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Abstract. In this paper, we study a semi-Riemannian submersion from Lorentzian almost (para) contact
manifolds and find necessary and sufficient conditions for the characteristic vector field to be vertical or
horizontal. We also obtain decomposition theorems for anti-invariant semi-Riemannian submersions from
Lorentzian para-Sasakian manifolds onto Lorentzian manifolds.

1. Introduction

Semi-Riemannian submersions between semi-Riemannian manifolds were studied by O’Neill [19, 20]
and Gray [9]. Moreover, B. S. ahin in [22, 23] introduced anti-invariant Riemannian submersions and
slant submersions from almost Hermitian manifold onto Riemannian manifolds. Also, anti-invariant
Riemannian submersions were studied in [2, 6, 7, 14, 15, 18]. The theory of Lorentzian submersion was
introduced by Magid and Falcitelli et al in [16] and [17], respectively. In [13] Kaneyuki and Williams defined
the almost paracontact structure on pseudo-Riemannian manifold. Recently, Gündüzalp and Şahin studied
paracontact structures in [10–12].

In this paper, we studied anti-invariant semi-Riemannian submersions from Lorentzian almost (para)
contact manifolds. In Sect. 3, we introduced anti-invariant semi-Riemannian submersions from Lorentzian
almost (para) contact manifolds and presented three examples. Also we find necessary and sufficient
conditions for the characteristic vector field to be vertical or horizontal. In sect. 4, we studied anti-
invariant semi-Riemannian submersions from Lorentzian (para) Sasakian manifolds onto a Riemannian
manifold such that the characteristic vector field is vertical and investigated the geometry of leaves of the
distributions. In sect. 5, we studied anti-invariant semi-Riemannian submersions from Lorentzian (para)
Sasakian manifolds onto Lorentzian manifolds such that the characteristic vector field is a horizontal vector
field and we obtained decomposition theorems for it.

2. Preliminaries

In this section, we recall some necessary details background on Lorentzian almost contact manifold,
Lorentzian almost para contact manifold, semi-Riemannian submersion and harmonic maps.
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2.1. Lorentzian almost (para)contact manifold
Let (M, 1) be a (2n + 1)-dimensional Lorentzian manifold with a tensor field φ of type (1, 1), a vector field

ξ and a 1-form η which satisfies

φ2X = εX + η(X)ξ, (1)
1(φX, φY) = 1(X,Y) + η(X)η(Y), (2)
η(X) = ε1(X, ξ), (3)
η(ξ) = −ε, (4)

for any vector fields X,Y tangent to M, it is called Lorentzian almost contact manifold or Lorentzian almost
para contact manifold for ε = −1 or ε = 1, respectively[1]. In this case, (1) and (4) imply thatφξ = 0, η◦φ = 0,
and rankφ = 2n. However, for any vector fields X,Y in Γ(TM),

1(φX,Y) = ε1(X, φY). (5)

Let Φ be the 2-form in M given by Φ(X,Y) = 1(X, φY). Then, M is called Lorentzian metric contact manifold
if dη(X,Y) = Φ(X,Y). So, if the manifold satisfies [φ,φ] + 2dη ⊗ ξ = 0, then M is called normal Lorentzian
almost contact manifold. If ξ is a Killing tensor vector field, then the (para) contact structure is called
K-(para) contact. In such a case, we have

∇Xξ = εφX, (6)

where ∇ denotes the Levi-Civita connection of 1. A Lorentzian almost contact manifold or Lorentzian
almost para contact manifold M is called Lorentzian Sasakian (LS) or Lorentzian para Sasakian (LPS) if

(∇Xφ)Y = 1(φX, φY)ξ + η(Y)φ2X. (7)

Now we will introduce a well known Sasakian manifold example on R2n+1.

Example 2.1 ([3]). Let R2n+1 = {(x1, . . . , xn, y1, . . . , yn, z)|xi, yi, z ∈ R, i = 1, . . . ,n}. Consider R2n+1 with the
following structure:

φε

 n∑
i=1

(Xi
∂

∂xi + Yi
∂

∂yi ) + Z
∂
∂z

 = −ε
n∑

i=1

Yi
∂

∂xi −

n∑
i=1

Xi
∂

∂yi +

n∑
i=1

Yiyi
∂
∂z
, (8)

1 = −η ⊗ η +
1
4

n∑
i=1

(dxi
⊗ dxi + dyi

⊗ dyi), (9)

ηε = −
ε
2

dz −
n∑

i=1

yidxi

 , (10)

ξ = 2
∂
∂z
. (11)

Then, (R2n+1, φε, ξ, ηε, 1) is a Lorentzian Sasakian manifold if ε = −1 and Lorentzian para Sasakian manifold if ε = 1.
The vector fields Ei = 2 ∂

∂yi ,En+i = 2( ∂
∂xi + yi

∂
∂z ) and ξ form a φ-basis for the contact metric structure.

2.2. Semi-Riemannian submersion
Let (M, 1M) and (N, 1N) be semi-Riemannian manifolds. A semi-Riemannian submersion F : M→ N is a

submersion of semi-Riemannian manifolds such that:

1. The fibers F−1(q), q ∈ N are semi-Riemannian submanifolds of M.
2. F∗ preserves scalar products of vectors normal to fibers.
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For each q ∈ N,F−1(q) is a submanifold of M of dimension dim M−dim N. The submanifolds F−1(q), q ∈ N
are called fibers, and a vector field on M is vertical if it is always tangent to fibers, horizontal if it is always
orthogonal to fibers. A vector field X on M is called basic if X is a horizontal vector field and F-related to
a vector field X∗ on N. Every vector field X∗ on N has a unique horizontal lift X to M, and X is basic. For a
semi-Riemannian submersion F : M → N, let H and V denote the projections of the tangent spaces of M
onto the subspaces of horizontal and vertical vectors, respectively. In the other words, H and V are the
projection morphisms on the distributions (ker F∗)⊥ and ker F∗, respectively [20].

