers on assigning graphs to rings or modules (see, for example, [1, 4–7, 9, 16]). In [5], the present authors introduced and studied the graph $G(\tau_T^*)$ (resp. AG(M)), called the *quasi-Zariski* topology-graph (resp. the annihilating-submodule graph), where *T* is a non-empty subset of *Spec*(*M*).

AG(M) is an undirected graph with vertices $V(AG(M)) = \{N \le M | \text{there exists } (0) \ne K < M \text{ with } NK = (0)\}$. In this graph, distinct vertices $N, L \in V(AG(M))$ are adjacent if and only if NL = (0). Let $AG(M)^*$ be the subgraph of AG(M) with vertices $V(AG(M)^*) = \{N < M \text{ with } (N : M) \ne Ann(M) | \text{ there exists a submodule } K < M \text{ with } (K : M) \ne Ann(M) \text{ and } NK = (0)\}$. By [4, Theorem 3.4], one conclude that $AG(M)^*$ is a connected subgraph.

 $G(\tau_T^*)$ is an undirected graph with vertices $V(G(\tau_T^*)) = \{N < M | \text{ there exists } K < M \text{ such that } V^*(N) \cup V^*(K) = T \text{ and } V^*(N), V^*(K) \neq T \}$ and distinct vertices N and L are adjacent if and only if $V^*(N) \cup V^*(L) = T$ (see [5, Definition 2.1]).

²⁰¹⁰ Mathematics Subject Classification. Primary 13C13; Secondary 13C99

Keywords. prime submodule, top module, quasi-Zariski topology, graph, vertices, annihilating-submodule

Received: 03 October 2017; Accepted: 30 April 2018

Communicated by Dijana Mosić

Email addresses: ansari@guilan.ac.ir (Habibollah Ansari-Toroghy), habibishk@gmail.com (Shokoufeh Habibi), masoomeh.hezarjaribi@pnu.ac.ir (Masoomeh Hezarjaribi)

For any submodule *N* of *M*, $V^*(N)$ is the set of all prime submodules of *M* containing *N*. Of course, $V^*(M)$ is the empty set and $V^*(0)$ is Spec(M). Note that for any family of submodules N_i ($i \in I$) of *M*, $\cap V^*(N_i) = V^*(\Sigma_{i \in I}N_i)$. Thus if $Z^*(M)$ denotes the collection of all subsets $V^*(N)$ of Spec(M), then $Z^*(M)$ contains the empty set and Spec(M), and $Z^*(M)$ is closed under arbitrary intersections. If $Z^*(M)$ is closed under finite unions, i.e. for any submodules *N* and *K* of *M*, there exists a submodule *L* of *M* such that $V^*(N) \cup V^*(K) = V^*(L)$, for in this case $Z^*(M)$ satisfies the axioms for the closed subsets of a topological space and *M* is called a top module for short. The *quasi-Zariski topology* on X = Spec(M) is the topology τ^*_M described by taking the set $Z^*(M) = \{V^*(N) | N$ is a submodule of *M*} as the set of closed sets of $Spec_R(M)$, where $V^*(N) = \{P \in X | P \supseteq N\}$ [15].

If $Spec(M) \neq \emptyset$, the mapping $\psi : Spec(M) \rightarrow Spec(R/Ann(M))$ such that $\psi(P) = (P : M)/Ann(M)$ for every $P \in Spec(M)$, is called the *natural map* of Spec(M) [14].

A topological space *X* is irreducible if for any decomposition $X = X_1 \cup X_2$ with closed subsets X_i of *X* with i = 1, 2, we have $X = X_1$ or $X = X_2$

The prime radical \sqrt{N} is defined to be the intersection of all prime submodules of *M* containing *N*, and in case *N* is not contained in any prime submodule, \sqrt{N} is defined to be *M* [13].

We recall that N < M is said to be a semiprime submodule of M if for every ideal I of R and every submodule K of M with $I^2K \subseteq N$ implies that $IK \subseteq N$. Further M is called a semiprime module if $(0) \subseteq M$ is a semiprime submodule. Every intersection of prime submodules is a semiprime submodule (see [17]).

The notations Nil(R), Min(M), and Min(T) will denote the set of all nilpotent elements of R and the set of all minimal prime submodules of M, and the set of minimal members of T, respectively.

A clique of a graph is a complete subgraph and the supremum of the sizes of cliques in *G*, denoted by $\omega(G)$, is called the clique number of *G*. Let $\chi(G)$ denote the chromatic number of the graph *G*, that is, the minimal number of colors needed to color the vertices of *G* so that no two adjacent vertices have the same color. Obviously $\chi(G) \ge \omega(G)$.

In this article, we continue our studying about $G(\tau_T^*)$ and AG(M) and we try to relate the combinatorial properties of the above mentioned graphs to the algebraic properties of M.

In section 2 of this paper, we state some properties related to the quasi-Zariski topology-graph that are basic or needed in the later sections. In section 3, we study the bipartite quasi-Zariski topology-graphs of modules over commutative rings (see Proposition 3.1). Also, we prove that if $G(\tau_T^*)$ is a tree, then $G(\tau_T^*)$ is a star graph (see Theorem 3.5). In section 4, we study coloring of the quasi-Zariski topology-graph of modules and investigate the interplay between $\chi(G(\tau_T^*))$ and $\omega(G(\tau_T^*))$. We show that under condition over minimal submodules of $M / \bigcap_{P \in T} P$, we have $\omega(G(\tau_T^*)) = \chi(G(\tau_T^*))$ (see Theorem 4.1). Moreover, we investigate some relations between the existence of cycles in the quasi-Zariski topology-graph of a cyclic module and the number of its minimal members of T (see Proposition 4.9).

