Filomat 32:11 (2018), 4079–4087 https://doi.org/10.2298/FIL1811079M

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

From Hom $(A, X) \cong$ Hom(B, X) to $A \cong B$

Ehsan Momtahan^a, Afshin Amini^b, Babak Amini^b

^aDepartment of Mathematics, College of Sciences, Yasouj University, Yasouj, Iran ^bDepartment of Mathematics, College of Sciences, Shiraz University, Shiraz 71457, Iran

Abstract. Let *A* and *B* be two *R*-modules. We examine conditions under which Hom(A, X) \cong Hom(B, X), implies that $A \cong B$, where *X* belongs to an appropriate class of *R*-modules. Different perspectives of the question are studied. In the case of abelian groups (\mathbb{Z} -modules), this investigation gives a partial answer to an old problem of L. Fuchs.

1. Introduction

In group theory, if G_1, G_2 are finite groups and $|\text{Hom}(G_1, H)| = |\text{Hom}(G_2, H)|$ for every finite group H, then G_1 is isomorphic to G_2 (this result is an outcome of L. Lovász's works in [10],[11] and [12]). On the other hand, L. Fuchs posed in [5, Page 208, Problem 34] the following problem: does there exist a set X of (abelian) groups X such that $\text{Hom}(A, X) \cong \text{Hom}(B, X)$ for every $X \in X$ implies that $A \cong B$? This problem has been extensively studied in [1],[2] and [3] and some classes of abelian groups were obtained which give some answers to Fuchs's problem 34.

In this article, every ring *R* is associative with identity and any module is a unitary module. Posing the Fuchs 34 question in *R*-Mod, the category of unitary modules over a ring *R*, one has to distinguish three

possibilities one is confronted with. In the sequel by $\text{Hom}(A, X) \stackrel{!}{\cong} \text{Hom}(B, X)$, we mean that these two structures are isomorphic as *T*-modules. Moreover, suppose that *X* is a "suitable" subclass of *R*-Mod. The first and perhaps most common version of this question is as follows:

Question 1. Let *R* be a commutative ring and *A* and *B* be two *R*-modules and Hom(*A*, *X*) $\stackrel{R}{\cong}$ Hom(*B*, *X*) for

every *R*-module $X \in X$. Is it true that $A \cong B$? Though, as we already asked, this question can be posed for every commutative ring, in this paper, we mainly focus on the case $R = \mathbb{Z}$, i.e., on the category of abelian groups. In Section 2, we determine several classes of abelian groups in which this question has a positive answer. The reader is reminded that in this section, we follow a more elementary approach than [1],[2] and [3].

The second version which is a stronger form than the above one is the following. Remember that when R is commutative, there is a ring homomorphism from R to End(X), for any R-module X:

²⁰¹⁰ Mathematics Subject Classification. Primary 16D10; Secondary 20K15, 20K30

Keywords. Hom-tensor relation, Yoneda's Lemma, abelian groups

Received: 11 November 2017; Accepted: 07 August 2018

Communicated by Dijana Mosić

Email addresses: e-momtahan@yu.ac.ir (Ehsan Momtahan), aamini@shirazu.ac.ir (Afshin Amini), bamini@shirazu.ac.ir (Babak Amini)

Question 2. Let *R* be an arbitrary ring, *A* and *B* two *R*-modules and

$$\operatorname{Hom}(A, X) \stackrel{\scriptscriptstyle S}{\cong} \operatorname{Hom}(B, X)$$

for every *R*-module $X \in X$, where $S = \text{End}_R(X)$. Then is it true that $A \cong B$? Section 3 is devoted to this question.

The third version is the strongest one (with respect to its hypothesis):

Question 3. Let *A* and *B* be two modules over an arbitrary ring *R* such that the two functors Hom(A, -) and Hom(B, -) are (naturally) isomorphic. Then is it true that $A \stackrel{R}{\cong} B$? The answer of this question is affirmative and is actually an immediate consequence of Yoneda's Lemma. The reader may find a proof, for example, in [13, 44.6]. A partial case of of this question, when *R* is an integral domain has been solved in [1, Theorem 3.1]. Note that, in the proof of [1, Theorem 3.1], *R* is not needed to be an integral domain and also the proof works for any locally small category in the place of *R*-Mod. Regarding to Question 3, the reader may be curious on behavior of derived functors of Hom functor. Let *A* and *B* be two non-isomorphic projective *R*-modules. Then Ext(A, -) and Ext(B, -) are naturally isomorphic due to the fact that for a projective module *P*, Ext(P, X) = 0 for every *R*-module *X*.