Lemma 2.2 ([19]). Let F : M→ N be semi-Riemannian submersion between a semi-Riemannian manifolds and X,Y
are basic vector fields on M. Then

a) 1M(X,Y) = 1N(X∗,Y∗) ◦ F.
b) the horizontal part H[X,Y] of [X,Y] is a basic vector field and corresponds to [X∗,Y∗], i.e., F∗(H[X,Y]) =

[X∗,Y∗].
c) [V,X] is vertical vector field for any vector field V of ker F∗.
d) H(∇M

X Y) is the basic vector field corresponding to ∇N
X∗

Y∗.

The fundamental tensors of a submersion were defined by O’Neill. They are (1, 2)-tensors on M, given by
the formula:

T (E,F) = TEF = H∇VEVF +V∇VEHF, (12)
A(E,F) = AEF =V∇HEHF +H∇HEVF, (13)

for any vector field E and F on M, where ∇ denotes the Levi-Civita connection of (M, 1M). It is easy to see
that a Riemannian submersion F : M → N has totally geodesic fibers if and only if T vanishes identically.
For any E ∈ Γ(TM), TE and AE are skew-symmetric operators on (Γ(TM), 1) reversing the horizontal and
the vertical distributions. In the other words,

1(TDE,G) = −1(E,TDG), (14)
1(ADE,G) = −1(E,ADG), (15)

for any D,E,G ∈ Γ(TM). For any U,V vertical vector fields and X,Y horizontal vector fields,T andA satisfy:

TUV = TVU, (16)

AXY = −AYX =
1
2
V[X,Y]. (17)

Moreover, from (12) and (13), we have

∇VW = TVW + ∇̂VW, (18)
∇VX = H∇VX + TVX, (19)
∇XV = AXV +V∇XV, (20)
∇XY = H∇XY +AXY, (21)

for X,Y ∈ Γ((ker F∗)⊥) and V,W ∈ Γ(ker F∗), where ∇̂VW =V∇VW.

2.3. Foliations on manifold and decomposition theorem
A foliationDon a manifold M is an integrable distribution. A foliationDon a semi-Riemannian manifold

M is called totally umbilical, if every leaf of D is a totally umbilical semi-Riemannian submanifold of M.
If, in addition, the mean curvature vector of every leaf is parallel in the normal bundle, then D is called
a sphenic foliation, because in this case each leaf of D is an extrinsic sphere of M. If every leaf of D is a
totally geodesic submanifold of D, then D is called a totally geodesic foliation [4]. The following results
were proved in [21].



M. Faghfouri, S. Mashmouli / Filomat 32:10 (2018), 3465–3478 3468

Let (M, 1) be a simply-connected semi-Riemannian manifold which admits two complementary folia-
tionsD1 andD2 whose leaves intersect perpendicularly.
1. IfD1 is totally geodesic andD2 is totally umbilical, then (M, 1) is isometric to a twisted product M1× f M2.
2. IfD1 is totally geodesic andD2 is spherical, then (M, 1) is isometric to a warped product M1 × f M2.
3. IfD1 andD2 are totally geodesic, then (M, 1) is isometric to a direct product M1 ×M2, where M1 and M2
are integral manifolds of distributionsD1 andD2.

2.4. Harmonic maps
We now recall the notion of harmonic maps between semi-Riemannian manifolds. Let (M, 1M) and

(N, 1N) be semi-Riemannian manifolds and suppose that ϕ : M → N is a smooth mapping between them.
Then the differential ϕ∗ of ϕ can be viewed a section of the bundle Hom(TM, ϕ−1TN) → M, where ϕ−1TN
is the pullback bundle which has fibers ϕ−1(TNp) = Tϕ(p)N, p ∈ M. Hom(TM, ϕ−1TN) has a connection ∇
induced from the Levi-Civita connection ∇M and the pullback connection. Then the second fundamental
form of ϕ is given by

(∇ϕ∗)(X,Y) = ∇
ϕ
Xϕ∗(Y) − ϕ∗(∇M

X Y), (22)

for X,Y ∈ Γ(TM), where ∇ϕ is the pullback connection. It is known that the second fundamental form is
symmetric. For a semi-Riemannian submersion F, one can easily obtain

(∇F∗)(X,Y) = 0, (23)

for X,Y ∈ Γ((ker F∗)⊥). A smooth map ϕ : M → N is said to be harmonic if trace(∇ϕ∗) = 0. On the other
hand, the tension field of ϕ is the section τ(ϕ) of Γ(ϕ−1TN) defined by

τ(ϕ) = divϕ∗ =

m∑
i=1

εi(∇ϕ∗)(ei, ei), (24)

where {e1, . . . , em} is the orthonormal frame on M and εi = 1M(ei, ei). Then it follows that ϕ is harmonic if
and only if τ(ϕ) = 0, for details, see [8].

3. Anti-invariant semi-Riemannian submersions

In this section, we study a semi-Riemannian submersion from a Lorentzian almost (para) contact
manifold M(φ, ξ, η, 1M) to a semi-Riemannian manifold (N, 1N) and give necessary and sufficient conditions
for the characteristic vector field to be vertical or horizontal.