Let us introduce some graphical notions and denotations that are used in what follows: A graph *G* is an ordered triple (*V*(*G*), *E*(*G*), ψ_G) consisting of a nonempty set of vertices, *V*(*G*), a set *E*(*G*) of edges, and an incident function ψ_G that associates an unordered pair of distinct vertices with each edge. The edge *e* joins *x* and *y* if $\psi_G(e) = \{x, y\}$, and we say *x* and *y* are adjacent. A path in graph *G* is a finite sequence of vertices $\{x_0, x_1, \dots, x_n\}$, where x_{i-1} and x_i are adjacent for each $1 \le i \le n$ and we denote $x_{i-1} - x_i$ for existing an edge between x_{i-1} and x_i .

A graph *H* is a subgraph of *G*, if $V(H) \subseteq V(G)$, $E(H) \subseteq E(G)$, and ψ_H is the restriction of ψ_G to E(H). A bipartite graph is a graph whose vertices can be divided into two disjoint sets *U* and *V* such that every edge connects a vertex in *U* to one in *V*; that is, *U* and *V* are each independent sets and complete bipartite graph on *n* and *m* vertices, denoted by $K_{n,m}$, where *V* and *U* are of size *n* and *m*, respectively, and E(G) connects every vertex in *V* with all vertices in *U*. Note that a graph $K_{1,m}$ is called a star graph and the vertex in the singleton partition is called the center of the graph. For some $U \subseteq V(G)$, we denote by N(U), the set of all vertices of $G \setminus U$ adjacent to at least one vertex of *U*. For every vertex $v \in V(G)$, the size of N(v) is denoted by deg(v). If all the vertices of *G* have the same degree *k*, then *G* is called *k*-regular, or simply regular. We denote by C_n a cycle of order *n*. Let *G* and *G'* be two graphs. A graph homomorphism from *G* to *G'* is a mapping $\phi : V(G) \longrightarrow V(G')$ such that for every edge $\{u, v\}$ of $G, \{\phi(u), \phi(v)\}$ is an edge of *G'*. A retract of *G* is a subgraph *H* of *G* such that there exists a homomorphism $\phi : G \longrightarrow H$ such that $\phi(x) = x$, for every

vertex *x* of *H*. The homomorphism ϕ is called the retract (graph) homomorphism (see [10]).

Throughout the rest of this paper, we denote: *T* is a non-empty subset of Spec(M), $Q := \bigcap_{P \in T} P$, $\overline{M} := M/Q$, $\overline{N} := N/Q$, $\overline{m} := m + Q$, and $\overline{I} := I/(Q : M)$, where *N* is a submodule of *M* containing *Q*, $m \in M$, and *I* is an ideal of *R* containing (*Q* : *M*).

2. Auxiliary results

In this section, we provide some properties related to the quasi-Zariski topology-graph that are basic or needed in the sequel. Throughout this paper M is a top module and by [15, Theorem 3.5], every multiplication module is a top module.

Remark 2.1. By [15, Lemma 2.1], if M is a top module, then for every pair of submodules N and L of M, we have $V^*(N) \cup V^*(L) = V^*(\sqrt{N}) \cup V^*(\sqrt{L}) = V^*(\sqrt{N} \cap \sqrt{L})$. By [5, Proposition 2.3], we have T is a closed subset of Spec(M) if and only if $T = V^*(\bigcap_{P \in T} P)$ and $G(\tau^*_T) \neq \emptyset$ if and only if $T = V^*(\bigcap_{P \in T} P)$ and T is not irreducible. So if N and K are adjacent in $G(\tau^*_T)$, then $\sqrt{N} \cap \sqrt{K} = \bigcap_{P \in T} P$. Therefore $\bigcap_{P \in T} P \subseteq \sqrt{N}$, \sqrt{K} .

Lemma 2.2. (See [2, Proposition 7.6].) Let $R_1, R_2, ..., R_n$ be non-zero ideals of R. Then the following statements are equivalent:

- (a) $R = R_1 \oplus \ldots \oplus R_n$;
- (b) As an abelian group R is the direct sum of R_1, \ldots, R_n ;
- (c) There exist pairwise orthogonal idempotents e_1, \ldots, e_n with $1 = e_1 + \ldots + e_n$, and $R_i = Re_i$, $i = 1, \ldots, n$.

Proposition 2.3. Suppose that e is an idempotent element of R. We have the following statements.

- (a) $R = R_1 \oplus R_2$, where $R_1 = eR$ and $R_2 = (1 e)R$.
- (b) $M = M_1 \oplus M_2$, where $M_1 = eM$ and $M_2 = (1 e)M$.
- (c) For every submodule N of M, $N = N_1 \oplus N_2$ such that N_1 is an R_1 -submodule M_1 , N_2 is an R_2 -submodule M_2 , and $(N :_R M) = (N_1 :_{R_1} M_1) \oplus (N_2 :_{R_2} M_2)$.
- (*d*) For submodules N and K of M, $NK = N_1K_1 \oplus N_2K_2$, $N \cap K = N_1 \cap K_1 \oplus N_2 \cap K_2$ such that $N = N_1 \oplus N_2$ and $K = K_1 \oplus K_2$.
- (e) Prime submodules of M are $P \oplus M_2$ and $M_1 \oplus Q$, where P and Q are prime submodules of M_1 and M_2 , respectively.
- (f) For submodule N of M, we have $\sqrt{N} = \sqrt{N_1 \oplus N_2} = \sqrt{N_1} \oplus \sqrt{N_2}$, where $N = N_1 \oplus N_2$.

Proof. This is clear. \Box

An ideal *I* < *R* is said to be nil if *I* consist of nilpotent elements.

