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Abstract. Let M be a module over a commutative ring R. In this paper, we continue our study about the
quasi-Zariski topology-graph G(τ∗T) which was introduced in (On the graph of modules over commutative
rings, Rocky Mountain J. Math. 46(3) (2016), 1–19). For a non-empty subset T of Spec(M), we obtain useful
characterizations for those modules M for which G(τ∗T) is a bipartite graph. Also, we prove that if G(τ∗T)
is a tree, then G(τ∗T) is a star graph. Moreover, we study coloring of quasi-Zariski topology-graphs and
investigate the interplay between χ(G(τ∗T)) and ω(G(τ∗T)).

1. Introduction

Throughout this paper R is a commutative ring with a non-zero identity and M is a unital R-module.
By N ≤M (resp. N < M) we mean that N is a submodule (resp. proper submodule) of M.

Define (N :R M) or simply (N : M) = {r ∈ R| rM ⊆ N} for any N ≤M. We denote ((0) : M) by AnnR(M) or
simply Ann(M). M is said to be faithful if Ann(M) = (0).

Let N,K ≤M. Then the product of N and K, denoted by NK, is defined by (N : M)(K : M)M (see [3]).
A prime submodule of M is a submodule P , M such that whenever re ∈ P for some r ∈ R and e ∈ M,

we have r ∈ (P : M) or e ∈ P [13].
The prime spectrum of M is the set of all prime submodules of M and denoted by Spec(M).
There are many papers on assigning graphs to rings or modules (see, for example, [1, 4–7, 9, 16]). In

[5], the present authors introduced and studied the graph G(τ∗T) (resp. AG(M)), called the quasi-Zariski
topology-graph (resp. the annihilating-submodule graph), where T is a non-empty subset of Spec(M).

AG(M) is an undirected graph with vertices V(AG(M))= {N ≤M| there exists (0) , K < M with NK = (0)}.
In this graph, distinct vertices N,L ∈ V(AG(M)) are adjacent if and only if NL = (0). Let AG(M)∗ be the
subgraph of AG(M) with vertices V(AG(M)∗) = {N < M with (N : M) , Ann(M)| there exists a submodule
K < M with (K : M) , Ann(M) and NK = (0)}. By [4, Theorem 3.4], one conclude that AG(M)∗ is a connected
subgraph.

G(τ∗T) is an undirected graph with vertices V(G(τ∗T))= {N < M| there exists K < M such that V∗(N)∪V∗(K) =
T and V∗(N),V∗(K) , T} and distinct vertices N and L are adjacent if and only if V∗(N) ∪ V∗(L) = T (see [5,
Definition 2.1]).
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Email addresses: ansari@guilan.ac.ir (Habibollah Ansari-Toroghy), habibishk@gmail.com (Shokoufeh Habibi),

masoomeh.hezarjaribi@pnu.ac.ir (Masoomeh Hezarjaribi)



H. Ansari-Toroghy et al. / Filomat 32:10 (2018), 3657–3665 3658

For any submodule N of M, V∗(N) is the set of all prime submodules of M containing N. Of course,
V∗(M) is the empty set and V∗(0) is Spec(M). Note that for any family of submodules Ni (i ∈ I) of M,
∩V∗(Ni) = V∗(Σi∈INi). Thus if Z∗(M) denotes the collection of all subsets V∗(N) of Spec(M), then Z∗(M)
contains the empty set and Spec(M), and Z∗(M) is closed under arbitrary intersections. If Z∗(M) is closed
under finite unions, i.e. for any submodules N and K of M, there exists a submodule L of M such that
V∗(N) ∪ V∗(K) = V∗(L), for in this case Z∗(M) satisfies the axioms for the closed subsets of a topological
space and M is called a top module for short. The quasi-Zariski topology on X = Spec(M) is the topology τ∗M
described by taking the set Z∗(M) = {V∗(N)| N is a submodule of M} as the set of closed sets of SpecR(M),
where V∗(N) = {P ∈ X| P ⊇ N} [15].

If Spec(M) , ∅, the mapping ψ : Spec(M)→ Spec(R/Ann(M)) such that ψ(P) = (P : M)/Ann(M) for every
P ∈ Spec(M), is called the natural map of Spec(M) [14].

A topological space X is irreducible if for any decomposition X = X1 ∪ X2 with closed subsets Xi of X
with i = 1, 2, we have X = X1 or X = X2

The prime radical
√

N is defined to be the intersection of all prime submodules of M containing N, and
in case N is not contained in any prime submodule,

√
N is defined to be M [13].