Definition 3.1. Let M(φ, ξ, η, 1M) be a Lorentzian almost (para) contact manifold and (N, 1N) be a semi-Riemannian
manifold. A semi-Riemannian submersion F : M(φ, ξ, η, 1M) → (N, 1N) is said to be anti-invariant if ker F∗ is
anti-invariant with respect to φ, φ(ker F∗) ⊆ (ker F∗)⊥. We denote the complementary orthogonal distribution
to φ(ker F∗) in (ker F∗)⊥by µ. Then, we have

(ker F∗)⊥ = φ(ker F∗) ⊕ µ. (25)

3.1. Examples
We now give some examples of anti-invariant semi-Riemannian submersion.

Example 3.2. Let N be R5 = {(y1, y2, y3, y4, z)|y1, y2, y3, z ∈ R} and R7 be a Lorentzian Sasakian manifold as in
Example 2.1. The semi-Riemannian metric tensor field 1N is given by

1N =
1
4



1
2 − y2

1 −y1y2 −y1y3 0 y1

−y1y2
1
2 − y2

2 −y2y3 0 y2

−y1y3 −y2y3
1
2 − y2

3 0 y3

0 0 0 1
2 0

y1 y2 y3 0 −1
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on N. Let F : R7
→ N be a map defined by

F(x1, x2, x3, y1, y2, y3, z) =

x1 + y1, x2 + y2, x3 + y3, x3 − y3,
y2

1

2
+

y2
2

2
+

y2
3

2
+ z

 .
After some calculations, we have ker F∗ = span{V1 = E1 − E4,V2 = E2 − E5} and

ker F⊥∗ = span{H1 = E1 + E4,H2 = E2 + E5,H3 = E3,H4 = E6,H5 = E7}.

It is easy to see that F is a semi-Riemannian submersion and φ−1(V1) = H1, φ−1(V2) = H2 imply that φ−1(ker F∗) ⊂
(ker F∗)⊥ = φ−1(ker F∗) ⊕ span{H3,H4,H5}. Thus, F is an anti-invariant semi-Riemannian submersion such that ξ
is a horizontal vector field and µ = span{H3,H4,H5}. Moreover, φ−1(ker F∗) is Riemannian Distribution.

It is clear that F : (R7, φ1, η1, ξ, 1)→ N is an anti-invariant semi-Riemannian submersion from Lorentzian para
Sasakian manifold to semi-Riemannian manifold.

Example 3.3. R5 has a Lorentzian Sasakian structure as in Example 2.1. The Riemannian metric tensor field
1R2 is defined by 1R2 = 1

8 (du ⊗ du + dv ⊗ dv) on R2 = {(u, v)|u, v ∈ R}. Let F : R5
→ R2 be a map defined by

F(x1, x2, y1, y2, z) = (x1 + y1, x2 + y2). By direct calculations ker F∗ = span{V1 = E1−E3,V2 = E2−E4,V3 = E5 = ξ}
and (ker F∗)⊥ = span{H1 = E1+E3,H2 = E2+E4}.Therefore, it is easy to see that F is a semi-Riemannian submersion.
However,φ−1(V1) = H1, φ−1(V2) = H2. That is, F is an anti-invariant semi-Riemannian submersion from Lorentzian
para Sasakian manifold (R5, φ1, η1, ξ, 1) to Riemannian manifold (R2, 1R) and φ(ker F∗) = (ker F∗)⊥.

Example 3.4. Let N be R3 = {(y1, y2, z)|y1, y2, z ∈ R} and R5 be a Lorentzian Sasakian manifold as in Example 2.1.
The Lorentzian metric tensor field 1N is given by

1N =
1
4


1
2 − y2

1 −y1y2 y1

−y1y2
1
2 − y2

2 y2

y1 y2 −1


on N. Let F : R5

→ N be a map defined by

F(x1, x2, y1, y2, z) =

x1 + y1, x2 + y2,
y2

1

2
+

y2
2

2
+ z

 .
After some calculations, we have ker F∗ = span{V1 = E3 − E1,V2 = E4 − E2} and (ker F∗)⊥ = span{H1 =
E1 + E3,H2 = E2 + E4,H3 = E5}. Then, it is easy to see that F is an anti-invariant semi-Riemannian submersion and
(ker F∗)⊥ = φ−1(ker F∗) ⊕ span{ξ}.

In the following results, we find necessary and sufficient conditions for the characteristic vector field to
be vertical or horizontal.

Theorem 3.5. Let M(φ, ξ, η, 1M) be a Lorentzian almost (para)contact manifold of dimension 2m + 1 and (N, 1N) be
a semi-Riemannian manifold of dimension n and F : M(φ, ξ, η, 1M) → (N, 1N) be a semi-Riemannian submersion.
Then the following statements hold:

1. The characteristic vector field ξ is vertical vector field if and only if N is a Riemannian manifold.
2. The characteristic vector field ξ is a horizontal vector field if and only if N is a Lorentzian manifold.

Proof. Let F be a semi-Riemannian submersion. Then F∗ is an isometry from (ker F∗)⊥p to TF(p)N for every
point p of M. So, they have the same dimension and index. ξ is a (horizontal) vertical vector field if and
only if (horizontal) vertical distribution is Lorentzian distribution and (vertical) horizontal distribution is
Riemannian distribution.

Theorem 3.6. Let M(φ, ξ, η, 1M) be a Lorentzian almost (para)contact manifold of dimension 2m + 1 and (N, 1N) be
a semi-Riemannian manifold of dimension n. Let F : M(φ, ξ, η, 1M)→ (N, 1N) be an anti-invariant semi-Riemannian
submersion. Then the following statements hold:
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(a) If the characteristic vector field ξ is a vertical vector field then m 6 n 6 2m.
(b) If m = n then the characteristic vector field ξ is a vertical vector field.
(c) If the characteristic vector field ξ is a horizontal vector field then m + 1 6 n.

