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Abstract. On grounds of the notion of simulation functions, in this manuscript, we bring in the concept
of an extended CF-simulation function and conceive a few common fixed point results via such kind of
contractions on complete metric spaces. These class of auxiliary functions generalize, improve and extend
those of simulation functions, extended simulation functions and CF-simulation functions. However, as
applications of the aforesaid results, we figure out some related consequences of it on the said spaces. Our
findings are authenticated by the aid of some competent, non-trivial and constructive examples.

1. Introduction

The genesis of metric fixed point theory on complete metric spaces is allied with Banach contraction
principle due to Stefan Banach [8], presented in 1922. This principle is one of very pre-eminent tests for
the existence and uniqueness of the solution of elementary problems emerging in mathematics. Because of
its potential implications in mathematical sciences, this theorem has been considered, discussed, improved
and generalized in many different approaches (see [6, 7, 11, 13, 16, 22]).

In 2015, Khojasteh et al. [19] got the notion of simulation functions rolling and revealed a large class of
functions,Z-contraction, using a specific simulation function. Motivated by this dynamic concept, in 2016,
A.F. Roldán and Bessem Samet [26] proposed the concept of extended simulation functions and acquired a
ϕ-admissibility result concerning such kind of control functions. The obtained result is then implemented
to secure some fixed point theorems, where X is equipped with a partial metric p.

Again, with a sense of purpose to generalize many fixed point theorems and enrich the literature, of
late, Ansari [2] brought about the idea of C-class functions. Subsequently, Liu et al. [21] banked on these
functions to extend the idea of simulation functions, marked them as CF-simulation functions and enquired
into the existence and uniqueness of coincidence points for two non-linear operators. In recent years, the
notion of simulation functions, CF-simulation functions have implicated wide-ranging fascination from
mathematicians, more than ever from fixed point theorists [4, 5, 9, 17, 18, 20].

The intent of our draft is to make use of the theories from [19] and needless to say, the idea of extended
simulation functions [26] to furnish a couple of related coincidence point results in the framework of metric
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spaces. To achieve these results, we conceive the notion of extended CF-simulation functions and illustrate
the definition by some non-trivial examples. Besides, we construct pertinent examples and deduce several
related and existing results to demonstrate the applicability of our obtained theorem.

2. Preliminaries

We get under way with a brief recollection of elemental notions and some results compiled from
[2, 12, 14, 19, 21, 23, 26]. Precisely, all through this paper, N will represent the set of all positive integers
and R will mean the set of all real numbers.

In 2015, Khojasteh et al. [19] presented the notion of a simulation function. Afterwards, A.F. Roldán
and Bessem Samet [26] instigated the class of extended simulation functions which reasonably enlarge the
collection obtained in [19]. Here we come up with the definition.

Definition 2.1. [26] An extended simulation function is a mapping θ : [0,∞)2
→ R such that the following

conditions hold:

(θ1) θ(t, s) < s − t for each t, s > 0;
(θ2) if {tn}, {sn} are sequences in (0,∞) such that

lim
n→∞

tn = lim
n→∞

sn = ` ∈ (0,∞),

and sn > ` , n ∈N, then

lim sup
n→∞

θ(tn, sn) < 0;

(θ3) let {tn} be a sequence in (0,∞) such that

lim
n→∞

tn = ` ∈ [0,∞), θ(tn, `) ≥ 0, n ∈N,

then

` = 0.

The family of all extended simulation functions is denoted by εZ. Every simulation function is also an
extended simulation function. But the converse is not true.

Example 2.2. We note down a couple of examples of extended simulation functions from the existing literature here.

1. θ1(t, s) = ψ(s) − t for all t, s ∈ [0,∞), where ψ : [0,∞)→ [0,∞) is upper semi-continuous from the right such
that ψ(t) < t for all t > 0.

2. θ2(t, s) = 3
4 s − t for all t, s ∈ [0,∞).

3.

θ3(t, s) =

{
1 − t, where s = 0;
s
2 − t, s > 0,

where t, s ∈ [0,∞).

For detailed terminologies, examples and more relevant results the readers are referred to [26].
Ansari [2], in his manuscript, first attempted to define the C-class functions. We put it down here.

Definition 2.3. [2] A mapping F : [0,∞)2
→ R is called a C-class function if it is continuous and satisfies following

axioms:

1. F(s, t) ≤ s,
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2. F(s, t) = s implies that either s = 0 or t = 0, for all s, t ∈ [0,∞).

Here we must note that for some F, we consider that F(0, 0) = 0. The collection of C-class functions is
denoted as C.

Example 2.4. The following functions Fi : [0,∞)2
→ R are some members of C.

1. F1(s, t) = s − ( 1+s
2+s )( t

1+t ),

2. F2(s, t) = (s + l)
1

(1+t)r − l, where l > 1, r ∈ (0,∞).

For many more examples of C-class functions, see [2, 3].

Definition 2.5. [21] A mapping F : [0,∞)2
→ R a has property CF, if there exists a CF ≥ 0 such that

1. F(s, t) > CF ⇒ s > t,
2. F(t, t) ≤ CF, for all s, t ∈ [0,∞).

Example 2.6. The following functions Fi : [0,∞)2
→ R are elements of C with property CF, for all s, t ∈ [0,∞).

