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Non-polynomial Spline Functions and Quasi-linearization to
Approximate Nonlinear Volterra Integral Equation
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Abstract. In this work, we want to use the Non-polynomial spline basis and Quasi-linearization method to
solve the nonlinear Volterra integral equation. When the iterations of the Quasilinear technique employed
in nonlinear integral equation we obtain a linear integral equation then by using the Non-polynomial spline
functions and collocation method the solution of the integral equation can be approximated. Analysis of
convergence is investigated. At the end, some numerical examples are presented to show the effectiveness
of the method.

1. Introduction

Consider the following nonlinear Volterra integral equation of second kind

v = flb) + fo (b, %, y()dx M

When k(t, x, y) is nondecreasing in y and satisfies in lipschitz condition.

There has been a growing interest in the Volterra integral equations in many fields of physics and
engineering [11], for example heat conduction problem [22], concrete problem of mechanics or physics[33],
on the unsteady poiseuille flow in a pipe [15], diffusion problems[24], potential theory and Dirichlet
problems, electrostatics[16], the particle transport problems of astrophysics and reactor theory and contact
problems[14] has arisen. Also, the fractional differential equations of various types, play important roles
not only in mathematics but also in physics, control systems, dynamical systems and engineering to create
the mathematical modeling of many physical phenomena, can be converted to Volterra integral equation.
In [1-7](see also, [20, 21, 23, 32]) A.Akgul et al. solved many important models of fractional differential
equations by reproducing kernel method.

Recently, there are many numerical methods for solving Volterra integral equation of the second kinds;
for example, Bernstein Polynomial method has been used in [8] for Solving Volterra Integral Equations
with Convolution Kernels by Alturk, A. Maleknejad and Aghazadeh proposed Taylor series expansion
method for solving this equation[18]. Farshid Mirzaee and Elham Hadadiyan applied hat functions to
solve nonlinear Stratonovich Volterra integral equation[13]. In [10] A.Shoja et al. solved the nonlinear
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singular Volterra integral equations of Abel type be using A spectral iterative method. Rashidinia and
Zarebnia [30] obtained a numerical solution of the integral equation by Sinc-collection method. In [17]
legendre wavelet has been proposed for numerical solution of Volterral integral equation of the second
kind by Maleknejad, Tavassoli and Mahmoudi. In [36] Z. Gouyandeha et al. solved the nonlinear Volterra-
Fredholm-Hammerstein integral equations via Tau-collocation method.

The structure of this paper is organized as follows. In section 2, We briefly introduce Quasi-linearization
method . Section 3, explains the Non-polynomial spline functions. Section 4, shows the collocation method
by using Non-polynomials functions to approximate the solution of the integral equations. Section 5, is
devoted to convergence analysis. Some numerical results are given to clarify the method in section 6,
furthermore in example (3) we employed the nonpolynomial Spline method for solving the linear Volterra
integral equation. At the end, we have a conclusion of our study.

2. Linearization

The method of Quasi-linearization pioneered by Bellman and Kalaba [25] and generalized by Laksh-
mikantham [34, 35] has been applied to a variety of problems. Consider the nonlinear Volterra integral
equation (1), to solve this equation we employ the following iterative scheme forp = 1,2, ...

yp(H) = f(B) + fo [kt %, yp-1 () + ey (8, %, Yp1 () (yp(x) = ypa ()] d, 2

which is the linear Volterra integral equation where 1°(x) is the lower solution of (1).
ForTe Rand T > 0let] =[0,T]and D = {(t,x) € ] X | : x < t}, consider the equation (1) where f € C[],R]
and k € C[D, R] also, k(t, x, y) is nondecreasing in y for each fixed (¢, x) € D and satisfies Lipschitz condition.

Definition 2.1. A function 3 € C[],R] is called a lower solution of Eq.(1) on | if

I(b) < f(t) + fo t kt,x, 3()dx, te]

Now, for Jp € C[J,R]and Jp < yon ], let Q = {(t,x,y) e DX R; Jo(t) <y, t € J}
Theorem 2.2. Assume that

(a0) Jo € C[J,R] is lower solution of Eq.(1) on ].