Proof. Assume that the characteristic vector field ξ is a vertical vector field. We have 0 6 dimφ(ker F∗) =
2m − n 6 n, then m 6 n 6 2m. So the proof of (a) ends.
Assume that m = n and k = dim{X ∈ ker F∗|φ(X) = 0}. If ξ is not a vertical vector field, then k = 0. Therefore,
dimφ(ker F∗) = n + 1 6 n, it is a contradiction, which proves (b).
If the characteristic vector field ξ is a horizontal vector field, then dimφ(ker F∗) = 2m + 1−n 6 n. Therefore,
1 6 2(n −m), we have 1 6 n −m. So the proof of (c) ends.

Theorem 3.7. Let F be a semi-Riemannian submersion from a K-(para)contact manifold M(φ, ξ, η, 1M) of dimension
2m + 1 onto a semi-Riemannian manifold (N, 1N) of dimension n. If ξ is a horizontal vector field, then F is an
anti-invariant submersion and m + 1 6 n.

Proof. From (6), (14) and (16), we have

1M(φU,V) = 1M(ε∇Uξ,V) = ε1M(TUξ,V) = −ε1M(ξ,TUV)

for any U,V ∈ Γ(ker F∗). Sinceφ is skew-symmetric andT is symmetric, that is, (19), we have 1M(φU,V) = 0.
Thus F is an anti-invariant submersion. From part (c) of Theorem 3.6 we have m + 1 6 n.

Corollary 3.8. Let M(φ, ξ, η, 1M) be a Lorentzian almost (para)contact manifold of dimension 2m + 1 and (N, 1N) is
a semi-Riemannian manifold of dimension n and F : M(φ, ξ, η, 1M)→ (N, 1N) be an anti-invariant semi-Riemannian
submersion. If m = n, then φ(ker F∗) = (ker F∗)⊥. Moreover, N is a Riemannian manifold.

Proposition 3.9. Let M(φ, ξ, η, 1M) be a Lorentzian almost (para)contact manifold of dimension 2m+1 and (N, 1N) is
a semi-Riemannian manifold of dimension n and F : M(φ, ξ, η, 1M)→ (N, 1N) be an anti-invariant semi-Riemannian
submersion such that φ(ker F∗) = (ker F∗)⊥. Then the characteristic vector field ξ is a vertical vector field and m = n.
Moreover, N is a Riemannian manifold.

Proof. If ξ is not a vertical vector field, then dimφ(ker F∗) = 2m + 1 − n = n. Therefore, 2(n − m) = 1, it is a
contradiction. So ξ ∈ ker F∗. That is, ξ is a vertical vector field. Now, since ξ is a vertical vector field. We
have dimφ(ker F∗) = 2m − n = n. Thus, m = n and by Theorem 3.5, N is a Riemannian manifold.

Proposition 3.10. Let M(φ, ξ, η, 1M) be a Lorentzian almost (para) contact manifold of dimension 2m + 1 and
(N, 1N) be a semi-Riemannian manifold of dimension n and F : M(φ, ξ, η, 1M)→ (N, 1N) be an anti-invariant semi-
Riemannian submersion such that φ(ker F∗) = {0}. Then the characteristic vector field ξ is a vertical vector field,
2m = n and ker F∗ = span{ξ}. Moreover, N is a Riemannian manifold.

Proof. If ξ is not a vertical vector field, then dimφ(ker F∗) = 2m + 1 − n = 0. Therefore, dim ker F∗ = 0, it is
contradiction. So ξ is a vertical vector field. In this case dimφ(ker F∗) = 2m−n = 0 and dim ker F∗ = 1, Thus
2m = n,ker F∗ = span{ξ} and by Theorem 3.5, N is a Riemannian manifold.

Proposition 3.11. Let M(φ, ξ, η, 1M) be a Lorentzian almost (para) contact manifold of dimension 2m + 1 and
(N, 1N) be a semi-Riemannian manifold of dimension n and F : M(φ, ξ, η, 1M)→ (N, 1N) be an anti-invariant semi-
Riemannian submersion. If 2m = n, then ξ is a vertical vector field, ker F∗ = span{ξ}, φ(ker F∗) = {0} and N is a
Riemannian manifold or ξ is a horizontal vector field and N is a Lorentzian manifold

Proof. If ξ is not a vertical vector field, then dimφ(ker F∗) = 2m + 1 − n = 0. Therefore, dim ker F∗ = 0, it is
contradiction. So ξ is a vertical vector field. In this case dimφ(ker F∗) = 2m−n = 0 and dim ker F∗ = 1, Thus
2m = n,ker F∗ = span{ξ} and by Theorem 3.5, N is a Riemannian manifold.

Proposition 3.12. Let M(φ, ξ, η, 1M) be a Lorentzian almost (para)contact manifold of dimension 2m+1 and (N, 1N)
is a Lorentzian manifold of dimension n. Let F : M(φ, ξ, η, 1M) → (N, 1N) be an anti-invariant semi-Riemannian
submersion. (ker F∗)⊥ = φ(ker F∗) ⊕ span{ξ} if and only if m + 1 = n.
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Proof. Obviously, ξ is a horizontal vector field, if (ker F∗)⊥ = φ(ker F∗) ⊕ span{ξ} then dimφ(ker F∗) =
2m + 1 − n = n − 1, so m + 1 = n. Conversely, by using (25), we have 2m + 1 − n + dimµ = n. So dimµ = 1
then µ = span{ξ}.

Remark 3.13. We note that Example 3.4 satisfies Proposition 3.12.