Along this line, we may pose one further question: let *R* be an arbitrary ring and *A* and *B* two *R*-modules with Hom(*A*, *X*) $\stackrel{\mathbb{Z}}{\cong}$ Hom(*B*, *X*) for every *R*-module $X \in \mathcal{X}$. Is it true that $A \stackrel{\mathbb{R}}{\cong} B$? However, the next example gives a negative answer to this question immediately, even when $\mathcal{X} = R$ -Mod.

Example 1.1. Let $R = M_{2\times 2}(\mathbb{R})$ (two by two matrices over the real field \mathbb{R}), and T be a simple R-module. It is well-know that $\text{End}_R(T) = \mathbb{R}$. Suppose that A = T and $B = T \oplus T$. Then for every R-module K we have

$$\operatorname{Hom}_{R}(A,K) \stackrel{\mathbb{Z}}{\cong} \operatorname{Hom}_{R}(B,K)$$

because *K* is nothing but $\bigoplus_{I} T$, hence

$$\operatorname{Hom}_{R}(T,\oplus_{I}T)\cong\bigoplus_{I}\operatorname{Hom}(T,T)\cong\oplus_{I}\mathbb{R}$$

and $\operatorname{Hom}_R(B, K) \cong (\bigoplus_I \mathbb{R}) \oplus (\bigoplus_I \mathbb{R})$. Since $\mathbb{R} \stackrel{\mathbb{Z}}{\cong} \mathbb{R} \oplus \mathbb{R}$, we have $\operatorname{Hom}_R(A, K) \stackrel{\mathbb{Z}}{\cong} \operatorname{Hom}_R(B, K)$ for every *R*-module *K*, but $A \not\cong B$.

As far as the first question is concerned, the following example shows that, sometimes, one has to restrict oneself to finitely generated modules, even if *R* is a field. In the next example we use a result (it is also named as Erdös-Kaplansky Theorem) which says: If *F* is a field, *I* is an infinite set and $V = \prod V_i$, where V_i 's are non-zero vector spaces over *F*, then dim $V = |V| = \prod_i |V_i|$ (see [8, Chapter 9, Section 5]).

Example 1.2. Let *F* be a field such that $|F| \ge 2^c$, where by *c* we mean the continuum (i.e., 2^{\aleph_0}). Now consider two sets *I* and *J* with |I| = c and $|J| = \aleph_0$. Put $A = F^{(I)}$ and $B = F^{(J)}$. In this case, Hom_{*F*}(*A*, *W*) \cong Hom_{*F*}(*B*, *W*) for every *F*-module *W*. Because Hom(*A*, *W*) $\cong \prod_I \text{Hom}(F, W) = W^I$ and on the other hand Hom(*B*, *W*) = $\prod_J \text{Hom}(F, W) = W^J$. Since by Erdös-Kaplansky Theorem dim $W^I = |W|^{|I|}$ and dim $W^J = |W|^{|J|}$ and $|W| \ge 2^c$, we have $|W|^{|I|} = |W|^{|J|}$ and hence Hom_{*F*}(*A*, *W*) \cong Hom_{*F*}(*B*, *W*), but $A \not\cong B$.

2. Abelian Groups

As we mentioned in the introduction, a special but very important case of the first question is the case $R = \mathbb{Z}$. L. Fuchs in [5, Page 208, Problem 34] posed the following problem: does there exist a set X of

4080

(abelian) groups *X* such that Hom(*A*, *X*) \cong Hom(*B*, *X*) for every $X \in X$ implies that $A \cong B$? The next results answer this question for some classes of abelian groups. In this section, by $A \cong B$ we mean $A \cong^{\mathbb{Z}} B$, unless stated otherwise. Following [2], a class *X* of abelian groups is called *a Fuchs 34 class*, when *A* and *B* in *X* are isomorphic if and only if Hom(*A*, *X*) \cong Hom(*B*, *X*) for every $X \in X$.

We begin with finitely generated abelian groups which are easier to deal with because of the fundamental theorem of finitely generated abelian groups .

Proposition 2.1. Let A and B be two finitely generated abelian groups and $Hom(A, X) \cong Hom(B, X)$ for every cyclic group X, then $A \cong B$. In particular, the class of finitely generated abelian groups is a Fuchs 34 class.