1. F1(s, t) = s
1+t , CF = 1, 2.

2. F2(s, t) = s
(1+t)r , r ∈ (0,∞), CF = 1.

3. F3(s, t) = s − t, CF = r, r ∈ [0,∞).

Now we present the notion of a CF-simulation function using the C-class functions with property CF. This
is a proper generalization of the idea of the simulation functions coined by Khojasteh et al. in [19].

Definition 2.7. [21] A CF-simulation function is a mapping ζ : [0,∞)2
→ R satisfying the following conditions:

(ζa) ζ(0, 0) = 0,
(ζb) ζ(t, s) < F(s, t) for all t, s > 0, where F ∈ C with property CF,
(ζc) if {tn}, {sn} are sequences in (0,∞) such that

lim
n→∞

tn = lim
n→∞

sn > 0,

and tn < sn, then
lim sup

n→∞
ζ(tn, sn) < CF.

The family of all CF-simulation functions is denoted by ZF. Every simulation function is also a CF-
simulation function. The reverse inference may not be true, in general.

Example 2.8. [21] Let ζ : [0,∞)2
→ R be a function defined by ζ(t, s) = kF(s, t), where t, s ∈ [0,∞) and k ∈ R be

such that k < 1 and for all t, s ∈ [0,∞). Considering CF = 1, ζ is a CF-simulation function.
Choosing F(s, t) = s

1+t , we obtain ζ(t, s) = ks
1+t is also a CF-simulation function with CF = 1.

Example 2.9. [21] Let F : [0,∞)2
→ R be a C-class function such that

F(ψ(s), ϕ(t)) − t < F(s, t), ψ(t) < t,

and let ζ : [0,∞)2
→ R be the function defined as

ζ(t, s) = F(ψ(s), ϕ(t)) − t.

Then ζ(t, s) is a CF-simulation function with CF = 0.

Now we recall the definition of a weakly compatible map.
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Definition 2.10. [15] Two self-maps f and 1 on a metric space (X, d) are said to be weakly compatible if f1x = 1 f x
for all x where f x = 1x.

Now, here we make a note of the following well-known result due to Abbas and Jungck [1] which is
playing a crucial role in this sequel.

Theorem 2.11. Let T and S be weakly compatible self-maps defined on a non-empty set X. If T and S have a unique
point of coincidence w = Tx = Sx, then w is a unique common fixed point of T and S.

Here we put forward the notions of Geraghty functions and Geraghty contractions which were discussed
by Geraghty [12].

Definition 2.12. [12] A function β : [0,∞)→ (0, 1) is called a Geraghty function if {rn} ⊂ [0,∞) and lim
n→∞

β(rn) = 1−

implies rn → 0+ as n→∞.

Definition 2.13. [12] A mapping T : X → X is called a Geraghty contraction if there exists a Geraghty function β
such that

d(Tx,Ty) ≤ β(d(x, y))d(x, y) (1)

for all x, y ∈ X.

3. Common fixed point results via extended CF-simulation functions

To take this section forward, we firstly illustrate the definition of an extended CF-simulation function.
Subsequently, we demonstrate several common fixed point result via such kind of control functions in the
framework of complete metric spaces.

At the very beginning, we introduce the notion of an extended CF-simulation function which is as
follows:

Definition 3.1. An extended CF-simulation function is a mapping ζ : [0,∞)2
→ R satisfying the following condi-

tions:

(θ1) θ(t, s) < F(s, t) for all t, s > 0, where F ∈ C with property CF;
(θ2) if {tn}, {sn} are sequences in (0,∞) such that

lim
n→∞

tn = lim
n→∞

sn = `,

where ` ∈ (0,∞) and sn > ` for all n ∈N, then

lim sup
n→∞

θ(tn, sn) < CF;

(θ3) if {tn} be a sequence in (0,∞), such that

lim
n→∞

tn = ` ∈ [0,∞), θ(tn, `) ≥ CF ⇒ ` = 0.

The class of extended CF-simulation functions is denoted by E(Z,F). The subsequent example substantiates
our previous definition.

Example 3.2. Let θ : [0,∞)2
→ R be a function defined by θ(t, s) = 3

4 s − t, where t, s ∈ [0,∞). Considering
F(s, t) = s − t with CF = 1, for all t, s ∈ [0,∞), we confirm that (θ1) is verified.

Now if {tn}, {sn} are sequences in (0,∞) such that

lim
n→∞

tn = lim
n→∞

sn = l > 0
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and sn > l for all n ∈N, then we obtain

lim sup
n→∞

θ(tn, sn) = lim sup
n→∞

[3
4

sn − tn

]
=
−l
4

<CF = 1.

Therefore θ(t, s) = 3
4 s − t meets the condition (θ2). We now check for (θ3).

We choose a sequence {tn} in (0,∞) with
lim
n→∞

tn = l ≥ 0

for all n ∈N such that

θ(tn, l) ≥ CF =1

=
3
4

l − tn ≥ 1

⇒ tn ≤
3
4

l − 1.

Letting n→∞, we get

l ≤
3
4

l − 1

⇒
l
4
≤ − 1

⇒ l ≤ − 4

which is a contradiction to the fact that l ≥ 0. Hence θ(t, s) = 3
4 s− t satisfies all the criteria of Definition 3.1 and so is

an extended CF-simulation function.

Here we put down two consequential propositions and establish the correlation between simulation func-
tions, extended simulation functions and extended CF-simulation functions.

Proposition 3.3. A simulation function is an extended CF-simulation function.