Lemma 2.4. (See [12, Theorem 21.28].) Let I be a nil ideal in R and $u \in R$ be such that u + I is an idempotent in *R*/I. Then there exists an idempotent *e* in *u*R such that $e - u \in I$.

Lemma 2.5. (See [6, Lemma 2.4].) Let N be a minimal submodule of M and let Ann(M) be a nil ideal. Then we have $N^2 = (0)$ or N = eM for some idempotent $e \in R$.

Lemma 2.6. Assume that T is a closed subset of Spec(M) and \overline{M} is a multiplication module. Then $AG(\overline{M})$ is isomorphic with a (an induced) subgraph of $G(\tau_T^*)$.

Proof. Let $\overline{N} \in V(AG(\overline{M}))$. Then there exists a nonzero submodule \overline{K} of \overline{M} such that it is adjacent to \overline{N} . So we have $NK \subseteq Q$. Hence $V^*(NK) = T$. If $V^*(N) = T$, then N = Q, a contradiction. Hence N is a vertex in $G(\tau_{\tau}^*)$ which is adjacent to K. \Box

Lemma 2.7. If \overline{M} is a faithful multiplication module, then $G(\tau^*_{Spec(M)})$ and AG(M) are the same.

Proof. \overline{M} is a faithful module so that T = Spec(M). If $G(\tau^*_{Spec(M)}) \neq \emptyset$, then there exist non-trivial submodules N and K of M which is adjacent in $G(\tau^*_{Spec(M)})$. Hence $V^*(NK) = Spec(M)$ which implies that NK = (0) so that $AG(M) \neq \emptyset$. By Lemma 2.6, AG(M) is isomorphic with a subgraph of $G(\tau^*_{Spec(M)})$. One can see that the vertex map $\phi : V(G(\tau^*_{Spec(M)})) \longrightarrow V(AG(M))$, defined by $N \longrightarrow N$ is an isomorphism. \Box

Recall that $\Delta(G(\tau_T^*))$ is the maximum degree of $G(\tau_T^*)$ and the length of an *R*-module *M*, is denoted by $l_R(M)$.

Lemma 2.8. Let every nontrivial submodule of M be a vertex in $G(\tau_T^*)$. If $\Delta(G(\tau_T^*)) < \infty$, then $l_R(M) \le \Delta(G(\tau_T^*)) + 1$. Also, every non-trivial submodule of M has finitely many submodules.

Proof. Straightforward.

Theorem 2.9. Let \overline{M} be a multiplication module and $G(\tau_T^*) \neq \emptyset$. Then M has acc (resp. dcc) on vertices of $G(\tau_T^*)$ if and only if \overline{M} is a Noetherian (resp. an Artinian) module.

Proof. Suppose that $G(\tau_T^*)$ has acc (resp. dcc) on vertices. By [5, Proposition 2.3 (iii)], \overline{M} is not a prime module and hence there exist $r \in R$ and $\overline{m} \in \overline{M}$ such that $r\overline{m} = \overline{0}$ but $\overline{m} \neq \overline{0}$ and $r \notin Ann(\overline{M})$. Now $\overline{rM} \cong \overline{M}/(\overline{0}:_{\overline{M}} r)$. Further, \overline{rM} and $(\overline{0}:_{\overline{M}} r)$ are vertices because $(\overline{0}:_{\overline{M}} r)(\overline{rM}) = ((\overline{0}:_{\overline{M}} r):\overline{M})(\overline{rM}:\overline{M})\overline{M} \subseteq \overline{rM}((\overline{0}:_{\overline{M}} r):\overline{M}) \subseteq r(\overline{0}:_{\overline{M}} r) = \overline{0}$. Then $\{\overline{N} \mid \overline{N} \leq \overline{M}, \overline{N} \subseteq \overline{rM}\} \cup \{\overline{N} \mid \overline{N} \leq \overline{M}, \overline{N} \subseteq (\overline{0}:_{\overline{M}} r)\} \subseteq V(G(\tau_T^*))$. It follows that the *R*-modules \overline{rM} and $(\overline{0}:_{\overline{M}} r)$ have acc (resp. dcc) on submodules. Since $\overline{rM} \cong \overline{M}/(\overline{0}:_{\overline{M}} r)$, \overline{M} has acc on submodules and the proof is completed. \Box

3. Quasi-Zariski topology-graph of modules

First, in this section we give the more notation to be used throughout the remainder of this article. Suppose that $e \ (e \neq 0, 1)$ is an idempotent element of R. Let $M_1 := eM, M_2 := (1 - e)M, T_1 := \{P_1 \in Spec(M_1) | P_1 \oplus M_2 \in T\}, T_2 := \{P_2 \in Spec(M_2) | M_1 \oplus P_2 \in T\}, Q_1 := \cap_{P_1 \in T_1} P_1, Q_2 := \cap_{P_2 \in T_2} P_2, \overline{M_1} = \overline{eM} = eM/Q_1,$ and $\overline{M_2} = (e - 1)M = (e - 1)M/Q_2$. Consequently we have, $Q = Q_1 \oplus Q_2$, where $Q = \cap_{P \in T} P$ and $\overline{M} \cong \overline{M_1} \oplus \overline{M_2}$ We recall that a submodule N of M is a prime R-module if and only if it is a prime R/Ann(M)-module

(see [4, Result 1.2]).

Proposition 3.1. Suppose that \overline{M} is a multiplication module. Then the following statements hold.

- (a) If there exists a vertex of $G(\tau_T^*)$ which is adjacent to every other vertex, then $\overline{M} \cong \overline{M}_1 \oplus \overline{M}_2$, where \overline{M}_1 is a simple module and \overline{M}_2 is a prime module for some idempotent element $e \in \mathbb{R}$.
- (b) If \overline{M}_1 and \overline{M}_2 are prime modules for some idempotent element $e \in R$, then $G(\tau_T^*)$ is a complete bipartite graph.