Proof. By the fundamental theorem of finitely generated abelian groups, we have that $A \cong \mathbb{Z}^n \oplus H_1$ and $B \cong \mathbb{Z}^m \oplus H_2$, where H_1, H_2 are two finite abelian groups. First we show that n = m and after that we prove that $H_1 \cong H_2$. We know that

$$\mathbb{Z}^n \cong \operatorname{Hom}(A, \mathbb{Z}) \stackrel{\mathbb{Z}}{\cong} \operatorname{Hom}(B, \mathbb{Z}) \cong \mathbb{Z}^m$$

This implies that n = m. Choose $d \in \mathbb{N}$ such that both the order of H_1 and the order of H_2 divide d. Then it is obvious that

$$\operatorname{Hom}(H_1,\mathbb{Z}_d)=H_1, \quad \operatorname{Hom}(H_2,\mathbb{Z}_d)=H_2.$$

Hence $\mathbb{Z}_d^n \oplus H_1 \cong \text{Hom}(A, \mathbb{Z}_d) \cong \text{Hom}(B, \mathbb{Z}_d) \cong \mathbb{Z}_d^n \oplus H_2$, consequently, $H_1 \cong H_2$. By the above steps we conclude that $A \cong B$. \Box

Proposition 2.2. Let *R* be a *P.I.D* and *A*,*B* be two finitely generated *R*-modules. If $\operatorname{Hom}_R(A, X) \stackrel{R}{\cong} \operatorname{Hom}_R(B, X)$ for all cuclic modules *X*, then $A \stackrel{R}{\cong} B$.

Proof. The proof is similar to the proof of Proposition 2.1. \Box

Convention 1. In the sequel, we suppose the weak Generalized Continuum Hypothesis (the weak GCH), that is, "If α and β are two infinite cardinals and $2^{\alpha} = 2^{\beta}$, then $\alpha = \beta$ ". This property follows from GCH (the generalized continuum hypothesis). Although independent of the axioms of ZFC (the Zermelo-Fraenkel set theory with the Axiom of Choice), the statement is weaker than the GCH in the frame of ZFC (see for example [7]).

We also need the following lemma before establishing our result on divisible groups.

Lemma 2.3. Let p be a prime number, J_p be the group of p-adic integers and $\mathbb{Z}_{p^{\infty}}$ be the Prüfer p-group. Then $\operatorname{Hom}(\mathbb{Z}_{p^{\infty}}, \mathbb{Z}_{p^{\infty}}) \cong J_p$ and $\operatorname{Hom}(\mathbb{Q}, \mathbb{Z}_{p^{\infty}}) \cong \mathbb{Q}^{(c)} \cong \mathbb{R}$.

Proof. By [5, Page 181, Example 3], Hom $(\mathbb{Z}_{p^{\infty}}, \mathbb{Z}_{p^{\infty}}) \cong J_p$. Now, let $\mathbb{Z}[1/p] = \{\frac{m}{p^n} \mid m, n \in \mathbb{Z}\}$. Consider the following exact sequence:

$$0 \longrightarrow \mathbb{Z}[1/p] \longrightarrow \mathbb{Q} \longrightarrow \frac{\mathbb{Q}}{\mathbb{Z}[1/p]} \longrightarrow 0$$

Applying Hom $(-, \mathbb{Z}_{p^{\infty}})$ (recall that $\mathbb{Z}_{p^{\infty}}$ is an injective \mathbb{Z} -module and hence Hom $(-, \mathbb{Z}_{p^{\infty}})$ is exact) and observing that Hom $(\frac{\mathbb{Q}}{\mathbb{Z}[1/p]}, \mathbb{Z}_{p^{\infty}}) = 0$ we obtain

$$\operatorname{Hom}(\mathbb{Q},\mathbb{Z}_{p^{\infty}})\cong\operatorname{Hom}(\mathbb{Z}[1/p],\mathbb{Z}_{p^{\infty}}).$$

By [5, Page 181, Example 4], we know that $\text{Hom}(\mathbb{Z}[1/p], \mathbb{Z}_{p^{\infty}}) \cong \mathbb{R}$ and therefore $\text{Hom}(\mathbb{Q}, \mathbb{Z}_{p^{\infty}}) \cong \mathbb{R}$. \Box

It is well-known that every abelian group *G* can be written as $G = G_d \oplus G_r$, where G_d is the unique maximal divisible subgroup of *G* and G_r is the reduced part of *G*.

Remark 2.4. Let *A* and *B* be two abelian groups. If Hom $(A, B_r) \cong$ Hom (B, B_r) and *A* is divisible, then *B* is divisible too. If *B* is not divisible, then $B_r \neq 0$ and hence Hom $(B, B_r) \neq 0$, but Hom $(A, B_r) = 0$ because *A* is divisible.