4. Anti-invariant submersions admitting vertical structure vector field

In this section, we will study anti-invariant submersions from a Lorentzian (para) Sasakian manifold
onto a Riemannian manifold such that the characteristic vector field ξ is a vertical vector field. It is easy to
see that µ is an invariant distribution of (ker F∗)⊥, under the endomorphism φ. Thus, for X ∈ Γ((ker F∗)⊥)
we have

φX = BX + CX. (26)

where BX ∈ Γ(ker F∗),CX ∈ Γ(µ). On the other hand, since F∗((ker F∗)⊥) = TN and F is a semi-Riemannian
submersion, using (26) we derive 1N(F∗φV,F∗CX) = 0, for every X ∈ Γ((ker F∗)⊥),V ∈ Γ(ker F∗) which implies
that

TN = F∗(φ(ker F∗)⊥) ⊕ F∗(µ). (27)

Theorem 4.1. Let M(φ, ξ, η, 1M) be a Lorentzian almost (para) contact manifold of dimension 2m + 1 and (N, 1N)
be a Riemannian manifold of dimension n. Let F : M(φ, ξ, η, 1M) → (N, 1N) be an anti-invariant semi-Riemannian
submersion and ξ is a vertical vector field. Then the fibers are not totally umbilical.

Proof. From (18), we have that, for U ∈ Γ(ker F∗), ∇Uξ = TUξ +V∇Uξ. And from (6), we have ∇Uξ = εφU.
So, we have

εφU = TUξ. (28)

If the fibers are totally umbilical, then we haveTUV = 1M(U,V)H for any vertical vector fields U,V, where H
is the mean curvature vector field of any fibers. Since Tξξ = 0, we have H = 0, which shows that fibres are
minimal. Hence the fibers are totally geodesic, which is a contradiction to the fact that TUξ = εφU , 0.

Lemma 4.2. Let F be an anti-invariant semi-Riemannian submersion from a Lorentzian (para) Sasakian manifold
M(φ, ξ, η, 1M) onto a Riemannian manifold (N, 1N). Then we have

BCX = 0,C2X + φBX = εX, (29)
∇XY = 1(X, φY)ξ + εφ∇XφY, (30)

where X,Y ∈ Γ((ker F∗)⊥).

Proof. First, by using (1) and (26) for X ∈ Γ(ker F∗), we obtain εX = BCX + C2X + φBX. This proves (29).
Next, (30) is obtained from (1), (6) and (7).

Lemma 4.3. Let F be an anti-invariant semi-Riemannian submersion from a Lorentzian (para) Sasakian manifold
M(φ, ξ, η, 1M) onto a Riemannian manifold (N, 1N). Then we have

CX = εAXξ, (31)
1M(AXξ, φU) = 0, (32)
1M(∇YAXξ, φU) = −1M(AXξ, φAYU) − εη(U)1M(AXξ,Y), (33)
1M(X,AYξ) = ε1M(Y,AXξ), (34)

where X,Y ∈ Γ((ker F∗)⊥) and U ∈ Γ(ker F∗).
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Proof. By using (20) and (6) for X ∈ Γ((ker F∗)⊥) and V = ξ, the equality (31) is obvious. Next, from (2),
(26) and (31), the equality (32) is obtained. Now from (32), for X,Y ∈ Γ((ker F∗)⊥), we get 1M(∇YAXξ, φU) +

1M(AXξ,∇YφU) = 0 and 1M(AXξ,∇YφU) = 1M

(
AXξ, (∇Yφ)U

)
+ 1M

(
AXξ, φ(∇YU)

)
. By using (7) and (20),

we obtain

1M(AXξ,∇YφU) =ε1M

(
AXξ, η(U)Y

)
+ 1M

(
AXξ, φAYU

)
+ 1M

(
AXξ, φ(V∇YU)

)
.

Finally, by using (31), (33) is obtained. From (5), (6) and (31), we have (34).

Theorem 4.4. Let F be an anti-invariant semi-Riemannian submersion from a Lorentzian (para) Sasakian manifold
M(φ, ξ, η, 1M) onto a Riemannian manifold (N, 1N), then for all U,V ∈ Γ(ker F∗) and X,Y ∈ Γ((ker F∗)⊥), the
following assertions are equivalent to each other:

(i) (ker F∗)⊥ is integrable.
(ii) 1N

(
(∇F∗)(Y,BX),F∗φV

)
= 1N

(
(∇F∗)(X,BY),F∗φV

)
+ ε1M(AXξ, φAYV) − ε1M(AYξ, φAXV).

(iii) 1M(AXBY − AYBX, φV) = ε1M(AXξ, φAYU) − ε1M(AYξ, φAXV).

Proof. (i)⇐⇒ (ii). Assume that U,V ∈ Γ(ker F∗) and X,Y ∈ Γ((ker F∗)⊥). From (30) and (5), we obtain.

1M([X,Y],V) =1M(∇XY,V) − 1M(∇YX,V)

=1M(εφ∇XφY,V) + 1M

(
1M(Y, φX)ξ,V

)
− 1M

(
εφ∇YφX,V) − 1M

(
1M(X, φY)ξ,V

)
=1M(∇XφY, φV) − 1M

(
∇YφX, φV) + (1 − ε)ε1M(φX,Y)η(V).

Now from (26), (31) and since F is an anti-invariant submersion, we have

1M([X,Y],V) =1N(F∗∇XBY,F∗φV) + ε1M(∇XAYξ, φV) − 1N(F∗∇YBX,F∗φV)
− ε1M(∇YAXξ, φV) + (1 − ε)1M(AXξ,Y)η(V).

On the other hand, according to (22), (33) and (34), we get

1M([X,Y],V) = − 1N(∇F∗(X,BY),F∗φV) + ε1M(AYξ, φAYV)
+ 1N(∇F∗(Y,BX),F∗φV) − ε1M(AXξ, φAYV).

(35)

(ii)⇐⇒ (iii). By using (20) and (22), we have

1N(F∗∇YBX − ∇XBY,F∗φV) = 1M(AYBX, φV) − 1M(AXBY, φV).