Proof. (*a*) Suppose that *N* is adjacent to every other vertex of $G(\tau_T^*)$. Since $V^*(N) = V^*(\sqrt{N})$, we have $N = \sqrt{N}$. It is clear that \overline{N} is a minimal submodule of \overline{M} . We have $(\overline{N})^2 \neq (0)$ because $V^*(N) \neq T$. Then Lemma 2.5, implies that $\overline{M} \cong \overline{eM} \oplus (\overline{e} - 1)M$ for some idempotent element *e* of *R*. Without loss of generality we may assume that $M_1 \oplus Q_2$ is adjacent to every other vertex. We claim that \overline{M}_1 is a simple module and \overline{M}_2 is a prime module. Let $Q_1 \subsetneq K < M_1$. We have $V^*(K \oplus Q_2) \neq T$ because $Q_1 \oplus Q_2 \subsetneq K \oplus Q_2$. Since $V^*(K \oplus Q_2) \cup V^*(Q_1 \oplus M_2) = T$, we have $K \oplus Q_2$ is a vertex and hence is adjacent to $M_1 \oplus Q_2$. Therefore $V^*(K \oplus Q_2) \cup V^*(M_1 \oplus Q_2) = V^*(K \oplus Q_2) = T$, a contradiction. It implies that \overline{M}_1 is a simple module. Now, we

show that \overline{M}_2 is a prime module. It is enough to show that is a prime $R/(Q_2 : M_2)$ -module. Otherwise, $\overline{IK} = (\overline{0})$, where $(Q_2 : M_2) \subsetneq I < R$ and $Q_2 \subsetneq K < M$. It follows that $V^*(M_1 \oplus K) \cup V^*(Q_1 \oplus IM_2) = V^*(Q_1 \oplus K(IM_2)) = T$ because $K(IM_2) \subseteq IK \subseteq Q_2$ and $(Q_2 : M_2)^2 M_2 \subseteq K(IM_2)$. Therefore $V^*(M_1 \oplus K) \cup V^*(M_1 \oplus Q_2) = T = V^*(M_1 \oplus Q_2)$, a contradiction.

(b) Assume that $N_1 \oplus N_2$ is adjacent to $K_1 \oplus K_2$. One can see that $\sqrt{N_1K_1} \oplus \sqrt{N_2K_2} = \sqrt{Q_1} \oplus \sqrt{Q_2}$. It implies that $(\sqrt{(K_1:M_1)M_1:M_1})$ $\sqrt{(N_1:M_1)M_1} = (\bar{0})$ and $(\sqrt{(K_2:M_2)M_2:M_2})$ $\sqrt{(N_2:M_2)M_2} = (\bar{0})$. Since M_1 and M_2 are prime modules, $(\sqrt{(K_1:M_1)M_1}:M_1) = (Q_1:M_1)$ or $\sqrt{(N_1:M_1)M_1} = Q_1$ and $(\sqrt{(K_2:M_2)M_2}:M_2) = (Q_2:M_2)$ or $\sqrt{(N_2:M_2)M_2} = Q_2$. Therefore $G(\tau_T^*)$ is a complete bipartite graph with two parts U and V such that $N \in U$ if and only if $V^*(N) = V^*(M_1 \oplus Q_2)$ and $K \in V$ if and only if $V^*(K) = V^*(Q_1 \oplus M_2)$. \Box

Corollary 3.2. Let \overline{M} be a faithful multiplication module. Then the following statements are equivalent.

- (a) There is a vertex of $G(\tau^*_{Spec(M)})$ which is adjacent to every other vertex of $G(\tau^*_{Spec(M)})$.
- (b) $G(\tau^*_{Svec(M)})$ is a star graph.
- (c) $M = F \oplus D$, where F is a simple module and D is a prime module.

Proof. (*a*) \Rightarrow (*b*) Let \overline{M} be a faithful module. Then Q = (0) and we have T = Spec(M). By Proposition 3.1, $M = M_1 \oplus M_2$, where M_1 is a simple module and M_2 is a prime module. Then every non-zero submodule of M is of the form $M_1 \oplus N_2$ and $(0) \oplus N_2$, where N_2 is a non-zero submodule of M_2 . By our hypothesis, we can not have any vertex of the form $M_1 \oplus N_2$, where N_2 is a non-zero proper submodule of M_2 . Also $M_1 \oplus (0)$ is adjacent to every other vertex, and non of the submodules of the form $(0) \oplus N_2$ can be adjacent to each other. So $G(\tau^*_{Spec(M)})$ is a star graph.

 $(b) \Rightarrow (c)$ This follows by Proposition 3.1 (a).

(*c*) ⇒ (*a*) Assume that $M = F \oplus D$, where *F* is a simple module and *D* is a prime module. It is easy to see that for some minimal submodule *N* of *M*, we have $N^2 \neq (0)$. Since *M* is a faithful module, Lemma 2.5 implies that $F \cong eM$, where *e* is an idempotent element of *R*. Finally Proposition 3.1 (a) completes the proof. \Box

Lemma 3.3. Let $e \in R$ be an idempotent element of R and let \overline{M} be a multiplication module. If $G(\tau_T^*)$ is a triangle-free graph, then both \overline{M}_1 and \overline{M}_2 are prime R-modules. Moreover, if $G(\tau_T^*)$ has no cycle, then \overline{M}_1 is a simple module and \overline{M}_2 is a prime module.