Theorem 2.5. Let A, B be two divisible abelian groups. If $\text{Hom}(A, X) \stackrel{\mathbb{Z}}{\cong} \text{Hom}(B, X)$ where $X \in \{\mathbb{Q}, \mathbb{Z}_{p^{\infty}}: p \text{ is prime }\}$, then $A \cong B$. In particular the class of divisible abelian groups is a Fuchs 34 class.

Proof. It is well-known that $A \cong \mathbb{Q}^{(I)} \oplus (\bigoplus_{p \in P} \mathbb{Z}_{p^{\infty}}^{(I_p)})$ and $B \cong \mathbb{Q}^{(L)} \oplus (\bigoplus_{p \in P} \mathbb{Z}_{p^{\infty}}^{(L_p)})$. Since Hom $(A, \mathbb{Q}) \cong$ Hom (B, \mathbb{Q}) we have $\mathbb{Q}^I \cong \mathbb{Q}^L$. Now if *I* or *L* is finite, then we have |I| = |L|. If on the other hand, *I*, *L* are infinite sets, then we have $\mathbf{N}_0^{[I]} = \mathbf{N}_0^{[L]}$, which implies that $2^{|I|} = 2^{|L|}$ and now by the weak GCH, |I| = |L|. Now consider Hom $(A, \mathbb{Z}_{p^{\infty}}) \cong$ Hom $(B, \mathbb{Z}_{p^{\infty}})$, which implies that

$$\operatorname{Hom}(\mathbb{Q},\mathbb{Z}_{p^{\infty}})^{I} \oplus \operatorname{Hom}(\mathbb{Z}_{p^{\infty}},\mathbb{Z}_{p^{\infty}})^{I_{p}} \cong \operatorname{Hom}(\mathbb{Q},\mathbb{Z}_{p^{\infty}})^{L} \oplus \operatorname{Hom}(\mathbb{Z}_{p^{\infty}},\mathbb{Z}_{p^{\infty}})^{L_{p}}$$

By Lemma 2.3, Hom($\mathbb{Q}, \mathbb{Z}_{p^{\infty}}$) $\cong \mathbb{R}$ and Hom($\mathbb{Z}_{p^{\infty}}, \mathbb{Z}_{p^{\infty}}$) $\cong J_p$. Thus we can write

$$\mathbb{R}^{I} \oplus J_{n}^{L_{p}} \cong \mathbb{R}^{L} \oplus J_{n}^{L_{p}}.$$

Tensoring the above formula by \mathbb{Z}_p , we have

$$J_{v}^{I_{p}} \otimes \mathbb{Z}_{p} \cong J_{v}^{L_{p}} \otimes \mathbb{Z}_{p}$$

Inasmuch as \mathbb{Z}_p is finitely presented, the above relation can be written as

$$(J_p \otimes \mathbb{Z}_p)^{I_p} \cong (J_p \otimes \mathbb{Z}_p)^{L_p},$$

Since $J_p \otimes \mathbb{Z}_p \cong \mathbb{Z}_p$, we conclude that

$$(\mathbb{Z}_p)^{I_p}\cong (\mathbb{Z}_p)^{L_p}.$$

If I_p or L_p is finite, we have $|I_p| = |L_p|$. If I_p and L_p are infinite sets, we have

$$p^{|I_p|} = p^{|L_p|}$$

Now using the weak GCH, $|I_p| = |L_p|$. And this implies that $A \cong B$. \Box

Before we state our main results on bounded torsion groups (Theorem 2.11 and Corollary 2.12), we need some auxiliary lemmas.

Lemma 2.6. If *A*, *B* are two abelian groups, $Hom(A, \mathbb{Q}) \cong Hom(B, \mathbb{Q})$ and *A* is torsion, then *B* is also torsion.

The proof is a consequence of the injectivity of \mathbb{Q} .

Lemma 2.7. Let A and B be two torsion abelian groups and $Hom(A, X) \cong Hom(B, X)$, for torsion divisible groups X. If A is bounded, then so is B.