We recall that N < M is said to be a semiprime submodule of M if for every ideal I of R and every
submodule K of M with I2K ⊆ N implies that IK ⊆ N. Further M is called a semiprime module if (0) ⊆M is
a semiprime submodule. Every intersection of prime submodules is a semiprime submodule (see [17]).

The notations Nil(R), Min(M), and Min(T) will denote the set of all nilpotent elements of R and the set
of all minimal prime submodules of M, and the set of minimal members of T, respectively.

A clique of a graph is a complete subgraph and the supremum of the sizes of cliques in G, denoted by
ω(G), is called the clique number of G. Let χ(G) denote the chromatic number of the graph G, that is, the
minimal number of colors needed to color the vertices of G so that no two adjacent vertices have the same
color. Obviously χ(G) ≥ ω(G).

In this article, we continue our studying about G(τ∗T) and AG(M) and we try to relate the combinatorial
properties of the above mentioned graphs to the algebraic properties of M.

In section 2 of this paper, we state some properties related to the quasi-Zariski topology-graph that are
basic or needed in the later sections. In section 3, we study the bipartite quasi-Zariski topology-graphs of
modules over commutative rings (see Proposition 3.1). Also, we prove that if G(τ∗T) is a tree, then G(τ∗T)
is a star graph (see Theorem 3.5). In section 4, we study coloring of the quasi-Zariski topology-graph
of modules and investigate the interplay between χ(G(τ∗T)) and ω(G(τ∗T)). We show that under condition
over minimal submodules of M/ ∩P∈T P, we have ω(G(τ∗T)) = χ(G(τ∗T)) (see Theorem 4.1). Moreover, we
investigate some relations between the existence of cycles in the quasi-Zariski topology-graph of a cyclic
module and the number of its minimal members of T (see Proposition 4.9).

Let us introduce some graphical notions and denotations that are used in what follows: A graph G is
an ordered triple (V(G),E(G), ψG) consisting of a nonempty set of vertices, V(G), a set E(G) of edges, and an
incident function ψG that associates an unordered pair of distinct vertices with each edge. The edge e joins
x and y if ψG(e) = {x, y}, and we say x and y are adjacent. A path in graph G is a finite sequence of vertices
{x0, x1, . . . , xn}, where xi−1 and xi are adjacent for each 1 ≤ i ≤ n and we denote xi−1 − xi for existing an edge
between xi−1 and xi.

A graph H is a subgraph of G, if V(H) ⊆ V(G), E(H) ⊆ E(G), and ψH is the restriction of ψG to E(H). A
bipartite graph is a graph whose vertices can be divided into two disjoint sets U and V such that every edge
connects a vertex in U to one in V; that is, U and V are each independent sets and complete bipartite graph
on n and m vertices, denoted by Kn,m, where V and U are of size n and m, respectively, and E(G) connects
every vertex in V with all vertices in U. Note that a graph K1,m is called a star graph and the vertex in the
singleton partition is called the center of the graph. For some U ⊆ V(G), we denote by N(U), the set of all
vertices of G \U adjacent to at least one vertex of U. For every vertex v ∈ V(G), the size of N(v) is denoted
by de1(v). If all the vertices of G have the same degree k, then G is called k-regular, or simply regular. We
denote by Cn a cycle of order n. Let G and G′ be two graphs. A graph homomorphism from G to G′ is a
mapping φ : V(G) −→ V(G′) such that for every edge {u, v} of G, {φ(u), φ(v)} is an edge of G′. A retract of
G is a subgraph H of G such that there exists a homomorphism φ : G −→ H such that φ(x) = x, for every
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vertex x of H. The homomorphism φ is called the retract (graph) homomorphism (see [10]).
Throughout the rest of this paper, we denote: T is a non-empty subset of Spec(M), Q := ∩P∈TP, M̄ := M/Q,

N̄ := N/Q, m̄ := m + Q, and Ī := I/(Q : M), where N is a submodule of M containing Q, m ∈ M, and I is an
ideal of R containing (Q : M).

2. Auxiliary results

In this section, we provide some properties related to the quasi-Zariski topology-graph that are basic
or needed in the sequel. Throughout this paper M is a top module and by [15, Theorem 3.5], every
multiplication module is a top module.

Remark 2.1. By [15, Lemma 2.1], if M is a top module, then for every pair of submodules N and L of M, we have
V∗(N) ∪ V∗(L) = V∗(

√
N) ∪ V∗(

√
L) = V∗(

√
N ∩

√
L). By [5, Proposition 2.3], we have T is a closed subset of

Spec(M) if and only if T = V∗(∩P∈TP) and G(τ∗T) , ∅ if and only if T = V∗(∩P∈TP) and T is not irreducible. So if N
and K are adjacent in G(τ∗T), then

√
N ∩

√
K = ∩P∈TP. Therefore ∩P∈TP ⊆

√
N,
√

K.