Thus according to part (ii), we have

1M(AYBX −AXBY, φV) = −ε1M(AXξ, φAYV) + ε1M(AYξ, φAXV). (36)

Remark 4.5. If φ(ker F∗) = (ker F∗)⊥, then we get εAXξ = CX = 0 and BX = φX.

Hence we have the following corollary.

Corollary 4.6. Let F : M(φ, ξ, η, 1M) → (N, 1N) be an anti-invariant semi-Riemannian submersion such that
φ(ker F∗) = (ker F∗)⊥, where M(φ, ξ, η, 1M) is a Lorentzian (para) Sasakian manifold and (N, 1N) is a Riemannian
manifold. Then for every X,Y ∈ Γ(ker F∗)⊥, the following assertions are equivalent to each other;
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(i) (ker F∗)⊥ is integrable.
(ii) (∇F∗)(Y, φX) = (∇F∗)(X, φY).

(iii) AXφY = AYφX.

Theorem 4.7. Let F : M(φ, ξ, η, 1M)→ (N, 1N) be an anti-invariant semi-Riemannian submersion, where M(φ, ξ, η, 1M)
is a Lorentzian (para) Sasakian manifold and (N, 1N) is a Riemannian manifold. Then the following assertions are
equivalent to each other;

(i) (ker F∗)⊥ defines a totally geodesic foliation on M.
(ii) 1M(AXBY, φV) = ε1M(AYξ, φAXV).

(iii) 1N

(
(∇F∗)(X, φY),F∗φV

)
= −ε1M(AYξ, φAXV).

for every X,Y ∈ Γ((ker F∗)⊥) and V ∈ Γ(ker F∗).

Proof. (i)⇐⇒ (ii). Assume that V ∈ Γ(ker F∗) and X,Y ∈ Γ((ker F∗)⊥). By using (30), we have

1M(∇XY,V) = 1M(∇XφY, φV) + εη(V)1M(X, φY), (37)

and from (20) and (26), we have

1M(∇XφY, φV) = 1M(AXBY, φV) + ε1M(∇XAYξ, φV), (38)

and from (33), we have

1M(∇XφY, φV) = 1M(AXBY, φV) − ε1M(AYξ, φAXV) − η(V)1M(AYξ,X). (39)

Now, from (26), (31), (37), (38) and (39), (ker F∗)⊥ is a totally geodesic foliation on M if and only if

1M(AXBY, φV) = ε1M(AYξ, φAXV). (40)

Finally, by using (22), (23), (26), (27) and (39), we have (ii)⇐⇒ (iii).

Corollary 4.8. Let F : M(φ, ξ, η, 1M) → (N, 1N) be an anti-invariant semi-Riemannian submersion such that
φ(ker F∗) = (ker F∗)⊥, where M(φ, ξ, η, 1M) is a Lorentzian (para) Sasakian manifold and (N, 1N) is a Riemannian
manifold. Then, for every X,Y ∈ Γ((ker F∗)⊥), the following assertions are equivalent to each other;

(i) (ker F∗)⊥ defines a totally geodesic foliation on M.
(ii) AXφY = 0.

(iii) (∇F∗)(X, φY) = 0.

We note that a differentiable map F between two semi-Riemannian manifolds is called totally geodesic if
∇F∗ = 0. Using Theorem 4.1 one can easily prove that the fibers are not totally geodesic. Hence, we have
the following theorem.

Theorem 4.9. Let F : M(φ, ξ, η, 1M) → (N, 1N) be an anti-invariant semi-Riemannian submersion such that
φ(ker F∗) = (ker F∗)⊥, where M(φ, ξ, η, 1M) is a Lorentzian (para) Sasakian manifold and (N, 1N) is a Riemannian
manifold. Then F is not totally geodesic map.

Finally, we give a necessary and sufficient condition for an anti-invariant Riemannian submersion to be
harmonic.

Theorem 4.10. Let F : M(φ, ξ, η, 1M)→ (N, 1N) be an anti-invariant semi-Riemannian submersion such that m = n,
where M(φ, ξ, η, 1M) is a Lorentzian (para) Sasakian manifold of dimension 2m + 1 and (N, 1N) is a Riemannian
manifold of dimension n. Then F is harmonic if and only if traceφ(TV) = −nη(V), where V ∈ Γ(ker F∗).
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Proof. We know that F is harmonic if and only if F has minimal fibres [5]. Thus, F is harmonic if and only
if

∑k
i=1 Tei ei = 0, where {e1, . . . , ek−1, ek = ξ} is the orthonormal basis for ker F∗ and k = 2m + 1 − n = n + 1 is

dimension of ker F∗.
On the other hand, from (18), (19) and (7), we get

1M(TVφW,U) = ε1M(φV, φW)η(U) + η(W)1M(φ2V,U) + ε1M(TVW, φU). (41)

By using (41) and (14), we get

−ε
k∑

i=1

1M(ei, φTei U) = ε
(
(k − 1)η(U) + 1M(

k∑
i=1

Tei ei, φU)
)
. (42)

Since F is a Harmonic mapping,
∑k

i=1(T eiei, φU) = 0. Then we have

traceφ(TU) =

k∑
i=1

1M(ei, φTei U) = −nη(U). (43)

5. Anti-invariant submersions admitting horizontal structure vector field

In this section, we will study anti-invariant submersions from a Lorentzian (para) Sasakian manifold
onto a Lorentzian manifold such that the characteristic vector field ξ is a horizontal vector field. From (25),
it is easy to see that φ(µ) ⊂ µ and ξ ∈ µ. Thus, for X ∈ Γ((ker F∗)⊥) we have

φX = BX + CX, (44)

where BX ∈ Γ(ker F∗),CX ∈ Γ(µ). On the other hand, since F∗((ker F∗)⊥) = TN and F is a semi-Riemannian
submersion, using (44) we derive 1N(F∗φV,F∗CX) = 0, for every X ∈ Γ((ker F∗)⊥),V ∈ Γ(ker F∗), which
implies that

TN = F∗(φ(ker F∗)) ⊕ F∗(µ). (45)

Lemma 5.1. Let F be an anti-invariant semi-Riemannian submersion from a Lorentzian (para) Sasakian manifold
M(φ, ξ, η, 1M) onto a Lorentzian manifold (N, 1N). Then we have

BX = εAXξ, (46)
TUξ = 0, (47)
1M(∇XCY, φU) = −1M(CY, φAXU), (48)

where X,Y ∈ Γ((ker F∗)⊥) and U ∈ Γ(ker F∗).