Proof. Without loss of generality, we can assume that \overline{M}_1 is a prime module. Then $\overline{IK} = (\overline{0})$, where $(Q_2 : M_2) \subseteq I < R$ and $Q_2 \subseteq K < M$. It follows that $V^*(M_1 \oplus K) \cup V^*(Q_1 \oplus IM_2) = V^*(Q_1 \oplus K(IM_2)) = T$ (if $IM_2 = K$, then $V^*(Q_1 \oplus K) = V^*(Q_1 \oplus K^2) = V^*(Q_1 \oplus K(IM_2)) = T$, a contradiction). So both \overline{M}_1 and \overline{M}_2 are prime *R*-modules. Now suppose that $G(\tau_T^*)$ has no cycle. If none of \overline{M}_1 and \overline{M}_2 is a simple module, then we choose non-trivial submodules N_i in M_i for some i = 1, 2. So $N_1 \oplus Q_2$, $Q_1 \oplus N_2$, $M_1 \oplus Q_2$, and $Q_1 \oplus M_2$ form a cycle, a contradiction. \Box

Corollary 3.4. Assume that \overline{M} is a multiplication module. Then $G(\tau_T^*)$ is a star graph if and only if \overline{M}_1 is a simple module and \overline{M}_2 is a prime module for some idempotent $e \in R$.

Proof. The necessity is clear by Proposition 3.1 (a). For the converse, assume that $\overline{M} = \overline{M}_1 \oplus \overline{M}_2$, where \overline{M}_1 is a simple module and \overline{M}_2 is a prime for some idempotent $e \in R$. Using the Proposition 3.1 (b), $G(\tau_T^*)$ is a complete bipartite graph with two parts U and V such that $N \in U$ if and only if $V^*(N) = V^*(M_1 \oplus Q_2)$ and $K \in V$ if and only if $V^*(K) = V^*(Q_1 \oplus M_2)$. We claim that |U| = 1. Otherwise, $V^*(M_1 \oplus Q_2) = V^*(N_1 \oplus Q_2)$, where $Q_1 \neq N_1 < M_1$. It follows that $\sqrt{(N_1 : M_1)M_1} = M_1$, a contradiction (note that if M is a multiplication module, then $\sqrt{N} \neq M$, where N < M). So $G(\tau_T^*)$ is a star graph. \Box

Theorem 3.5. If $G(\tau_T^*)$ is a tree, then $G(\tau_T^*)$ is a star graph.

Proof. Suppose that $G(\tau_T^*)$ is not a star graph. Then $G(\tau_T^*)$ has at least four vertices. Obviously, there are two adjacent vertices *L* and *K* of $G(\tau_T^*)$ such that $|N(L) \setminus \{K\}| \ge 1$ and $|N(K) \setminus \{L\}| \ge 1$. Let $N(L) \setminus \{K\} = \{L_i\}_{i \in \Lambda}$ and $N(K) \setminus \{L\} = \{K_j\}_{j \in \Gamma}$. Since $G(\tau_T^*)$ is a tree, we have $N(L) \cap N(K) = \emptyset$. By [5, Theorem 2.6], $diam(G(\tau_T^*)) \le 3$. So every edge of $G(\tau_T^*)$ is of the form $\{L, K\}$, $\{L, L_i\}$ or $\{K, K_j\}$, for some $i \in \Lambda$ and $j \in \Gamma$. Now, Pick $p \in \Lambda$ and $q \in \Gamma$. Since $G(\tau_T^*)$ is a tree, $\sqrt{L_p} \cap \sqrt{K_q}$ is a vertex of $G(\tau_T^*)$. If $\sqrt{L_p} \cap \sqrt{K_q} = L_u$ for some $u \in \Lambda$, then $V^*(K) \cup V^*(L_u) = T$, a contradiction. If $\sqrt{L_p} \cap \sqrt{K_q} = K_v$, for some $v \in \Gamma$, then $V^*(L) \cup V^*(K_v) = T$, a contradiction. So the claim is proved. \Box

Proposition 3.6. Let \overline{M} be a multiplication module. Then in each case of the following statements, |T| = 2 and $G(\tau_T^*) \cong K_2$.

- (a) *R* be an Artinian ring and $G(\tau_T^*)$ is a bipartite graph.
- (b) Ann (\overline{M}) is a nil ideal of R and $G(\tau_{\tau}^*)$ is a finite bipartite graph.
- (c) Ann (\overline{M}) is a nil ideal of R and $G(\tau_{\tau}^*)$ is a regular graph of finite degree.

Proof. (*a*) First we may assume that $G(\tau_T^*)$ is not empty. Then *R* can not be a local ring. Otherwise, $T = V^*(mM)$, where *m* is the unique maximal ideal of *R*. Therefore [5, Proposition 2.3] implies that mM = M and hence *T* is empty, a contradiction. Hence by [8, Theorem 8.9], $R = R_1 \oplus ... \oplus R_n$, where R_i is an Artinian local ring for i = 1, ..., n and $n \ge 2$. By Lemma 2.2 and Proposition 2.3, since $G(\tau_T^*)$ is a bipartite graph, we have n = 2 and hence $\overline{M} \cong \overline{M}_1 \oplus \overline{M}_2$ for some idempotent $e \in R$. If \overline{M}_1 is a prime module, then it is easy to see that \overline{M}_1 is a vector space over $R/Ann(\overline{M}_1)$ and so is a semisimple *R*-module. A Similar argument as we did in proof of Corollary 3.4 implies that |T| = 2 and $G(\tau_T^*) \cong K_2$.

(*b*) By Theorem 2.9, \overline{M} is an Artinian and Noetherian module so that $R/Ann(\overline{M})$ is an Artinian ring. A similar arguments in part (*a*) says that, $R/Ann(\overline{M})$ is a non-local ring. So by [8, Theorem 8.9] and Lemma 2.2, there exist pairwise orthogonal idempotents modulo $Ann(\overline{M})$. By lemma 2.4, $\overline{M} \cong \overline{M}_1 \oplus \overline{M}_2$, for some idempotent *e* of *R*. Now, the proof that $G(\tau_T^*) \cong K_2$ is similar to the proof of Corollary 3.4.