Lemma 2.2. (See [2, Proposition 7.6].) Let R1,R2, . . . ,Rn be non-zero ideals of R. Then the following statements are
equivalent:

(a) R = R1 ⊕ . . . ⊕ Rn;

(b) As an abelian group R is the direct sum of R1, . . . ,Rn;

(c) There exist pairwise orthogonal idempotents e1, . . . , en with 1 = e1 + . . . + en, and Ri = Rei, i = 1, . . . ,n.

Proposition 2.3. Suppose that e is an idempotent element of R. We have the following statements.

(a) R = R1 ⊕ R2, where R1 = eR and R2 = (1 − e)R.

(b) M = M1 ⊕M2, where M1 = eM and M2 = (1 − e)M.

(c) For every submodule N of M, N = N1 ⊕N2 such that N1 is an R1-submodule M1, N2 is an R2-submodule M2,
and (N :R M) = (N1 :R1 M1) ⊕ (N2 :R2 M2).

(d) For submodules N and K of M, NK = N1K1 ⊕N2K2, N ∩K = N1 ∩K1 ⊕N2 ∩K2 such that N = N1 ⊕N2 and
K = K1 ⊕ K2.

(e) Prime submodules of M are P ⊕ M2 and M1 ⊕ Q, where P and Q are prime submodules of M1 and M2,
respectively.

(f) For submodule N of M, we have
√

N =
√

N1 ⊕N2 =
√

N1 ⊕
√

N2, where N = N1 ⊕N2.

Proof. This is clear.

An ideal I < R is said to be nil if I consist of nilpotent elements.

Lemma 2.4. (See [12, Theorem 21.28].) Let I be a nil ideal in R and u ∈ R be such that u + I is an idempotent in
R/I. Then there exists an idempotent e in uR such that e − u ∈ I.

Lemma 2.5. (See [6, Lemma 2.4].) Let N be a minimal submodule of M and let Ann(M) be a nil ideal. Then we have
N2 = (0) or N = eM for some idempotent e ∈ R.

Lemma 2.6. Assume that T is a closed subset of Spec(M) and M̄ is a multiplication module. Then AG(M̄) is
isomorphic with a (an induced) subgraph of G(τ∗T).
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Proof. Let N̄ ∈ V(AG(M̄)). Then there exists a nonzero submodule K̄ of M̄ such that it is adjacent to N̄. So
we have NK ⊆ Q. Hence V∗(NK) = T. If V∗(N) = T, then N = Q, a contradiction. Hence N is a vertex in
G(τ∗T) which is adjacent to K.

Lemma 2.7. If M̄ is a faithful multiplication module, then G(τ∗Spec(M)) and AG(M) are the same.

Proof. M̄ is a faithful module so that T = Spec(M). If G(τ∗Spec(M)) , ∅, then there exist non-trivial submodules
N and K of M which is adjacent in G(τ∗Spec(M)). Hence V∗(NK) = Spec(M) which implies that NK = (0) so that
AG(M) , ∅. By Lemma 2.6, AG(M) is isomorphic with a subgraph of G(τ∗Spec(M)). One can see that the vertex
map φ : V(G(τ∗Spec(M))) −→ V(AG(M)), defined by N −→ N is an isomorphism.

Recall that ∆(G(τ∗T)) is the maximum degree of G(τ∗T) and the length of an R-module M, is denoted by
lR(M).

Lemma 2.8. Let every nontrivial submodule of M be a vertex in G(τ∗T). If ∆(G(τ∗T)) < ∞, then lR(M) ≤ ∆(G(τ∗T))+1.
Also, every non-trivial submodule of M has finitely many submodules.

Proof. Straightforward.

Theorem 2.9. Let M̄ be a multiplication module and G(τ∗T) , ∅. Then M has acc (resp. dcc) on vertices of G(τ∗T) if
and only if M̄ is a Noetherian (resp. an Artinian) module.

Proof. Suppose that G(τ∗T) has acc (resp. dcc) on vertices. By [5, Proposition 2.3 (iii)], M̄ is not a prime
module and hence there exist r ∈ R and m̄ ∈ M̄ such that rm̄ = 0̄ but m̄ , 0̄ and r < Ann(M̄). Now
rM � M̄/(0̄ :M̄ r). Further, rM and (0̄ :M̄ r) are vertices because (0̄ :M̄ r)(rM) = ((0̄ :M̄ r) : M̄)(rM : M̄)M̄ ⊆
rM((0̄ :M̄ r) : M̄) ⊆ r(0̄ :M̄ r) = 0̄. Then {N̄| N̄ ≤ M̄, N̄ ⊆ rM} ∪ {N̄| N̄ ≤ M̄, N̄ ⊆ (0̄ :M̄ r)} ⊆ V(G(τ∗T)). It follows
that the R-modules rM and (0̄ :M̄ r) have acc (resp. dcc) on submodules. Since rM � M̄/(0̄ :M̄ r), M̄ has acc
on submodules and the proof is completed.