Proof. Let ζ : [0,∞)2
→ R be a simulation function. Then choosing F(s, t) = s − t with CF = 0, we get

ζ(t, s) < F(s, t)

for all t, s ∈ [0,∞). This implies (θ1) is verified.
Given two sequences {tn}, {sn} in (0,∞) with

lim
n→∞

tn = lim
n→∞

sn = l > 0

and sn > l for all n ∈N, we have

lim sup
n→∞

ζ(tn, sn) <0

=CF,

as F(s, t) = s − t is a C-class function with CF = 0. Hence (θ2) is verified for ζ(t, s).
Now we pick a sequence {tn} in (0,∞) with

lim
n→∞

tn = l ≥ 0



A. Chanda et al. / Filomat 32:10 (2018), 3731–3750 3736

for all n ∈N such that

ζ(tn, l) ≥ CF =0
⇒ lim sup

n→∞
ζ(tn, l) ≥0,

which contradicts with the earlier discussions that says

lim sup
n→∞

ζ(tn, l) < 0.

This means l = 0. Therefore, ζ(t, s) is an extended CF-simulation function.

But the converse is not true, in general. The Example 3.6 endorses our claim.

Proposition 3.4. An extended simulation function is an extended CF-simulation function.

Proof. An extended simulation function is an extended CF-simulation function with CF = 0.

The converse to this proposition is not true always and we illustrate this claim by means of Example 3.6.

Proposition 3.5. A CF-simulation function is an extended CF-simulation function.

Proof. Since this proof is similar to that of Proposition 3.4, we skip it.

The following example confirms that the reverse implication of the previous claim may not hold in general.

Example 3.6. Let θ : [0,∞)2
→ R be a function defined by

θ(t, s) =

{
1 − t

2 , where s = 0;
ks

1+t , s > 0,

where t, s ∈ [0,∞) and k ∈ [0, 1).
Since θ(0, 0) = 1, it is neither a simulation function nor a CF-simulation function.
Taking F(s, t) = s

1+t with CF = 1, for all t, s ∈ [0,∞), we observe that θ(t, s) attains (θ1).
For two given sequences {tn}, {sn} in (0,∞) with

lim
n→∞

tn = lim
n→∞

sn = l > 0

and sn > l for all n ∈N, we have

lim sup
n→∞

θ(tn, sn) = lim sup
n→∞

[
ksn

1 + tn

]
=

kl
1 + l

<
l

1 + l
<1 = CF.

Therefore θ(t, s) achieves (θ2). But it is very easy to inspect that

lim sup
n→∞

θ(tn, sn) = lim sup
n→∞

[
ksn

1 + tn

]
=

kl
1 + l

<
l

1 + l
≮0.
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Therefore θ(t, s) is not an extended simulation function. We now check for (θ3).
Now we choose a sequence {tn} in (0,∞) with

lim
n→∞

tn = l ≥ 0

for all n ∈N such that

θ(tn, l) ≥ CF =1

⇒
kl

1 + tn
>1

⇒ 1 + tn <kl
⇒ tn <kl − 1.

As n→∞, we get,

l <kl − 1
⇒ (1 − k)l < − 1

⇒ l <
−1

1 − k
<0

which is impossible as l ≥ 0. Hence θ(t, s) satisfies all the hypotheses of Definition 3.1 and rightly so an extended
CF-simulation function.

Now we are in a position to state our one of the main results involving extended CF-simulation functions.

Theorem 3.7. Assume that T,S : X→ X are two self-maps on a complete metric space (X, d) such that T(X) ⊆ S(X)
and the following conditions hold:

(i) there exists an extended CF-simulation function θ ∈ E(Z,F) such that for each (x, y) ∈ X × X

θ(d(Tx,Ty),M(x, y)) ≥ CF (2)

holds with Sx , Sy, where

M(x, y) = max
{

d(Sx,Sy), d(Sx,Tx), d(Sy,Ty),
d(Sx,Ty) + d(Tx,Sy)

2

}
,

(ii) (S(X), d) (or(T(X), d)) is closed.

Then T and S have a unique coincidence point. And if T and S are weakly compatible, then these mappings possess a
unique common fixed point.

Proof. We formulate the iteration of Picard-Jungck in X such that Sxn+1 = Txn for all n ∈ N. Without loss
of generality, we consider Sxn , Sxn+1 for all n ∈ N. Since, if Sxn = Sxn+1, for some n ∈ N, then xn is a
coincidence point and the statement is verified.

Firstly, we prove that

lim
n→∞

d(Sxn+1,Sxn) = 0. (3)

Employing (2) and (θ1), with x = xn and y = xn+1, we obtain

CF ≤θ(d(Txn,Txn+1),M(xn, xn+1))
<F(M(xn, xn+1), d(Txn,Txn+1))

⇒M(xn, xn+1) >d(Txn,Txn+1) (4)
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where

M(xn, xn+1) = max
{
d(Sxn,Sxn+1), d(Sxn,Txn), d(Sxn+1,Txn+1),

d(Txn,Sxn+1) + d(Txn,Sxn+1)
2

}
= max

{
d(Sxn,Sxn+1), d(Sxn,Sxn+1), d(Sxn+1,Sxn+2),

d(Sxn+1,Sxn+1) + d(Txn,Sxn+1)
2

}
= max

{
d(Sxn,Sxn+1), d(Sxn+1,Sxn+2),

d(Txn,Sxn+1)
2

}
. (5)