(1) ke C?[Q, R, ky(t,x,y) > 0,kyy(t,x,y) > 0 for (,x,y) € Q.

Then the iterative scheme (2) defines a nondecreasing sequence {3,(t)} in C[],R] such that 3 — y uniformly on ],
and the following quadratic convergent estimate holds:

ly = Bpll < 0lly = Fpal?,  6>0

The equation (2) may be shown in the form of the following linear integral equation

t
w0 =F0+ [ Be0nwd p=12. ©
where
t
F,(t) = f(t) + I} [k(t, X, Yp-1(x)) — ky(t, X, Yp-1 (x))yp,l(x)] dx, p=12,.. 4)
and
ky(t,x) = ky(t, x, yp-1(x)), p=12,.. (5)

In continuation, we want to approximate the solution of Eq(3) by using Non-polynomial spline functions.
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3. Non-polynomial Spline Method

We consider a uniform mesh A with nodal points x; on [a, b] such that
A:a=xp<x1<..<x,=0,

where I = b%* Let Si(x) be the interpolating Non-polynomial spline function which interpolate y at x,
by following our previous study ([26-29, 31]), and others’ researches such as [9] for each segment [x;, x;41],
I=0,..,n—1 the Non-polynomial spline interpolation,Sx(x), has the form

Sa(x, ) = a; + bi(x — x7) + ¢sint(x — x;) + djcost(x — x7), 1=0,1,..n (6)
where a;, bj, ¢; and d; are real constant and 7 is a arbitrary parameter. we denote the following relations

Sa(r, T) = Yk, Sa(Xks1, T) = Yke1, S (Xk, T) = My, S (Xks1, T) = My, )
using (6) and (7) we have the following expressions

Y1080 — My -M;

72

My _Ym— Y M - M,

ﬂ1=yz+?,bl— , dp = , (8)

C ;
h T 25in0

where 0 = thand! = 0, ..., n. with the continuity of first derivatives of s;_; (x) and s;(x) atx = x;,[ = 1,2, ..., n—1,
we obtain the following consistency relation,

1
aMj_q + 2pM; + aM,q = ﬁ(]/m =2y, + Y1), )

where o = é(@csc@ -1, p= é(l — OcotO). If let, a = % and 8 = 15—2 we have the following system which
is strictly diagonaly dominant. Obviously system (9) with the natural spline initial condition My = M,, = 0
has a unique solution to obtain Mj, ..., M,_; . In the matrix notation, the above system has the form:

-1

My ] 1 0 O 0O ... ...0 0 0 07 0
M, 1 10 1 o ... ...0 0 0 O Yo — 21 + Y2
M, o 1 10 1 ... ... 0 0 0 O Yo — 21 + Y2
: 120 & T o :
- h_Z . . . . . . . . . . . ’ (10)
Mnfz 0 0 0 0 1 10 1 0 Yn-3 — Zyn,z + Yn-1
M, 1 o o0 o0 o ... ....01 101 Yn-2 = 2Yn-1+ Yn
| M, | | 0 0 O o ... ...0 0 0 1| 0
[ —
M w-1 Y
Now, if we suppose W™ = (u4; j)1<ij<ns1 and Z = (z;;) = W]
ui,]‘+1 lf] = 1,
u,‘,]'+1 - 21/{1',]' lf] = 2/
Zi,j = { Ui j-1 —2u1-,]-+ui,]-+1 ifl<i<n+1, 3<j<n-1, (11)
Ujj-1 — 21/[1',]' lf] =n,

Ujj-1 ifj:n+1.
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4. Non-polynomial Spline Method and Discretization
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Considering the nonlinear Volterra integral equation (3), by using equation (6), (8) and employing the

collocation method fori =0,1,2,...,n we have
ti
yp(ti) = Fp(ti) + j; kp(ti/ x)]/p(x)dx

i—1 ]+1
Fy(t;) + Zf (ti, X)yp(x)dx
j=0

j+1

i—1 +
~ Fy(t) + Z f kp(t,-,x)S?(x)dx + O
=0 Vi

= fj1 Ml; ]+1 ]+1
= F,,(ti) + Zf k,,(ti,x)[y’;,’ + = [ }(x x,)
j=0 Yt

76
M cos 0
<4 sint(x — x])—

72sin O

] sin 7(x — x;)