3. Quasi-Zariski topology-graph of modules

First, in this section we give the more notation to be used throughout the remainder of this article.
Suppose that e (e , 0, 1) is an idempotent element of R. Let M1 := eM,M2 := (1 − e)M,T1 := {P1 ∈

Spec(M1)|P1 ⊕M2 ∈ T}, T2 := {P2 ∈ Spec(M2)|M1 ⊕ P2 ∈ T}, Q1 := ∩P1∈T1 P1,Q2 := ∩P2∈T2 P2, M̄1 = eM = eM/Q1,
and M̄2 = (e − 1)M = (e− 1)M/Q2. Consequently we have, Q = Q1 ⊕Q2, where Q = ∩P∈TP and M̄ � M̄1 ⊕ M̄2

We recall that a submodule N of M is a prime R-module if and only if it is a prime R/Ann(M)-module
(see [4, Result 1.2]).

Proposition 3.1. Suppose that M̄ is a multiplication module. Then the following statements hold.

(a) If there exists a vertex of G(τ∗T) which is adjacent to every other vertex, then M̄ � M̄1 ⊕ M̄2, where M̄1 is a
simple module and M̄2 is a prime module for some idempotent element e ∈ R.

(b) If M̄1 and M̄2 are prime modules for some idempotent element e ∈ R, then G(τ∗T) is a complete bipartite graph.

Proof. (a) Suppose that N is adjacent to every other vertex of G(τ∗T). Since V∗(N) = V∗(
√

N), we have
N =

√
N. It is clear that N̄ is a minimal submodule of M̄. We have (N̄)2 , (0) because V∗(N) , T. Then

Lemma 2.5, implies that M̄ � eM⊕ (e − 1)M for some idempotent element e of R. Without loss of generality
we may assume that M1 ⊕ Q2 is adjacent to every other vertex. We claim that M̄1 is a simple module and
M̄2 is a prime module. Let Q1 ( K < M1. We have V∗(K ⊕ Q2) , T because Q1 ⊕ Q2 ( K ⊕ Q2. Since
V∗(K ⊕ Q2) ∪ V∗(Q1 ⊕M2) = T, we have K ⊕ Q2 is a vertex and hence is adjacent to M1 ⊕ Q2. Therefore
V∗(K⊕Q2)∪V∗(M1 ⊕Q2) = V∗(K⊕Q2) = T, a contradiction. It implies that M̄1 is a simple module. Now, we
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show that M̄2 is a prime module. It is enough to show that is a prime R/(Q2 : M2)-module. Otherwise, ĪK̄ =
(0̄), where (Q2 : M2) ( I < R and Q2 ( K < M. It follows that V∗(M1⊕K)∪V∗(Q1⊕IM2) = V∗(Q1⊕K(IM2)) = T
because K(IM2) ⊆ IK ⊆ Q2 and (Q2 : M2)2M2 ⊆ K(IM2). Therefore V∗(M1⊕K)∪V∗(M1⊕Q2) = T = V∗(M1⊕Q2),
a contradiction.

(b) Assume that N1 ⊕ N2 is adjacent to K1 ⊕ K2. One can see that
√

N1K1 ⊕
√

N2K2 =
√

Q1 ⊕
√

Q2.

It implies that (
√

(K1 : M1)M1 : M1)
√

(N1 : M1)M1 = (0̄) and (
√

(K2 : M2)M2 : M2)
√

(N2 : M2)M2 = (0̄).
Since M̄1 and M̄2 are prime modules, (

√
(K1 : M1)M1 : M1) = (Q1 : M1) or

√
(N1 : M1)M1 = Q1 and

(
√

(K2 : M2)M2 : M2) = (Q2 : M2) or
√

(N2 : M2)M2 = Q2. Therefore G(τ∗T) is a complete bipartite graph
with two parts U and V such that N ∈ U if and only if V∗(N) = V∗(M1 ⊕ Q2) and K ∈ V if and only if
V∗(K) = V∗(Q1 ⊕M2).

Corollary 3.2. Let M̄ be a faithful multiplication module. Then the following statements are equivalent.

(a) There is a vertex of G(τ∗Spec(M)) which is adjacent to every other vertex of G(τ∗Spec(M)).

(b) G(τ∗Spec(M)) is a star graph.

(c) M = F ⊕D, where F is a simple module and D is a prime module.