Using triangle inequality, we get

d(Txn,Sxn+1)
2

≤ max{d(Sxn,Sxn+1), d(Sxn+1,Sxn+2)}. (6)

Now, if M(xn, xn+1) = d(Sxn+1,Sxn+2), then from (4) we have,

d(Sxn+1,Sxn+2) >d(Txn,Txn+1)
>d(Sxn+1,Sxn+2),

which is absurd. Therefore M(xn, xn+1) = d(Sxn,Sxn+1). Employing (4) and the above statement, we obtain

d(Txn,Txn+1) <d(Sxn,Sxn+1)
⇒ d(Sxn+1,Sxn+2) <d(Sxn,Sxn+1) (7)

for all n ∈N. This implies that
{d(Sxn,Sxn+1)}

is a decreasing sequence of positive reals. Thus, there is a real number r ≥ 0 such that

lim
n→∞

d(Sxn,Sxn+1) = r. (8)

We consider r > 0. Then, we consider two sequences {tn} and {sn}with same positive limit where

tn = d(Txn,Txn+1) > 0

and
sn = d(Sxn,Sxn+1) > 0

for all n ∈N and sn > r for all n ∈N. Finally we obtain from (θ2),

CF ≤ lim sup
n→∞

θ(d(Txn,Txn+1), d(Sxn,Sxn+1))

<CF,

which leads to a contradiction. So we conclude that r = 0 and

lim
n→∞

d(Sxn,Sxn+1) = 0. (9)

Now we utilize Lemma 2.1 of [24] in this context. We know {Sxn} is a sequence in (X, d) such that (9) holds.
Then, if {Sxn} is not a Cauchy sequence in (X, d), then there exist ε0 > 0 and two sequences {nk} and {mk} of
natural numbers with mk > nk > k,

d(Sxmk ,Sxnk ) > ε0, d(Sxmk ,Sxnk−1) ≤ ε0
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and

lim
k→∞

d(Sxmk ,Sxnk ) = ε0 (10)

and

lim
k→∞

d(Sxmk+1,Sxnk+1) = ε0. (11)

We have

M(xmk , xnk ) = max
{
d(Sxmk ,Sxnk ),

d(Sxmk ,Txmk ), d(Sxnk ,Txnk ),
d(Sxmk ,Txnk ) + d(Txmk ,Sxnk )

2

}
. (12)

Passing k→∞ in (12) and using (10) and (11), we obtain

lim
k→∞

M(xmk , xnk ) = ε0. (13)

Indeed, we take two sequences {tk} and {sk}with

tk = d(Txmk ,Txnk ) = d(Sxmk+1,Sxnk+1) > 0

and
sk = M(xmk , xnk ) > 0,

for all k ∈N. Also we have

M(xmk , xnk ) ≥ d(Sxmk ,Sxnk ) > ε0,

for all k ∈N. Applying (θ2) we get,

CF ≤ lim sup
k→∞

θ(d(Sxmk+1,Sxnk+1),M(xmk , xnk ))

<CF,

which is a contradiction. Hence {Sxn} is a Cauchy sequence. Taking into the completeness of (S(X), d), there
exists w ∈ X such that

lim
n→∞

Sxn = Sw.

We claim that w is a coincidence point of T and S. We consider that

d(Tw,Sw) = ` > 0.

Also we have

lim
n→∞

d(Txn,Tw) = `.

Here,

M(xn,w) = max
{
d(Sxn,Sw), d(Sxn,Txn), d(Sw,Tw),

d(Sxn,Tw) + d(Txn,Sw)
2

}
(14)

and
lim
n→∞

M(xn,w) = d(Tw,Sw).
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So, using (θ3), and (2), we get for all n ∈N with n ≥ n0,

θ(d(Txn,Tu), `) =θ(d(Txn,Tu),M(xn,w))
>CF

⇒ ` =0
⇒ d(Sw,Tw) =0

Sw =Tw, (15)

and w is a coincidence point of S and T.
Now, we establish the uniqueness of the coincidence point. Suppose that there exist w1,w2 ∈ X such

that Ss1 = Ts1 = w1, Ss2 = Ts2 = w2 and w1 , w2.
Using (2) and (θ1) with x = s1 and y = s2, we get

CF ≤ θ(d(Ts1,Ts2),M(s1, s2)) (16)

where

M(s1, s2) = max
{

d(Ss1,Ss2), d(Ss1,Ts1), d(Ss2,Ts2),
d(Ss1,Ts2) + d(Ts1,Ss2)

2

}
=d(Ss1,Ss2)
=d(w1,w2). (17)

Hence from (16), we obtain

CF ≤ θ(d(w1,w2), d(w1,w2))
< F(d(w1,w2), d(w1,w2))
< CF, (18)

which is absurd and hence w1 = w2. So T and S possess a unique coincidence point. Since, these mappings
are weakly compatible, employing Theorem 2.11, we can conclude that they have a unique common fixed
point.

The ensuing theorem is another common fixed point result concerning Geraghty functions and extended
CF-simulation functions.

Theorem 3.8. Let T,S : X → X be two self-mappings defined on any complete metric space (X, d) such that
T(X) ⊆ S(X). Assume that the following conditions hold:

(i) there exist an extended CF-simulation function θ ∈ E(Z,F) and a Geraghty function β : [0,∞) → (0, 1) such
that for each (x, y) ∈ X × X

θ(d(Tx,Ty), β(M(x, y))M(x, y)) ≥ CF (19)

holds with Sx , Sy, where

M(x, y) = max
{

d(Sx,Sy), d(Sx,Tx), d(Sy,Ty),
d(Sx,Ty) + d(Tx,Sy)

2

}
,

(ii) (S(X), d) (or(T(X), d)) is closed.