(*c*) We may assume that $G(\tau_T^*)$ is not empty. So \overline{M} is not a prime module by [5, Proposition 2.3] and a similar manner in proof of Theorem 2.9, shows that \overline{M} has a finite length so that $R/Ann(\overline{M})$ is an Artinian ring. As in the proof of part (b), $\overline{M} \cong \overline{M}_1 \oplus \overline{M}_2$ for some idempotent $e \in R$. If \overline{M}_1 has one non-trivial submodule N, then $deg(Q_1 \oplus M_2) > deg(N \oplus M_2)$ (we note that by [7, Proposition 2.5], $\overline{NK} = (\overline{0})$ for some $(\overline{0}) \neq \overline{K} < \overline{M}_1$) and this contradicts the regularity of $G(\tau_T^*)$. Hence \overline{M}_1 is a simple module. Finally a similar argument as we have seen in Corollary 3.4 gives $G(\tau_T^*) \cong K_2$. \Box

Theorem 3.7. Assume that \overline{M} is a multiplication module and $|Min(\overline{M})| \ge 3$. Then $G(\tau_{\tau}^*)$ contains a cycle.

Proof. If $G(\tau_T^*)$ is a tree, then by Theorem 3.5, $G(\tau_T^*)$ is a star graph. Suppose that $G(\tau_T^*)$ is a star graph. Then by Corollary 3.4, $\overline{M} \cong \overline{M_1} \oplus \overline{M_2}$, where $\overline{M_1}$ is a simple module and $\overline{M_2}$ is a prime module and hence by Proposition 2.3 (e), $Min(\overline{M}) = \{\overline{0} \oplus \overline{M_2}, \overline{M_1} \oplus \overline{0}\}$, that is $|Min(\overline{M})| = 2$, a contradiction. Therefore $G(\tau_T^*)$ contains a cycle.

4. Coloring of the quasi-Zariski topology-graph of modules

The purpose of this section is to study of coloring of the quasi-Zariski topology-graph of modules and investigate the interplay between $\chi(G(\tau_T^*))$ and $\omega(G(\tau_T^*))$. We note that since $E(G(\tau_T^*)) \ge 1$ when $G(\tau_T^*) \neq \emptyset$, then $\chi(G(\tau_T^*)) \ge 2$.

Theorem 4.1. Let \overline{M} be an Artinian module such that for every minimal submodule \overline{N} of \overline{M} , N is a vertex in $G(\tau_T^*)$. Then $\omega(G(\tau_T^*)) = \chi(G(\tau_T^*))$. *Proof.* \overline{M} is Artinian, so it contains a minimal submodule. Clearly, for every minimal submodule \overline{N} of \overline{M} , $V^*(N) \neq T$. Also, $N \cap L = Q$, where \overline{N} and \overline{L} are minimal submodules of \overline{M} . It follows that N and L are adjacent in $G(\tau_T^*)$, where \overline{N} and \overline{L} are minimal submodules of \overline{M} . First, suppose that \overline{M} has infinitely many minimal submodules. Then $\omega(G(\tau_T^*)) = \infty$ and there is nothing to prove. Next, assume that \overline{M} has k minimal submodules, where k is finite. We conclude that $\chi(G(\tau_T^*)) = k = \omega(G(\tau_T^*))$. Obviously, $\omega(G(\tau_T^*)) \geq k$. If possible, assume that $\omega(G(\tau_T^*)) > k$. Let $\Sigma = \{N_A\}_{A \in I}$, where $|I| = \omega(G(\tau_T^*))$ be a maximum clique in $G(\tau_T^*)$. As every $N_A \in \omega$, $\overline{\sqrt{N_A}}$ contains a minimal submodule, there exists a minimal submodule \overline{K} and submodules N_i and N_j in ω , such that $\overline{K} \subset \overline{\sqrt{N_i}} \cap \sqrt{N_j}$, and hence $V^*(K) = T$, a contradiction. Hence $\omega(G(\tau_T^*)) = k$. Next, we claim that $G(\tau_T^*)$ is k-colorable. In order to prove, put $A = \{\overline{K_1}, \ldots, \overline{K_k}\}$ be the set of all minimal submodules of \overline{M} . Now, we define a coloring f on $G(\tau_T^*)$ by setting $f(N) = \min\{i \mid K_i \subseteq \sqrt{N}\}$ for every vertex N of $G(\tau_T^*)$. Let N and L be adjacent in $G(\tau_T^*)$ and f(N) = f(L) = j. Thus $K_j \subseteq \sqrt{N} \cap \sqrt{L}$, a contradiction. It implies that f is a proper k coloring of $G(\tau_T^*)$ and hence $\chi(G(\tau_T^*)) \leq k = \omega(G(\tau_T^*))$, as desired. \Box

Theorem 4.2. Assume that \overline{M} is a faithful multiplication module. Then the following statements are equivalent.

- (a) $\chi(G(\tau^*_{Spec(M)})) = 2.$
- (b) $G(\tau^*_{Spec(M)})$ is a bipartite graph.
- (c) $G(\tau^*_{Spec(M)})$ is a complete bipartite graph.
- (d) Either R is a reduced ring with exactly two minimal prime ideals or $G(\tau^*_{Spec(M)})$ is a star graph with more than one vertex.

Proof. By using Lemma 2.7, $G(\tau^*_{Spec(M)})$ and AG(M) are the same and so [6, Theorem 3.2] completes the proof. \Box

Lemma 4.3. Assume that T is a finite closed subset of Spec(M). Then $\chi(G(\tau_T^*))$ is finite. In particular, $\omega(G(\tau_T^*))$ is finite.