Proof. (a) ⇒ (b) Let M̄ be a faithful module. Then Q = (0) and we have T = Spec(M). By Proposition 3.1,
M = M1 ⊕M2, where M1 is a simple module and M2 is a prime module. Then every non-zero submodule of
M is of the form M1 ⊕N2 and (0)⊕N2, where N2 is a non-zero submodule of M2. By our hypothesis, we can
not have any vertex of the form M1 ⊕ N2, where N2 is a non-zero proper submodule of M2. Also M1 ⊕ (0)
is adjacent to every other vertex, and non of the submodules of the form (0) ⊕ N2 can be adjacent to each
other. So G(τ∗Spec(M)) is a star graph.

(b)⇒ (c) This follows by Proposition 3.1 (a).
(c) ⇒ (a) Assume that M = F ⊕ D, where F is a simple module and D is a prime module. It is easy to

see that for some minimal submodule N of M, we have N2 , (0). Since M is a faithful module, Lemma
2.5 implies that F � eM, where e is an idempotent element of R. Finally Proposition 3.1 (a) completes the
proof.

Lemma 3.3. Let e ∈ R be an idempotent element of R and let M̄ be a multiplication module. If G(τ∗T) is a triangle-free
graph, then both M̄1 and M̄2 are prime R-modules. Moreover, if G(τ∗T) has no cycle, then M̄1 is a simple module and
M̄2 is a prime module.

Proof. Without loss of generality, we can assume that M̄1 is a prime module. Then ĪK̄ = (0̄), where
(Q2 : M2) ( I < R and Q2 ( K < M. It follows that V∗(M1 ⊕ K) ∪ V∗(Q1 ⊕ IM2) = V∗(Q1 ⊕ K(IM2)) = T (if
IM2 = K, then V∗(Q1 ⊕ K) = V∗(Q1 ⊕ K2) = V∗(Q1 ⊕ K(IM2)) = T, a contradiction). So both M̄1 and M̄2 are
prime R-modules. Now suppose that G(τ∗T) has no cycle. If none of M̄1 and M̄2 is a simple module, then
we choose non-trivial submodules Ni in Mi for some i = 1, 2. So N1 ⊕ Q2, Q1 ⊕ N2, M1 ⊕ Q2, and Q1 ⊕M2
form a cycle, a contradiction.

Corollary 3.4. Assume that M̄ is a multiplication module. Then G(τ∗T) is a star graph if and only if M̄1 is a simple
module and M̄2 is a prime module for some idempotent e ∈ R.

Proof. The necessity is clear by Proposition 3.1 (a). For the converse, assume that M̄ = M̄1 ⊕ M̄2, where M̄1
is a simple module and M̄2 is a prime for some idempotent e ∈ R. Using the Proposition 3.1 (b), G(τ∗T) is a
complete bipartite graph with two parts U and V such that N ∈ U if and only if V∗(N) = V∗(M1 ⊕ Q2) and
K ∈ V if and only if V∗(K) = V∗(Q1 ⊕M2). We claim that |U| = 1. Otherwise, V∗(M1 ⊕ Q2) = V∗(N1 ⊕ Q2),
where Q1 , N1 < M1. It follows that

√
(N1 : M1)M1 = M1, a contradiction (note that if M is a multiplication

module, then
√

N , M, where N < M). So G(τ∗T) is a star graph.

Theorem 3.5. If G(τ∗T) is a tree, then G(τ∗T) is a star graph.
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Proof. Suppose that G(τ∗T) is not a star graph. Then G(τ∗T) has at least four vertices. Obviously, there are two
adjacent vertices L and K of G(τ∗T) such that |N(L) \ {K}| ≥ 1 and |N(K) \ {L}| ≥ 1. Let N(L) \ {K} = {Li}i∈Λ and
N(K) \ {L} = {K j} j∈Γ. Since G(τ∗T) is a tree, we have N(L) ∩ N(K) = ∅. By [5, Theorem 2.6], diam(G(τ∗T)) ≤ 3.
So every edge of G(τ∗T) is of the form {L,K}, {L,Li} or {K,K j}, for some i ∈ Λ and j ∈ Γ. Now, Pick p ∈ Λ

and q ∈ Γ. Since G(τ∗T) is a tree,
√

Lp ∩
√

Kq is a vertex of G(τ∗T). If
√

Lp ∩
√

Kq = Lu for some u ∈ Λ,
then V∗(K) ∪ V∗(Lu) = T, a contradiction. If

√
Lp ∩

√
Kq = Kv, for some v ∈ Γ, then V∗(L) ∪ V∗(Kv) = T, a

contradiction. If
√

Lp∩
√

Kq = L or
√

Lp∩
√

Kq = K, then V∗(L) = T or V∗(K) = T, respectively, a contradiction.
So the claim is proved.