Then T and S possess a unique coincidence point. And if T and S are weakly compatible, then these mappings possess
a unique common fixed point.
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Proof. We construct the iterative sequence of Picard-Jungck in X such that Sxn+1 = Txn for all n ∈N.Without
loss of generality, we take Sxn , Sxn+1 for all n ∈N. Because, if Sxn = Sxn+1, for some n ∈N, then it implies
that xn is a coincidence point and we are done.

First of all, we claim that

lim
n→∞

d(Sxn+1,Sxn) = 0. (20)

Using (19) and (θ1), with x = xn and y = xn+1, we obtain

CF ≤θ(d(Txn,Txn+1), β(M(xn, xn+1))M(xn, xn+1))
<F(β(M(xn, xn+1))M(xn, xn+1), d(Txn,Txn+1))

⇒ β(M(xn, xn+1))M(xn, xn+1) >d(Txn,Txn+1) (21)

where

M(xn, xn+1) = max
{
d(Sxn,Sxn+1), d(Sxn,Txn), d(Sxn+1,Txn+1),

d(Txn,Sxn+1) + d(Txn,Sxn+1)
2

}
= max

{
d(Sxn,Sxn+1), d(Sxn,Sxn+1), d(Sxn+1,Sxn+2),

d(Sxn+1,Sxn+1) + d(Txn,Sxn+1)
2

}
= max

{
d(Sxn,Sxn+1), d(Sxn+1,Sxn+2),

d(Txn,Sxn+1)
2

}
. (22)

From triangle inequality, we get

d(Txn,Sxn+1)
2

≤ max{d(Sxn,Sxn+1), d(Sxn+1,Sxn+2)}. (23)

Now, if M(xn, xn+1) = d(Sxn+1,Sxn+2), then from (21) we have,

β(d(Sxn+1,Sxn+2))d(Sxn+1,Sxn+2) >d(Txn,Txn+1)
>d(Sxn+1,Sxn+2)

⇒ β(d(Sxn+1,Sxn+2)) >1,

which is impossible. Hence M(xn, xn+1) = d(Sxn,Sxn+1).Making use of (21) and the previous arguments, we
get

d(Txn,Txn+1) <β(d(Sxn,Sxn+1))d(Sxn,Sxn+1)
⇒ d(Sxn+1,Sxn+2) <β(d(Sxn,Sxn+1))d(Sxn,Sxn+1)

<d(Sxn,Sxn+1). (24)

for all n ∈N. This implies that
{d(Sxn,Sxn+1)}

is a decreasing sequence of positive real numbers. Thus, there is some r ≥ 0 such that

lim
n→∞

d(Sxn,Sxn+1) = r. (25)

Suppose that r > 0. Then it follows from the condition (θ1) with

tn = d(Txn,Txn+1) > 0
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and
sn = β(d(Sxn,Sxn+1))d(Sxn,Sxn+1) > 0

for some arbitrary n ∈N, that

CF ≤θ(d(Txn,Txn+1),
β(d(Sxn,Sxn+1))d(Sxn,Sxn+1))
<F(β(d(Sxn,Sxn+1))d(Sxn,Sxn+1),

d(Sxn+1,Sxn+2))
⇒ β(d(Sxn,Sxn+1))d(Sxn,Sxn+1) >d(Sxn+1,Sxn+2)

⇒
d(Sxn+1,Sxn+2)
d(Sxn,Sxn+1)

<β(d(Sxn,Sxn+1))

<1.

By sandwich theorem,

lim
n→∞

β(d(Sxn,Sxn+1)) = 1, (26)

which implies that

lim
n→∞

d(Sxn,Sxn+1) = 0, (27)

which is a contradiction to (25). Then we conclude that r = 0 and from (25), we have

lim
n→∞

d(Sxn,Sxn+1) = 0. (28)

Now we make use of Lemma 2.1 of [24] in our context. We know {Sxn} is a sequence in (X, d) such that (28)
holds. Then, if {Sxn} is not a Cauchy sequence in (X, d), then there exist ε > 0 and two sequences {nk} and
{mk} of positive integers such that mk > nk > k,

d(Sxmk ,Sxnk ) > ε, d(Sxmk ,Sxnk−1) ≤ ε

and

lim
k→∞

d(Sxmk ,Sxnk ) = ε (29)

and

lim
k→∞

d(Sxmk+1,Sxnk+1) = ε. (30)

We have

M(xmk , xnk ) = max
{
d(Sxmk ,Sxnk ),

d(Sxmk ,Txmk ), d(Sxnk ,Txnk ),
d(Sxmk ,Txnk ) + d(Txmk ,Sxnk )

2

}
. (31)

Letting k→∞ in (31) and using (29) and (30), we obtain

lim
k→∞

M(xmk , xnk ) = ε. (32)

Indeed, we consider two sequences {tk} and {sk}with

tk = d(Txmk ,Txnk ) = d(Sxmk+1,Sxnk+1) > 0
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and
sk = β(M(xmk , xnk ))M(xmk , xnk ).