Proof. Assume that X,Y ∈ Γ((ker F∗)⊥) and U ∈ Γ(ker F∗). By using (21) and (6), we have

BX = εAXξ, (49)

and also from (19) and (6), we get

TUξ = 0. (50)

From (7) and (20), we obtain (48).

Theorem 5.2. Let F be an anti-invariant semi-Riemannian submersion from a Lorentzian (para) Sasakian manifold
M(φ, ξ, η, 1M) onto a Lorentzian manifold (N, 1N). Then for all X,Y ∈ Γ((ker F∗)⊥) and V ∈ Γ(ker F∗), the following
assertions are equivalent.
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(i) (ker F∗)⊥ is integrable.
(ii)

1N

(
(∇F∗)(Y,BX),F∗φV

)
= 1N

(
(∇F∗)(X,BY),F∗φV

)
− 1M(CX, φAYV)

+1M(CY, φAXV) + ε1M(X, φV)η(Y) − ε1M(Y, φV)η(X).

(iii)

1M(AXAYξ −AYAXξ, φV) = − 1M(CX, φAYV) + 1M(CY, φAXV)
+ ε1M(X, φV)η(Y) − ε1M(Y, φV)η(X).

Proof. Assume that X,Y ∈ Γ((ker F∗)⊥) and V ∈ Γ(ker F∗). From (2), (7) and (5), we obtain.

1M([X,Y],V) =1M(∇XY,V) − 1M(∇YX,V)
=1M(∇XφY, φV) − εη(Y)1M(X, φV)
− 1M(∇YφX, φV) + εη(X)1M(Y, φV)

=1M(∇XBY, φV) + 1M(∇XCY, φV) − εη(Y)1M(X, φV)
− 1M(∇YBX, φV) − 1M(∇YCX, φV) + εη(X)1M(Y, φV).

Since F is an anti-invariant submersion, we have

1M([X,Y],V) =1N(F∗∇XBY,F∗φV) + 1M(∇XCY, φV) − εη(Y)1M(X, φV)
− 1N(F∗∇YBX,F∗φV) − 1M(∇YCX, φV) + εη(X)1M(Y, φV).

On the other hand, according to (22), (48) and (34), we get

1M([X,Y],V) = − 1N(∇F∗(X,BY),F∗φV) − 1M(CY, φAXV) − εη(Y)1M(X, φV)
+ 1N(∇F∗(Y,BX),F∗φV) + 1M(CX, φAYV) + εη(X)1M(Y, φV)

(51)

which proves (i)⇐⇒ (ii). By using (20), (22), we have

1N(F∗∇YBX − ∇XBY,F∗φV) = −(1M(AYBX, φV) − 1M(AXBY, φV))

Thus according to part (ii), we have (ii)⇐⇒ (iii).

Corollary 5.3. Let F be an anti-invariant semi-Riemannian submersion from a Lorentzian (para) Sasakian manifold
M(φ, ξ, η, 1M) onto a Lorentzian manifold (N, 1N) with (ker F∗)⊥ = φ(ker F∗) ⊕ span{ξ}. Then for all X,Y ∈
Γ((ker F∗)⊥), the following assertions are equivalent.

(i) (ker F∗)⊥ is integrable.
(ii) (∇F∗)(Y,BX) = (∇F∗)(X,BY) + εη(Y)F∗X − εη(X)F∗Y.

(iii) AXAYξ −AYAXξ = εη(Y)X − εη(X)Y.

Theorem 5.4. Let F be an anti-invariant semi-Riemannian submersion from a Lorentzian (para) Sasakian manifold
(M, 1M, φ, ξ, η) onto a Lorentzian manifold (N, 1N). Then for all X,Y ∈ Γ((ker F∗)⊥) and V ∈ Γ(ker F∗), the following
three statements are equivalent.

(i) (ker F∗)⊥ defines a totally geodesic foliation on M.
(ii) 1M(AXBY, φV) = 1M(CY, φAXV) + εη(Y)1(X, φV).

(iii) 1N

(
(∇F∗)(Y, φX),F∗(φV)

)
= 1M(CY, φAXV) + εη(Y)1(X, φV).

Proof. For X,Y ∈ Γ
(
(ker F∗)⊥

)
and V ∈ Γ(ker F∗), from (2), (7), and (48), we obtain

1M(∇XY,V) = 1M(AXBY, φV) − 1M(CY, φAXV) − εη(Y)1(X, φV),

which shows (i)⇐⇒ (ii). From (20) and (22), we have (ii)⇐⇒ (iii).
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Corollary 5.5. Let F be an anti-invariant semi-Riemannian submersion from a Lorentzian (para) Sasakian manifold
(M, 1M, φ, ξ, η) onto a Lorentzian manifold (N, 1N) with (ker F∗)⊥ = φ(ker F∗) ⊕ span{ξ}. Then for all X,Y ∈
Γ((ker F∗)⊥), the following three statements are equivalent.