Proposition 3.6. Let M̄ be a multiplication module. Then in each case of the following statements, |T| = 2 and
G(τ∗T) � K2.

(a) R be an Artinian ring and G(τ∗T) is a bipartite graph.

(b) Ann(M̄) is a nil ideal of R and G(τ∗T) is a finite bipartite graph.

(c) Ann(M̄) is a nil ideal of R and G(τ∗T) is a regular graph of finite degree.

Proof. (a) First we may assume that G(τ∗T) is not empty. Then R can not be a local ring. Otherwise,
T = V∗(mM), where m is the unique maximal ideal of R. Therefore [5, Proposition 2.3] implies that mM = M
and hence T is empty, a contradiction. Hence by [8, Theorem 8.9], R = R1 ⊕ . . .⊕Rn, where Ri is an Artinian
local ring for i = 1, . . . ,n and n ≥ 2. By Lemma 2.2 and Proposition 2.3, since G(τ∗T) is a bipartite graph, we
have n = 2 and hence M̄ � M̄1 ⊕ M̄2 for some idempotent e ∈ R. If M̄1 is a prime module, then it is easy to
see that M̄1 is a vector space over R/Ann(M̄1) and so is a semisimple R-module. A Similar argument as we
did in proof of Corollary 3.4 implies that |T| = 2 and G(τ∗T) � K2.

(b) By Theorem 2.9, M̄ is an Artinian and Noetherian module so that R/Ann(M̄) is an Artinian ring. A
similar arguments in part (a) says that, R/Ann(M̄) is a non-local ring. So by [8, Theorem 8.9] and Lemma
2.2, there exist pairwise orthogonal idempotents modulo Ann(M̄). By lemma 2.4, M̄ � M̄1 ⊕ M̄2, for some
idempotent e of R. Now, the proof that G(τ∗T) � K2 is similar to the proof of Corollary 3.4.

(c) We may assume that G(τ∗T) is not empty. So M̄ is not a prime module by [5, Proposition 2.3] and a
similar manner in proof of Theorem 2.9, shows that M̄ has a finite length so that R/Ann(M̄) is an Artinian
ring. As in the proof of part (b), M̄ � M̄1 ⊕ M̄2 for some idempotent e ∈ R. If M̄1 has one non-trivial
submodule N, then de1(Q1 ⊕M2) > de1(N ⊕M2) (we note that by [7, Proposition 2.5], N̄K̄ = (0̄) for some
(0̄) , K̄ < M̄1) and this contradicts the regularity of G(τ∗T). Hence M̄1 is a simple module. Finally a similar
argument as we have seen in Corollary 3.4 gives G(τ∗T) � K2.

Theorem 3.7. Assume that M̄ is a multiplication module and |Min(M̄)| ≥ 3. Then G(τ∗T) contains a cycle.

Proof. If G(τ∗T) is a tree, then by Theorem 3.5, G(τ∗T) is a star graph. Suppose that G(τ∗T) is a star graph.
Then by Corollary 3.4, M̄ � M̄1 ⊕ M̄2, where M̄1 is a simple module and M̄2 is a prime module and hence
by Proposition 2.3 (e), Min(M̄) = {0̄ ⊕ M̄2, M̄1 ⊕ 0̄}, that is |Min(M̄)| = 2, a contradiction. Therefore G(τ∗T)
contains a cycle.

4. Coloring of the quasi-Zariski topology-graph of modules

The purpose of this section is to study of coloring of the quasi-Zariski topology-graph of modules and
investigate the interplay between χ(G(τ∗T)) and ω(G(τ∗T)). We note that since E(G(τ∗T)) ≥ 1 when G(τ∗T) , ∅,
then χ(G(τ∗T))) ≥ 2.

Theorem 4.1. Let M̄ be an Artinian module such that for every minimal submodule N̄ of M̄, N is a vertex in G(τ∗T).
Then ω(G(τ∗T)) = χ(G(τ∗T)).
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Proof. M̄ is Artinian, so it contains a minimal submodule. Clearly, for every minimal submodule N̄ of
M̄, V∗(N) , T. Also, N ∩ L = Q, where N̄ and L̄ are minimal submodules of M̄. It follows that N and L
are adjacent in G(τ∗T), where N̄ and L̄ are minimal submodules of M̄. First, suppose that M̄ has infinitely
many minimal submodules. Then ω(G(τ∗T)) = ∞ and there is nothing to prove. Next, assume that M̄ has k
minimal submodules, where k is finite. We conclude that χ(G(τ∗T)) = k = ω(G(τ∗T)). Obviously, ω(G(τ∗T)) ≥ k.
If possible, assume that ω(G(τ∗T)) > k. Let Σ = {Nλ}λ∈II, where |I| = ω(G(τ∗T)) be a maximum clique in