Employing we get

CF ≤θ(d(Sxmk+1,Sxnk+1),
β(M(xmk , xnk ))M(xmk , xnk ))
<F(β(M(xmk , xnk ))M(xmk , xnk ),

d(Sxmk+1,Sxnk+1))
⇒ β(M(xmk , xnk ))M(xmk , xnk ) >d(Sxmk+1,Sxnk+1)

⇒ d(Sxmk+1,Sxnk+1) <β(M(xmk , xnk ))M(xmk , xnk )
<M(xmk , xnk ).

By sandwich theorem,

lim
k→∞

β(M(xmk , xnk ))M(xmk , xnk ) = ε. (33)

Also we have β(M(xmk , xnk ))M(xmk , xnk ) ≥ d(Sxmk+1,Sxnk+1) > ε. Now, using (θ2), we obtain that

CF ≤ lim sup
k→∞

θ(tk, sk)

<CF, (34)

which is a contradiction. Hence {Sxn} is a Cauchy sequence. Since (S(X), d) is complete, there exists u ∈ X
such that

lim
n→∞

Sxn = Su.

Our claim is that u is a coincidence point of T and S. We consider that

d(Tu,Su) = l > 0.

Also we have

lim
n→∞

d(Txn,Tu) = l.

Now,

M(xn,u) = max
{

d(Sxn,Su), d(Sxn,Txn), d(Su,Tu),
d(Sxn,Tu) + d(Txn,Su)

2

}
(35)

and
lim
n→∞

M(xn,u) = d(Tu,Su).

Again, choosing two positive sequences {tn} and {sn} with tn = d(Txn,Tu) > 0 and sn = β(M(xn,u))M(xn,u).
Employing in (θ1), we get

CF ≤θ(d(Txn,Tu), β(M(xn,u))M(xn,u))
<F(β(M(xn,u))M(xn,u), d(Txn,Tu))

⇒ β(M(xn,u))M(xn,u) >d(Txn,Tu)
⇒ d(Txn,Tu) <β(M(xn,u))M(xn,u)

<M(xn,u).
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By sandwich theorem and using (35),

lim
k→∞

β(M(xn,u))M(xn,u) = d(Tu,Su). (36)

So, using (θ3), and (19), we get for all n ∈N with n ≥ n1,

θ(d(Txn,Tu), l) =θ(d(Txn,Tu), β(M(xn,u))M(xn,u))
>CF

⇒ l =0
⇒ d(Su,Tu) =0

Su =Tu, (37)

and u is a coincidence point of S and T.
Now, we establish the uniqueness of the coincidence point. Assume that there exist w1,w2 ∈ X with

Ss1 = Ts1 = w1, Ss2 = Ts2 = w2 and w1 , w2.
Using (19) and (θ1) with x = s1 and y = s2, we get

CF ≤ θ(d(Ts1,Ts2), β(M(s1, s2))M(s1, s2)) (38)

where

M(s1, s2) = max
{

d(Ss1,Ss2), d(Ss1,Ts1), d(Ss2,Ts2),
d(Ss1,Ts2) + d(Ts1,Ss2)

2

}
=d(Ss1,Ss2)
=d(w1,w2). (39)

Therefore from (38), we obtain

CF ≤ θ(d(w1,w2), β(d(w1,w2))d(w1,w2))
< F(β(d(w1,w2))d(w1,w2), d(w1,w2))

⇒ β(d(w1,w2))d(w1,w2) > d(w1,w2) (40)

which is impossible as β(d(w1,w2)) < 1. Hence w1 = w2 and so T and S have a unique coincidence point.
As these mappings are weakly compatible, using Theorem 2.11, we can infer that they possess a unique
common fixed point.

Here we speak briefly of two almost identical results, which can be proved using similar arguments as
Theorem 3.8.

Theorem 3.9. Let T,S : X→ X be two self-mappings defined on any complete metric space (X, d) with T(X) ⊆ S(X).
Assume that the following conditions hold:

(i) there exist an extended CF-simulation function θ ∈ E(Z,F) and a Geraghty function β : [0,∞) → (0, 1) such
that for each (x, y) ∈ X × X

θ(d(Tx,Ty), β(M(x, y))M(x, y)) ≥ CF (41)

holds with Sx , Sy, where

M(x, y) = max
{

d(Sx,Sy),
d(Sx,Tx) + d(Sy,Ty)

2
,

d(Sx,Ty) + d(Tx,Sy)
2

}
,

(ii) (S(X), d) (or(T(X), d)) is closed.
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Then T and S possess a unique coincidence point. And if T and S are weakly compatible, then these mappings possess
a unique common fixed point.

Theorem 3.10. Let T,S : X→ X be two self-mappings defined on any complete metric space (X, d) with T(X) ⊆ S(X).
Assume that the following conditions hold:

(i) there exist an extended CF-simulation function θ ∈ E(Z,F) and a continuous function ψ : [0,∞)→ (0, 1) with
ψ(t) < t such that for each (x, y) ∈ X × X

θ(d(Tx,Ty), ψ(M(x, y))) ≥ CF (42)

holds with Sx , Sy, where

M(x, y) = max
{

d(Sx,Sy),
d(Sx,Tx) + d(Sy,Ty)

2
,

d(Sx,Ty) + d(Tx,Sy)
2

}
,

(ii) (S(X), d) (or(T(X), d)) is closed.

Then T and S possess a unique coincidence point. And if T and S are weakly compatible, then these mappings possess
a unique common fixed point.