(i) (ker F∗)⊥ defines a totally geodesic foliation on M.
(ii) AXBY = εη(Y)X.

(iii) (∇F∗)(Y, φX) = εη(Y)F∗X.

Theorem 5.6. Let F be an anti-invariant semi-Riemannian submersion from a Lorentzian (para) Sasakian manifold
(M, 1M, φ, ξ, η) onto a Lorentzian manifold (N, 1N). Then for X ∈ Γ

(
(ker F∗)⊥

)
and V,W ∈ Γ(ker F∗), the following

three statements are equivalent.

(a) ker F∗ defines a totally geodesic foliation on M.
(b) 1N

(
(∇F∗)(V, φX),F∗φW

)
= 0.

(c) TVBX +ACXV ∈ Γ(µ).

Proof. Assume that X ∈ Γ
(
(ker F∗)⊥

)
and V,W ∈ Γ(ker F∗). From (6) and 1M(W, ξ) = 0, we obtain 1M(∇VW, ξ) =

ε1M(W,∇Vξ) = 1(W, φV) = 0. Thus, we have

1M(∇VW,X) =1M(φ∇VW, φX) − η(∇VW)η(X)
=1M(φ∇VW, φX)

=1M(∇VφW, φX) − 1M

(
(∇Vφ)W, φX

)
= − 1M(φW,∇VφX).

Since F is a semi-Riemannian submersion, we have

1M(∇VW,X) = −1N(F∗φW,F∗∇VφX) = 1N

(
F∗φW, (∇F∗)(V, φX)

)
,

which proves (a)⇔ (b).
By direct calculation, we derive

1N

(
F∗φW, (∇F∗)(V, φX)

)
= − 1M(φW,∇VφX)

= − 1M(φW,∇VBX + ∇VCX)
= − 1M(φW,∇VBX + [V,CX] + ∇CXV)

Since [V,CX] ∈ Γ(ker F∗), from (18) and (20), we obtain

1N

(
F∗φW, (∇F∗)(V, φX)

)
= −1M(φW,TVBX +ACXV),

which proves (b)⇐⇒ (c).

Corollary 5.7. Let F be an anti-invariant semi-Riemannian submersion from a Lorentzian (para) Sasakian manifold
(M, 1M, φ, ξ, η) onto a Lorentzian manifold (N, 1N) with (ker F∗)⊥ = φ(ker F∗) ⊕ span{ξ}. Then the following three
statements are equivalent.

(a) ker F∗ defines a totally geodesic foliation on M.
(b) (∇F∗)(V, φX) = 0.

(c) TVφW = 0, for X ∈ Γ
(
(ker F∗)⊥

)
and V,W ∈ Γ(ker F∗).

The proof of the following two theorems are exactly the same with Theorem 3.10 and Theorem 3.11 in
[15] for Riemannian case. Therefore, we omit them here.
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Theorem 5.8. Let F be an anti-invariant semi-Riemannian submersion from a Lorentzian (para) Sasakian manifold
(M, 1M, φ, ξ, η) onto a Lorentzian manifold (N, 1N) with (ker F∗)⊥ = φ(ker F∗)⊕span{ξ}. Then F is a totally geodesic
map if and only if

TVφW = 0, V,W ∈ Γ(ker F∗) (52)

and

AXφW = 0, X ∈ Γ
(
(ker F∗)⊥

)
. (53)

Theorem 5.9. Let F be an anti-invariant semi-Riemannian submersion from a Lorentzian (para) Sasakian manifold
(M, 1M, φ, ξ, η) onto a Lorentzian manifold (N, 1N) with (ker F∗)⊥ = φ(ker F∗)⊕ span{ξ}. Then F is a harmonic map
if and only if trace(φTV) = 0 for V ∈ Γ(ker F∗).

In the following, we obtain decomposition theorems for an anti-invariant semi-Riemannian submersion
from a Lorentzian (para) Sasakian manifold onto a Lorentzian manifold. By using results in subsection 2.3
and Theorems 5.2, 5.4 and 5.6, we have the following theorem.

Theorem 5.10. Let F be an anti-invariant semi-Riemannian submersion from a Lorentzian (para) Sasakian manifold
(M, 1M, φ, ξ, η) onto a Lorentzian manifold (N, 1N). Then M is a locally product manifold if and only if

1N

(
(∇F∗)(Y,BX),F∗φV

)
= 1M(CY, φAXV) + εη(Y)1M(X, φV)

and

1N

(
(∇F∗)(V, φX),F∗φW

)
= 0

for X,Y ∈ Γ
(
(ker F∗)⊥

)
and V,W ∈ Γ(ker F∗).

Theorem 5.11. Let F be an anti-invariant semi-Riemannian submersion from a Lorentzian (para) Sasakian manifold
(M, 1M, φ, ξ, η) onto a Lorentzian manifold (N, 1N) with (ker F∗)⊥ = φ(ker F∗)⊕span{ξ}. Then M is a locally twisted
product manifold of the form M(ker F∗)⊥ × f Mker F∗ if and only if

TVφX = −1M(X,TVV)||V||−2φV

and

AXφY = η(Y)X

for X,Y ∈ Γ
(
(ker F∗)⊥

)
and V,W ∈ Γ(ker F∗), where M(ker F∗)⊥ and Mker F∗ are integral manifolds of the distributions

(ker F∗)⊥ and ker F∗.

Theorem 5.12. Let (M, 1M, φ, ξ, η) be a Lorentzian (para) Sasakian manifold and (N, 1N) be a Lorentzian manifold.
Then it does not exist an anti-invariant semi-Riemannian submersion from M to N with (ker F∗)⊥ = φ(ker F∗) ⊕
span{ξ} such that M is a locally proper twisted product manifold of the form M(ker F∗)⊥ × f Mker F∗ .
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