—[y—l;J + Aﬁ](x—x-)+

h 70 /
M

- —f cost(x - xj)]dx + 00

t/” i1 yp Mp t/'+1
) j+1 j+1 ) o
[ kp(tl/ x)dx + Z [ 2 + 70 L kp(tz/ .X)(x X])dx

j=0 i =0
N —
ll‘/‘ bl/
i-1 y? M;’ £t i-1 cos 0 i .
- L n + 0 ft: k (tz/ x)(x — x,)dx+ JZ‘ 2sin 2end j: kp(ti, x) sin[T(x — xj)]dx
C,‘j dij

-

i-1 M?H tit 1M ptia
- f ky(t;, x) sin[7(x — x;j)]dx — = f ky(ti, x) cos[T(x — x;j)]dx +O(h*)
tj =0 tj

¢ Pi

i i
=F,(t) + Z y?a,, ZM”az] z Z yiblj + = Z f bij — z Z vici— = XM?CU
j=0 =0

cosO ¢ ' 4
+ 2sin0 L deij - m ;‘M],e,-]- - ? ;‘M]‘pij + O(h ),l =12,..,n

(12)

The above integrant can be determined by any quadrature methods such as five-point Gauss Legendre.
Also assume, AP = (a’;j),B” = (bfj), Cr = (cf],), DF = (df ],), EF = (ep )and P? = (pf ],), which are lower triangular

matrices.Now, if we suppose M ~ MP = (Mp ,M’;,MZ, . MZ "
and F¥ = (F,F,F,,...,F_,F,)T, we have

wops L (AP g Loy cotopy - csc OB - PP)MP c+ g lonyp
20T o

ML Y ~ Y0 = (0,

YT

(13)
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Using (10) we have
[1 —waiploy 12 (AP +1p - Llor s cotopy - csc OB - PP)Z]YP — P (14)
R 7 o
H1 HZ

Eventually the collocation Eq(13) is deformed to the following linear algebraic system
N [1 i HQZ)]YP —F, p=12,.. (15)

Finally we can approximate the exact solution y by the Non-polynomial spline function 5 such that $* = § 7
on Q; = [x;,xi41],1=0,1,...,n — 1, where

(9 W PN
&P () = {F i Jirl T b oy T T e e
Si() =0+ T2 +( TR ](x xi) (h * TG]OC i)

: Mfﬂ : Mf
sint(x — x;) — sint(x — x;) — = cos T(x — x;) (16)

2sin 0 2

Mf cos 0
72sin 0

5. Analysis of Convergence

Lemma 5.1. Assume A be a n X n matrix with ||Alle < 1, then, the matrix (I — A) is invertible. in addition to
NI = A) e < m'

Now, If W be a tridiagonal matrix with the inverse w1 = (u,-,j)lsi,]vsn+1 by using [12] we can proof the
following lemmas.

Lemma 5.2. u;; = %=L Vi=1,..,n+1, where ag = 1 and a; = 2—‘?((5 + V24) — (5 — V24))
Proof: fori=1,2,n,n+1 proof is clear but fori =3, ...,n — 1 we have

Qi-10n—i+1
Aillp—ir1 — Hp—iti-1

(6-2V6)™ ~ (5+2V6)")(=(5-2V6)" "' + (5+2V6)" )
—4V6((5 +2V6)" — (5 -2 V6)")

Uii =

Ai10n—i+1
ap

Lemma 5.3. Ul pn+l = Un+11 = ul,j = un+1,j = 0, and
i e .
(_1)] lﬁ”j/j lfl < ] P
ujj = i—] On—isl £ i
(-1 ]anfjﬂ ujj ifi>j.