4. Consequences

This section takes care of some corollaries that can be perceived form our derived results. Some of these
findings are new and some are existing in the literature.

Corollary 4.1. [10] Let T,S : X → X be two self-mappings defined on any complete metric space (X, d) where
T(X) ⊆ S(X). Assume that the following conditions hold:

(i) there exist an extended CF-simulation function θ ∈ E(Z,F) and a Geraghty function β : [0,∞) → (0, 1) such
that for each (x, y) ∈ X × X

θ(d(Tx,Ty), β(M(x, y))M(x, y)) ≥ 0

holds with Sx , Sy, where

M(x, y) = max
{

d(Sx,Sy), d(Sx,Tx), d(Sy,Ty),
d(Sx,Ty) + d(Tx,Sy)

2

}
,

(ii) (S(X), d) (or(T(X), d)) is closed.

Then T and S possess a unique coincidence point. Moreover, if T and S are weakly compatible, then these mappings
possess a unique common fixed point.

Proof. Choosing an extended CF-simulation function θ ∈ E(Z,F) with CF = 0 in Theorem 3.8, we can easily
obtain this result.

Corollary 4.2. Let T,S : X → X be two self-mappings defined on any complete metric space (X, d) where T(X) ⊆
S(X). Assume that the following conditions hold:

(i) there exist an extended CF-simulation function θ ∈ E(Z,F) and a Geraghty function β : [0,∞) → (0, 1) such
that for each (x, y) ∈ X × X

θ(d(Tx,Ty), β(d(Sx,Sy))d(Sx,Sy)) ≥ CF

holds with Sx , Sy,
(ii) (S(X), d) (or(T(X), d)) is closed.
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Then T and S possess a unique coincidence point. Moreover, if T and S are weakly compatible, then these mappings
possess a unique common fixed point.

Proof. When M(x, y) = d(Sx,Sy), then for some extended CF-simulation function θ ∈ E(Z,F), we can establish
this result employing Theorem 3.8.

Corollary 4.3. [10] Let T,S : X → X be two self-mappings defined on any complete metric space (X, d) with
T(X) ⊆ S(X). Assume that the following conditions hold:

(i) there exist an extended CF-simulation function θ ∈ E(Z,F) and a Geraghty function β : [0,∞) → (0, 1) such
that for each (x, y) ∈ X × X

θ(d(Tx,Ty), β(d(Sx,Sy))d(Sx,Sy)) ≥ 0

holds with Sx , Sy,
(ii) (S(X), d) (or(T(X), d)) is closed.

Then T and S possess a unique coincidence point. Moreover, if T and S are weakly compatible, then these mappings
possess a unique common fixed point.

Proof. If M(x, y) = d(Sx,Sy), then picking an extended CF-simulation function θ ∈ E(Z,F) with CF = 0 in
Theorem 3.8, we can easily deduce this statement.

Corollary 4.4. Let T : X→ X be a self-map defined on any complete metric space (X, d). Assume that the following
condition holds:

(i) there exist an extended CF-simulation function θ ∈ E(Z,F) and a Geraghty function β : [0,∞) → (0, 1) such
that for each (x, y) ∈ X × X

θ(d(Tx,Ty), β(d(x, y))d(x, y)) ≥ CF.

Then T possesses a unique fixed point.

Proof. Putting Sx = x in Corollary 4.2, we get the desired result for some extended CF-simulation function
θ ∈ E(Z,F).

Corollary 4.5. Let T : X→ X be a self-map defined on any complete metric space (X, d). Assume that the following
condition holds:

(i) there exist an extended CF-simulation function θ ∈ E(Z,F) and a Geraghty function β : [0,∞) → (0, 1) such
that for each (x, y) ∈ X × X

θ(d(Tx,Ty), β(d(x, y))d(x, y)) ≥ 0.

Then T possesses a unique fixed point.

Proof. Fixing Sx = x in Corollary 4.2, we get the expected corollary for any extended CF-simulation function
θ ∈ E(Z,F) with CF = 0.

Corollary 4.6. Let T : X→ X be a self-map defined on any complete metric space (X, d). Assume that the following
condition holds:

(i) there exist an extended CF-simulation function θ ∈ E(Z,F) and a Geraghty function β : [0,∞) → (0, 1) such
that for each (x, y) ∈ X × X

θ(d(Tx,Ty), β(M(x, y))M(x, y)) ≥ CF

where

M(x, y) = max
{

d(x, y), d(x,Tx), d(y,Ty),
d(x,Ty) + d(Tx, y)

2

}
.
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Then T possesses a unique fixed point.

Proof. Considering Sx = x in Theorem 3.8, we get this corollary for any extended CF-simulation function
θ ∈ E(Z,F).

Corollary 4.7. Let T : X → X be any self-map defined on any complete metric space (X, d). Assume that the
following condition holds:

(i) there exist an extended CF-simulation function θ ∈ E(Z,F) and a Geraghty function β : [0,∞) → (0, 1) such
that for each (x, y) ∈ X × X

θ(d(Tx,Ty), β(M(x, y))M(x, y)) ≥ 0,

where

M(x, y) = max
{

d(x, y), d(x,Tx), d(y,Ty),
d(x,Ty) + d(Tx, y)

2

}
.

Then T possesses a unique fixed point.