G(τ∗T). As every Nλ ∈ ω,
√

Nλ contains a minimal submodule, there exists a minimal submodule K̄ and

submodules Ni and N j in ω, such that K̄ ⊂
√

Ni ∩
√

N j, and hence V∗(K) = T, a contradiction. Hence
ω(G(τ∗T)) = k. Next, we claim that G(τ∗T) is k-colorable. In order to prove, put A = {K̄1, . . . , K̄k} be the set
of all minimal submodules of M̄. Now, we define a coloring f on G(τ∗T) by setting f (N) = min{i| Ki ⊆

√
N}

for every vertex N of G(τ∗T). Let N and L be adjacent in G(τ∗T) and f (N) = f (L) = j. Thus K j ⊆
√

N ∩
√

L,
a contradiction. It implies that f is a proper k coloring of G(τ∗T) and hence χ(G(τ∗T)) ≤ k = ω(G(τ∗T)), as
desired.

Theorem 4.2. Assume that M̄ is a faithful multiplication module. Then the following statements are equivalent.

(a) χ(G(τ∗Spec(M))) = 2.

(b) G(τ∗Spec(M)) is a bipartite graph.

(c) G(τ∗Spec(M)) is a complete bipartite graph.

(d) Either R is a reduced ring with exactly two minimal prime ideals or G(τ∗Spec(M)) is a star graph with more than
one vertex.

Proof. By using Lemma 2.7, G(τ∗Spec(M)) and AG(M) are the same and so [6, Theorem 3.2] completes the
proof.

Lemma 4.3. Assume that T is a finite closed subset of Spec(M). Then χ(G(τ∗T))) is finite. In particular, ω(G(τ∗T))) is
finite.

Proof. Suppose that T = {P1,P2, . . . ,Pk} is a finite set of distinct prime submodules of M. Define a coloring
f (N) = min{n ∈N| Pn < V∗(N)}, where N is a vertex of G(τ∗T). We can see that χ(G(τ∗T))) ≤ k.

Corollary 4.4. Assume that e ∈ R is an idempotent element and M̄ is a multiplication module. Then G(τ∗T) is a
complete bipartite graph if and only if M̄1 and M̄2 are prime modules.

Proof. Assume that G(τ∗T) is a complete bipartite graph. Therefore G(τ∗T) is a triangle-free graph. So Lemma
3.3 follows that M̄1 and M̄2 are prime modules. The conversely holds by Proposition 3.1 (b).

Remark 4.5. Assume that S is a multiplicatively closed subset of R such that S ∩ (∪P∈T(P : M)) = ∅. Let
TS = {S−1P : P ∈ T}. One can see that V∗(N) = T if and only if V∗(S−1N) = TS, where M is a finitely generated
module.

Theorem 4.6. Let S be a multiplicatively closed subset of R defined in Remark 4.5 and M is a finitely generated
module. Then G(τ∗TS

) is a retract of G(τ∗T) and ω(G(τ∗TS
)) = ω(G(τ∗T)).

Proof. Consider a vertex mapφ : V(G(τ∗T)) −→ V(G(τ∗TS
)),N −→ NS. Clearly, NS , KS implies that N , K and

V∗(N) ∪V∗(K) = T if and only if V∗(NS) ∪V∗(KS) = TS. Thus φ is surjective and hence ω(G(τ∗TS
)) ≤ ω(G(τ∗T)).

If N , K and V∗(N) ∪ V∗(K) = T, then we show that NS , KS. On the contrary suppose that NS = KS. Then
V∗(NS) = V∗(

√
NS) = V∗(

√
NS∩

√
KS) = V∗(NS)∪V∗(KS) = TS and so V∗(N) = T, a contradiction. This shows

that the map φ is a graph homomorphism. Now, for any vertex NS of G(τ∗TS
), we can choice a fixed vertex N

of G(τ∗T). Then φ is a retract (graph) homomorphism which clearly implies that ω(G(τ∗TS
)) = ω(G(τ∗T)) under

the assumption.
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Corollary 4.7. Let S be a multiplicatively closed subset of R defined in Remark 4.5 and let M be a finitely generated
module. Then χ(AG(MS)) = χ(AG(M)).

Corollary 4.8. Assume that M is a semiprime module and AG(M)∗ does not have an infinite clique. Then M is a
faithful module and 0 = (P1 ∩ . . . ∩ Pk : M), where Pi is a prime submodule of M for i = 1, . . . , k.