Vi=2,.,m,¥j=12,.,n+1

Remark 1. It is clear that Vi, j = 1,2, ...,n + 1, we have
a; = 10a;1 —a;» and a, = qdy_i41 — Apoi®i

Lemma54. u;j =u;,¥i,j=2,3,..,n
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Proof:

ai Qi

Wij i1 Qpirl | o Gyein
— = —X X T
Uji a1 Mp—j+1 —
aj-1 Ap—j+1
Qi1 — & 10—

Aj0p—j+1 — Q10—
_ 5+ \/2_4)n+1 +(5- \/_)n+1 -5+ \/_)n—l -(5- \/ﬂ)n—l _
5+ \/2_4)n+1 +(5- \/_n+1 5+ \/_)n 1_(5- \/ﬂ)n—l

Remark 2. In addition above lemmas it is easy to show that the following properties hold

Uil = —Uip, Uipn = —Uins1, Vi, j=2,3,.. 1
Un—ivopm-iv2 = Uii > 0 and up_jpou-jr2 = uij, Vi, j=1,2,3,..,n+1

241(5+2V6)
Lemma 5.5. ||Z]|e < HVe@s 2 Ve

Proof: We suppose C; = 27;1 |zijl for2 <i<n—1,then

i n
Ui Ui
G <4l — Za] 1+ Zl){n_]‘+1 +2
Qi1 = Ap—i+1 i

f=m) Ap—i+1

;[5_‘_2\/— 5+2«f)’ -1 — G- 2\/—)(5 2V6)1-1

— 41/[" \/E
(5+2\/6 i1 — (5 - 26)i-1
(5+2Vo) B2 (52 Vo) B2 g
+2u,-,1
(5+2\/_)n—1+1 _(5_2\/_)n—1+1
241
< Uj;
20V6
241(5 + 2 V6)
T 20V6(48 +2V6)

also, it can be shown that (1 = Cy41 = 0, and

n+1

lel’ljl = len]|+|unn 1= 2Unul + [l

< 42 |un,j| + |”n,n—1 - zun,nl + |un,n|

j=2
i 2a]+ 7an L,
an 14 An
G +2x/’)<5+m” ~6-2V0) 0 g
A 5+2V0y 1 - (5-2V6)! a
_ 166+68 V6

T 218+89V6

3952



Kh. Maleknejad et al. / Filomat 32:11 (2018), 3947-3956 3953

Theorem 5.6. Let f € C*(I) and k € C*(I x I) such that

2892(5 + 2 V6)
20 V6(48 + 2 V6)62

IKII(b - a) (1 tan g) 12l<1,

then (16) define a unique approximation and the resulting error é := y — § satisfies
lélleoy < ah*, VP C 1,

where o is a constant .
Proof:lt is easy to verify that ||Alls, IDlleo, l|Elleo and ||Pllee < |lklleo(b — @) and also ||Bllco, [|IClleo < w, hence,
I oo < 21lklleo (b — ) and [|Hb||co < 22|[Klloa(b — a)[1 — tan 2], then we have

2892(5 + 2 V6)
20 V6(48 + 2 V6)02

IHY + H Z|oo < [IKlloo(b —a)[ (1-tan g) + 2] <1

Now by lemma 5.1 the system (15) has a unique solution {). It follows that the Eq(16) define a unique solution
S. Now, let & =y =9 = (Yo — §o, - Yn — §)'. then from (12) we get (I — (H! + HyZ))é = O(h*). Therefor,e =
(I- (Hf + HgZ))O(h‘*), which implies by lemma 5.1, that there exist iy > 0 such that
a1
2892(5 + 2 V6)
20 V6(48 + 2 V6)62

llelleo < ht

1—||K||oo(b—a)[ (1-tan §)+2

az

. On the other hand, from (10), we have (M — M) = 3 Z&.Therefor, ||Z — Zlleo < 12a0h*.
In consequence, for all i = 0,1...,n — 1 and x € Q;, we have

1Si(x) — Si(x)| < 12axh*

It follows that A A
1Y = Slleo < IIY = Slleo + IS = Slleo < a1/t* + 12a1*

Thus, the proof is completed by taking a = aq + 12a5. O

6. Computational Illustrations

In this section, we have implemented our method (NPS) for solving examples of the nonlinear Volterra
integral equation, to show the efficiency of the proposed numerical method. The absolute error in the
solution are compared with the similar method in [19]. All the computations are performed by MATLAB
R2013a.