Proof. Choosing Sx = x and an extended CF-simulation function θ ∈ E(Z,F) with CF = 0 and putting in
Theorem 3.8, we can confirm this result.

Corollary 4.8. [10] Assume that T,S : X → X are two self-maps on a complete metric space (X, d) such that
T(X) ⊆ S(X) and the following conditions hold:

(i) there exists an extended CF-simulation function θ ∈ E(Z,F) such that for each (x, y) ∈ X × X

θ(d(Tx,Ty),M(x, y)) ≥ 0

holds with Sx , Sy, where

M(x, y) = max
{

d(Sx,Sy), d(Sx,Tx), d(Sy,Ty),
d(Sx,Ty) + d(Tx,Sy)

2

}
,

(ii) (S(X), d) (or(T(X), d)) is closed.

Then T and S have a unique coincidence point. Moreover, if T and S are weakly compatible, then these mappings
possess a unique common fixed point.

Proof. Considering an extended CF-simulation function θ ∈ E(Z,F) with CF = 0 in Theorem 3.7, we can easily
affirm the result.

Corollary 4.9. [23] Assume that T,S : X → X are two self-maps on a complete metric space (X, d) such that
T(X) ⊆ S(X) and the following conditions hold:

(i) there exists an extended CF-simulation function θ ∈ E(Z,F) such that for each (x, y) ∈ X × X

θ(d(Tx,Ty), d(Sx,Sy)) ≥ CF

holds with Sx , Sy,
(ii) (S(X), d) (or(T(X), d)) is closed.

Then T and S have a unique coincidence point. Moreover, if T and S are weakly compatible, then these mappings
possess a unique common fixed point.

Proof. When M(x, y) = d(Sx,Sy), then for some extended CF-simulation function θ ∈ E(Z,F), we can attain
this consequence from Theorem 3.7.
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Corollary 4.10. [25] Assume that T,S : X → X are two self-maps on a complete metric space (X, d) such that
T(X) ⊆ S(X) and the following conditions hold:

(i) there exists an extended CF-simulation function θ ∈ E(Z,F) such that for each (x, y) ∈ X × X

θ(d(Tx,Ty), d(Sx,Sy)) ≥ 0

holds with Sx , Sy,
(ii) (S(X), d) (or(T(X), d)) is closed.

Then T and S have a unique coincidence point. Moreover, if T and S are weakly compatible, then these mappings
possess a unique common fixed point.

Proof. If M(x, y) = d(Sx,Sy), then for some extended CF-simulation function θ ∈ E(Z,F) with CF = 0, we can
conceive this corollary from Theorem 3.7.

Corollary 4.11. Assume that T : X → X is a self-map on a complete metric space (X, d) such that the following
condition holds:

(i) there exists an extended CF-simulation function θ ∈ E(Z,F) such that for each (x, y) ∈ X × X

θ(d(Tx,Ty),M(x, y)) ≥ CF

holds, where

M(x, y) = max
{

d(x, y), d(x,Tx), d(y,Ty),
d(x,Ty) + d(Tx, y)

2

}
.

Then T has a unique fixed point.

Proof. Considering Sx = x in Theorem 3.7, we get this result for any extended CF-simulation function
θ ∈ E(Z,F).

Corollary 4.12. [4] Assume that T : X → X is a self-map on a complete metric space (X, d) such that the following
condition holds:

(i) there exists an extended CF-simulation function θ ∈ E(Z,F) such that for each (x, y) ∈ X × X

θ(d(Tx,Ty), d(x, y)) ≥ CF

holds.

Then T has a unique fixed point.

Proof. When M(x, y) = d(x, y), then for some extended CF-simulation function θ ∈ E(Z,F), we obtain this
result from Corollary 4.11.

Corollary 4.13. [19] Assume that T : X→ X is a self-map on a complete metric space (X, d) such that the following
conditions hold:

(i) there exists an extended CF-simulation function θ ∈ E(Z,F) such that for each (x, y) ∈ X × X

θ(d(Tx,Ty), d(x, y)) ≥ 0

holds.

Then T has a fixed point.

Proof. For some extended CF-simulation functionθ ∈ E(Z,F) with CF = 0, we obtain this result from Corollary
4.12.
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5. An Example

This section deals with a non-trivial example which illustrates one of our obtained result.

Example 5.1. Consider the metric space l∞ equipped with the usual metric. Take X = {e0, ei : i ∈N} where e0 is the
zero sequence and ei is the sequence whose i-th term is 4 and all the other terms are 0. Then one can easily check that
X is complete.

We define mappings T : X→ X such that Tx = e0 for all x ∈ X and S : X→ X such that

Sx =

{
e0, where x = e0;
ei+1, x = ei.

We also consider θ(t, s) = ks
1+t , t, s ∈ [0,∞), as the extended CF-simulation function, where k = 9

10 and CF = 1.
It is easy to check that d(Tx,Ty) = 0 and M(x, y) = 4 for all x, y ∈ X with x , y. Hence,

θ(d(Tx,Ty),M(x, y)) =
kM(x, y)

1 + d(Tx,Ty)

=
36
10
≥1 = CF.

So, T and S satisfy all the hypotheses of Theorem 3.7 and using the theorem, T and S have a unique common fixed
point and it is w = e0 ∈ X.
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[24] S. Radenović, Z. Kadelburg, D. Jandrlić, and A. Jandrlić. Some results on weakly contractive maps. Bull. Iranian Math. Soc.,

38(3):625–645, 2012.
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