Proof. By [6, Theorem 3.7 (b)], M is a faithful module and the last assertion follows directly from the proof
of [6, Theorem 3.7 (b)].

Proposition 4.9. Let M̄ be a cyclic module and let T be a closed subset of Spec(M). We have the following statements.

(a) If {P1, . . . ,Pn} ⊆Min(T), then there exists a clique of size n in G(τ∗T).

(b) We have ω(G(τ∗T)) ≥ |Min(T)| and if |Min(T)| ≥ 3, then 1r(G(τ∗T)) = 3.

(c) If
√

(0̄) = (0̄), then χ(G(τSpec(M))) = ω(G(τ∗Spec(M))) = |Min(T)|.

Proof. (a) The proof is straightforward by the facts that AG(M̄) = AG(M̄)∗ has a clique of size n by [7,
Theorem 2.18] and AG(M̄) is isomorphic with a subgraph of G(τ∗T) by Lemma 2.6.

(b) This is clear by item (a).
(c) If |Min(T)| = ∞, then by Proposition 4.9 (b), there is nothing to prove. Otherwise, [7, Theorem 2.20]

implies that AG(M̄) does not have an infinite clique. So M̄ is a faithful module by Corollary 4.8. Next,
Lemma 2.7 says that G(τ∗Spec(M)) and AG(M) are the same. Now the result follows by [7, Theorem 2.20].

Lemma 4.10. Assume that M̄ is a semiprime multiplication module. Then the following statements are equivalent.

(a) χ(G(τ∗Spec(M)))) is finite.

(b) ω(G(τSpec(M)))) is finite.

(c) G(τ∗Spec(M))) does not have an infinite clique.

Proof. (a) =⇒ (b) =⇒ (c) is clear.
(c) =⇒ (d) Suppose that G(τ∗Spec(M))) does not have an infinite clique. By Lemma 2.6, AG(M̄) does not

have an infinite clique and so by Corollary 4.8, there exists a finite number of prime submodules P1, ...,Pk
of M such that ∩P∈TP = P1 ∩ . . . ∩ Pk. Define a coloring f (N) = min{n ∈ N| Pn < V∗(N)}, where N is a vertex
of G(τ∗T). Then we have χ(G(τ∗Spec(M)))) ≤ k.

Corollary 4.11. Assume that M̄ is a multiplication module and AG(M̄) does not have an infinite clique. Then
G(τ∗Spec(M)) and AG(M)∗ are the same. Also, χ(G(τ∗Spec(M)))) is finite.

Proof. Since M̄ is a semiprime module, by Corollary 4.8, M̄ is a faithful module and there exists a finite
number of prime submodules P1, ...,Pk of M such that ∩P∈TP = P1∩ . . .∩Pk. So the result follows by Lemma
2.7 and from the proof of (c) =⇒ (d) of Lemma 4.10.

Proposition 4.12. Suppose that
√

(0̄) = (0̄) and M̄ is a multiplication module. Then the following statements are
equivalent.

(a) χ(G(τ∗Spec(M))) is finite.

(b) ω(G(τ∗Spec(M))) is finite.

(c) G(τ∗Spec(M)) does not have an infinite clique.

(d) Min(T) is a finite set.
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Proof. (a) =⇒ (b) =⇒ (c) is clear.
(c) =⇒ (d) Suppose G(τ∗Spec(M)) does not have an infinite clique. By Lemma 2.6, AG(M̄) does not have an

infinite clique and hence by Corollary 4.8, there exists a finite number of prime submodules P1, ...,Pk of M
such that ∩P∈TP = P1 ∩ P2 ∩ ... ∩ Pk. By assumptions, one can see that Min(T) is a finite set.

(d) =⇒ (a) Assume that Min(T) is a finite set (equivalently, M̄ has a finite number of minimal prime
submodules) so that∩P∈TP = P1∩P2∩...∩Pk, where Min(T) = {P1, ...,Pk}. Define a coloring f (N) = min{n ∈ N|
Pn < V∗(N)}, where N is a vertex of G(τ∗Spec(M)). Then we have χ(G(τ∗Spec(M))) ≤ k.

Proposition 4.13. Assume that
√

(0̄) = (0̄) and M̄ is a faithful multiplication module. Then the following statements
are equivalent.

(a) χ(G(τ∗Spec(M))) is finite.

(b) ω(G(τ∗Spec(M))) is finite.

(c) G(τ∗Spec(M)) does not have an infinite clique.

(d) R has a finite number of minimal prime ideals.

(e) χ(G(τ∗Spec(M))) = ω(G(τ∗Spec(M))) = |Min(R)| = k, where k is finite.

Proof. This is clear by Lemma 2.7, [6, Proposition 3.11], and [6, Corollary 3.12].
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