Example 1: Consider the following Volterra integral equation

yt)=2—¢" + fot ey (x)dx, te[0,1],
where, one of the lower solutions is 1/°(f) = 1 — ¢’ and the iterative scheme is

t t
Yp(t) = (2 —e' - fo et_x(yp—l(x))2dx) +2 fo ¢ (Yp-1())yp (x)dx.

The absolute errors in the solution presented in Table 1. The exact solution is given by the relation y(t) = 1.
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Table 1: Absolute errors for Example 1.

y 3 3 6 5

t  Bestin[19] NPS method(r=1.0x10™) Bestin [19] NPS method(r=1.0x10%7)

0 2.2x1073 0.0 1.4x10715 0.0
0.1 2.5x1073 9.9%107° 1.7x1071° 2.2x10716
0.2 7.9x107* 1.0x107° 6.6x10716 2.2x10716
0.3 1.4x1073 2.1x107° 1.5x1071° 2.2x10716
0.4 1.6x1073 2.1x10™* 2.1x1071 3.3x10716
0.5 8.9x107* 1.3x1073 1.2x1071° 2.2x10716
06 3.6x107° 6.0x1073 1.1x10715 1.1x10716
0.7 1.7x1072 2.1x1072 2.4x1071° 8.8x10716
0.8 5.5%1072 5.7%1072 1.3x1071° 1.1x10716
0.9 1.3x107! 1.3x107! 1.5x10714 1.3x10715

1 2.6x107! 2.6x107! 4.5%x10714 1.9x1071°

Example 2: Consider the following Volterra integral equation
y(t) = sin(t) — e + 1+ [ cos()e!@dx, t€[0,1],
where, one of the lower solutions is y°(t) = 0.

The absolute errors in the solution presented in Table 2. The exact solution is given by the relation

y(t) = sin(t).

Table 2: Absolute errors for Example 2.

p 2 2 5 5

t  Bestin[19] NPS method(7=1.0x10*3) Bestin[19] NPS method(r=1.0x10"")

0 9.7x107° 0.0 7.1x107° 0.0
0.1 8.2x107° 4.7%x107° 6.2x107° 7.6x10712
0.2 5.7x107° 5.4x1078 4.6x107° 2.9%x10~1
0.3 8.3x107° 7.3%x1077 6.2x107° 7.1x10~1
0.4 1.3x1074 5.7x107° 1.4x107° 1.4x10710
0.5 6.7x107* 2.9%x107° 7.0x107° 2.4x10710
0.6 2.1x1073 1.0x107* 3.6x107° 3.8x10710
0.7 4.9%x1073 3.1x10™* 4.2x107° 5.7x10710
0.8 8.6x1073 7.8x107* 4.7%x107° 7.9%x10710
0.9 1.2x1072 1.6x1073 5.6x107° 1.0x107?

1 1.3x1072 3.0x1072 6.7x107° 2.9%x1078

Example 3: Consider the following Volterra integral equation
y(t) = sin(t) + cos(t) + [, 2sin(t - y()dx, < [0,1],

The absolute errors in the solution presented in Table 3. The exact solution is given by the relation y(f) = ¢’
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Table 3: Absolute errors for Example 3.
t  Bestin[8] NPS method(7=1.0x10"°) NPS method(r=1.0x10*°)

0 2.8x107° 0.0 0.0
0.1 1.1x10°® 9.9x107° 6.5x10716
02 27x1077 1.0x107° 2.3x10716
03 1.2x107° 2.1x107° 1.6x1071°
04 1.2x107° 2.1x107° 2.7x10716
05 4.7x10™ 1.3x107° 8.6x10717
0.6 1.4x107* 6.0x107° 2.7x10716
0.7 3.6x107* 2.1x107° 1.1x10716
0.8 82x10™* 5.7x107° 2.2x10716
09 1.7x1073 1.3x107° 1.7x1071

1 3.2x1073 2.6x107° 2.5x1071

7. Conclusion

The present work is an effort to obtaining the numerical solution of Volterra integral equation of the
second kind. Analysis of convergence is investigated. Three test examples are considered from previous
work in [19]. The computational solutions are compared with the exact solution. The absolute errors in the
solutions by our NPS method are accurate in comparison with [19] and [8].
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