Proof. Suppose that $T = \{P_1, P_2, ..., P_k\}$ is a finite set of distinct prime submodules of M. Define a coloring $f(N) = min\{n \in \mathbb{N} | P_n \notin V^*(N)\}$, where N is a vertex of $G(\tau_T^*)$. We can see that $\chi(G(\tau_T^*))) \leq k$. \Box

Corollary 4.4. Assume that $e \in R$ is an idempotent element and \overline{M} is a multiplication module. Then $G(\tau_T^*)$ is a complete bipartite graph if and only if \overline{M}_1 and \overline{M}_2 are prime modules.

Proof. Assume that $G(\tau_T^*)$ is a complete bipartite graph. Therefore $G(\tau_T^*)$ is a triangle-free graph. So Lemma 3.3 follows that \overline{M}_1 and \overline{M}_2 are prime modules. The conversely holds by Proposition 3.1 (b).

Remark 4.5. Assume that S is a multiplicatively closed subset of R such that $S \cap (\bigcup_{P \in T} (P : M)) = \emptyset$. Let $T_S = \{S^{-1}P : P \in T\}$. One can see that $V^*(N) = T$ if and only if $V^*(S^{-1}N) = T_S$, where M is a finitely generated module.

Theorem 4.6. Let *S* be a multiplicatively closed subset of *R* defined in Remark 4.5 and *M* is a finitely generated module. Then $G(\tau_{T_c}^*)$ is a retract of $G(\tau_T^*)$ and $\omega(G(\tau_{T_c}^*)) = \omega(G(\tau_T^*))$.

Proof. Consider a vertex map $\phi : V(G(\tau_T^*)) \longrightarrow V(G(\tau_{T_S}^*)), N \longrightarrow N_S$. Clearly, $N_S \neq K_S$ implies that $N \neq K$ and $V^*(N) \cup V^*(K) = T$ if and only if $V^*(N_S) \cup V^*(K_S) = T_S$. Thus ϕ is surjective and hence $\omega(G(\tau_{T_S}^*)) \leq \omega(G(\tau_T^*))$. If $N \neq K$ and $V^*(N) \cup V^*(K) = T$, then we show that $N_S \neq K_S$. On the contrary suppose that $N_S = K_S$. Then $V^*(N_S) = V^*(\sqrt{N_S}) = V^*(\sqrt{N_S} \cap \sqrt{K_S}) = V^*(N_S) \cup V^*(K_S) = T_S$ and so $V^*(N) = T$, a contradiction. This shows that the map ϕ is a graph homomorphism. Now, for any vertex N_S of $G(\tau_{T_S}^*)$, we can choice a fixed vertex N of $G(\tau_T^*)$. Then ϕ is a retract (graph) homomorphism which clearly implies that $\omega(G(\tau_{T_S}^*)) = \omega(G(\tau_T^*))$ under the assumption. \Box **Corollary 4.7.** Let *S* be a multiplicatively closed subset of *R* defined in Remark 4.5 and let *M* be a finitely generated module. Then $\chi(AG(M_S)) = \chi(AG(M))$.

Corollary 4.8. Assume that M is a semiprime module and $AG(M)^*$ does not have an infinite clique. Then M is a faithful module and $0 = (P_1 \cap ... \cap P_k : M)$, where P_i is a prime submodule of M for i = 1, ..., k.

Proof. By [6, Theorem 3.7 (b)], *M* is a faithful module and the last assertion follows directly from the proof of [6, Theorem 3.7 (b)]. \Box

Proposition 4.9. Let \overline{M} be a cyclic module and let T be a closed subset of Spec(M). We have the following statements.

- (a) If $\{P_1, \ldots, P_n\} \subseteq Min(T)$, then there exists a clique of size n in $G(\tau_T^*)$.
- (b) We have $\omega(G(\tau_T^*)) \ge |Min(T)|$ and if $|Min(T)| \ge 3$, then $gr(G(\tau_T^*)) = 3$.
- (c) If $\sqrt{(\bar{0})} = (\bar{0})$, then $\chi(G(\tau_{Spec(M)})) = \omega(G(\tau^*_{Spec(M)})) = |Min(T)|$.

Proof. (a) The proof is straightforward by the facts that $AG(\overline{M}) = AG(\overline{M})^*$ has a clique of size *n* by [7, Theorem 2.18] and $AG(\overline{M})$ is isomorphic with a subgraph of $G(\tau_T^*)$ by Lemma 2.6.

(b) This is clear by item (a).

(c) If $|Min(T)| = \infty$, then by Proposition 4.9 (b), there is nothing to prove. Otherwise, [7, Theorem 2.20] implies that $AG(\overline{M})$ does not have an infinite clique. So \overline{M} is a faithful module by Corollary 4.8. Next, Lemma 2.7 says that $G(\tau^*_{Spec(M)})$ and AG(M) are the same. Now the result follows by [7, Theorem 2.20]. \Box

Lemma 4.10. Assume that \overline{M} is a semiprime multiplication module. Then the following statements are equivalent.

- (a) $\chi(G(\tau^*_{Spec(M)})))$ is finite.
- (b) $\omega(G(\tau_{Spec(M)})))$ is finite.
- (c) $G(\tau^*_{Spec(M)})$) does not have an infinite clique.

Proof. $(a) \Longrightarrow (b) \Longrightarrow (c)$ is clear.

(c) \implies (d) Suppose that $G(\tau^*_{Spec(M)})$) does not have an infinite clique. By Lemma 2.6, $AG(\bar{M})$ does not have an infinite clique and so by Corollary 4.8, there exists a finite number of prime submodules $P_1, ..., P_k$ of M such that $\bigcap_{P \in T} P = P_1 \cap ... \cap P_k$. Define a coloring $f(N) = min\{n \in \mathbb{N} | P_n \notin V^*(N)\}$, where N is a vertex of $G(\tau^*_T)$. Then we have $\chi(G(\tau^*_{Spec(M)}))) \leq k$. \Box

Corollary 4.11. Assume that \overline{M} is a multiplication module and $AG(\overline{M})$ does not have an infinite clique. Then $G(\tau^*_{Spec(M)})$ and $AG(M)^*$ are the same. Also, $\chi(G(\tau^*_{Spec(M)})))$ is finite.

Proof. Since \overline{M} is a semiprime module, by Corollary 4.8, \overline{M} is a faithful module and there exists a finite number of prime submodules $P_1, ..., P_k$ of M such that $\bigcap_{P \in T} P = P_1 \cap ... \cap P_k$. So the result follows by Lemma 2.7 and from the proof of $(c) \Longrightarrow (d)$ of Lemma 4.10. \Box

Proposition 4.12. Suppose that $\sqrt{(\bar{0})} = (\bar{0})$ and \bar{M} is a multiplication module. Then the following statements are equivalent.

- (a) $\chi(G(\tau^*_{Svec(M)}))$ is finite.
- (b) $\omega(G(\tau^*_{Spec(M)}))$ is finite.
- (c) $G(\tau^*_{Snec(M)})$ does not have an infinite clique.
- (d) Min(T) is a finite set.

Proof. (*a*) \Longrightarrow (*b*) \Longrightarrow (*c*) is clear.

(c) \implies (d) Suppose $G(\tau^*_{Spec(M)})$ does not have an infinite clique. By Lemma 2.6, $AG(\overline{M})$ does not have an infinite clique and hence by Corollary 4.8, there exists a finite number of prime submodules $P_1, ..., P_k$ of M such that $\bigcap_{P \in T} P = P_1 \cap P_2 \cap ... \cap P_k$. By assumptions, one can see that Min(T) is a finite set.

 $(d) \implies (a)$ Assume that Min(T) is a finite set (equivalently, \overline{M} has a finite number of minimal prime submodules) so that $\bigcap_{P \in T} P = P_1 \cap P_2 \cap \ldots \cap P_k$, where $Min(T) = \{P_1, \ldots, P_k\}$. Define a coloring $f(N) = min\{n \in N | P_n \notin V^*(N)\}$, where N is a vertex of $G(\tau^*_{Spec(M)})$. Then we have $\chi(G(\tau^*_{Spec(M)})) \leq k$. \Box

Proposition 4.13. Assume that $\sqrt{(\bar{0})} = (\bar{0})$ and \bar{M} is a faithful multiplication module. Then the following statements are equivalent.

- (a) $\chi(G(\tau^*_{Spec(M)}))$ is finite.
- (b) $\omega(G(\tau^*_{Svec(M)}))$ is finite.
- (c) $G(\tau^*_{Snec(M)})$ does not have an infinite clique.
- (d) R has a finite number of minimal prime ideals.
- (e) $\chi(G(\tau^*_{Spec(M)})) = \omega(G(\tau^*_{Spec(M)})) = |Min(R)| = k$, where k is finite.

Proof. This is clear by Lemma 2.7, [6, Proposition 3.11], and [6, Corollary 3.12].

Acknowledgments. We would like to thank the referees for valuable comments and the careful reading of our manuscript.

References

- [1] D. F. Anderson, P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999) 434-447.
- [2] W. Anderson, K. R. Fuller, Rings and Categories of Modules, New York-Heidelberg-Berlin, Springer-Verlag, 1974.
- [3] H. Ansari-Toroghy, F. Farshadifar, Product and dual product of submodules, Far East J. Math. Sci 25 (3) (2008) 447-455.
- [4] H. Ansari-Toroghy, S. Habibi, The Zariski topology-graph of modules over commutative rings, Comm. Algebra 42 (2014) 3283–3296.
- [5] H. Ansari-Toroghy, S. Habibi, On the graph of modules over commutative rings, Rocky Mountain J. Math 46 (3) (2016), 1–19
- [6] H. Ansari-Toroghy, S. Habibi, The annihilating-submodule graph of modules over commutative rings, to appear in Math. Reports.
- [7] H. Ansari-Toroghy, S. Habibi, The annihilating-submodule graph of modules over commutative rings II, Arabian journal of mathematics 5 (2016) 187–194.
- [8] M. F. Atiyah, I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley, 1969.
- [9] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988) 208–226.
- [10] R. Diestel, Graph Theory, Grad, Texts in Math, Springer, NJ, 2005.
- [11] Z. A. Elbast, P. F. Smith, Multiplication modules, Comm. in Algebra 16 (1988) 755–779.
- [12] T. Y. Lam, A First Course in Non-Commutative Rings, Springer-Verlag, New York, 1991.
- [13] Chin-Pi. Lu, Prime submodules of modules, Comment. Math. Univ. St. Pauli 33 (1) (1984) 61-69.
- [14] Chin-Pi. Lu, The Zariski topology on the prime spectrum of a module, Houston J. Math 25 (3) (1999) 417-432.
- [15] R. L. McCasland, M.E. Moore, P.F. Smith, On the spectrum of a module over a commutative ring, Comm. Algebra 25 (1997) 79-103.
- [16] S. Pirzada, Rameez Raja, On graphs associated with modules over commutative rings, J. Korean Math. Soc 53 (5) (2016) 1167–1182.
- [17] H. A. Tavallaee, R. Varmazyar, Semi-radicals of submodules in modules, IUST International Journal of Engineering Science 19 (2008) 21–27.