Proof. If *A* is bounded, then it is easy to observe that Hom(A, X) is bounded for every *X*. Now suppose that *B* is not bounded. We will show that $\text{Hom}(B, \frac{\mathbb{Q}}{\mathbb{Z}})$ is not bounded and get a contradiction. Choose an arbitrary $n \in \mathbb{N}$. Then there exists $b \in B$ whose order is > n. Since $\frac{\mathbb{Q}}{\mathbb{Z}}$ is divisible (injective), there exists $f : B \longrightarrow \frac{\mathbb{Q}}{\mathbb{Z}}$ such that $nf \neq 0$. \Box

Let *G* be an abelian group and *I* be a set. In the following, by G^{I} and $G^{(I)}$ we mean the direct product and the direct sum of *I* copies of *G* respectively.

Lemma 2.8. Let *p* be a prime number, $n \in \mathbb{N}$ and *I* an infinite set. Then $\mathbb{Z}_{p^n}^I \cong \mathbb{Z}_{p^n}^{(J)}$ (as \mathbb{Z} -modules or \mathbb{Z}_{p^n} -modules), where $|J| = 2^{|I|}$.

Proof. Consider $\mathbb{Z}_{p^n}^I$ as a \mathbb{Z}_{p^n} -module. Inasmuch as \mathbb{Z}_{p^n} is a noetherian self-injective local ring, by Matlis Theorem (see [9, Theorem 3.48, Theorem 3.62]), $\mathbb{Z}_{p^n}^I \cong \mathbb{Z}_{p^n}^{(J)}$, for some set *J*. Now we infer that $2^{|I|} = |J|$. \Box

In the sequel, we use two fundamental results in abelian groups.

Theorem 2.9 (Prüfer-Baer). A bounded group is a direct sum of cyclic groups.

Proof. See [5, 17.2]. □

Theorem 2.10. Any two decompositions of an abelian group into direct sums of cyclic groups of prime power orders are isomorphic.

The proof is immediate by [5, 17.4].

Theorem 2.11. Let A and B be two p-groups. If Hom $(A, \mathbb{Z}_{p^{\infty}}) \cong \text{Hom}(B, \mathbb{Z}_{p^{\infty}})$ and A is bounded, then $A \cong B$.

Proof. First of all, we may infer by Lemma 2.7 that *B* is also bounded. Theorem 2.9 implies that $A \cong \mathbb{Z}_{p}^{(I_1)} \oplus \mathbb{Z}_{p^2}^{(I_2)} \oplus \cdots \oplus \mathbb{Z}_{p^n}^{(I_n)}$ and $B \cong \mathbb{Z}_{p}^{(J_1)} \oplus \mathbb{Z}_{p^2}^{(J_2)} \oplus \cdots \oplus \mathbb{Z}_{p^n}^{(J_n)}$ for suitable sets I_1, \cdots, I_n and J_1, \cdots, J_n . Now from the fact that $\operatorname{Hom}(A, \mathbb{Z}_{p^{\infty}}) \cong \operatorname{Hom}(B, \mathbb{Z}_{p^{\infty}})$ and $\operatorname{Hom}(\mathbb{Z}_{p^i}, \mathbb{Z}_{p^{\infty}}) \cong \mathbb{Z}_{p^i}$, for $i \in \mathbb{N}$, we get that

$$\mathbb{Z}_p^{I_1} \oplus \mathbb{Z}_{p^2}^{I_2} \oplus \cdots \oplus \mathbb{Z}_{p^n}^{I_n} \cong \mathbb{Z}_p^{J_1} \oplus \mathbb{Z}_{p^2}^{J_2} \oplus \cdots \oplus \mathbb{Z}_{p^n}^{J_n}.$$

Using Lemma 2.8, we have that $\mathbb{Z}_{p^i}^{I_i} \cong \mathbb{Z}_{p^i}^{(K_i)}$ and $\mathbb{Z}_{p^i}^{I_i} \cong \mathbb{Z}_{p^i}^{(L_i)}$, where $K_i = I_i$ if I_i is finite, and $|K_i| = 2^{|I_i|}$ if I_i is infinite. The same holds for J_i and L_i . Therefore we have that

$$\mathbb{Z}_p^{(K_1)} \oplus \mathbb{Z}_{p^2}^{(K_2)} \oplus \cdots \oplus \mathbb{Z}_{p^n}^{(K_n)} \cong \mathbb{Z}_p^{(L_1)} \oplus \mathbb{Z}_{p^2}^{(L_2)} \oplus \cdots \oplus \mathbb{Z}_{p^n}^{(L_n)}.$$

Now by Theorem 2.10, $|K_i| = |L_i|$ for i = 1, 2, ..., n. From the weak GCH, we conclude that $|I_i| = |J_i|$ for i = 1, 2, ..., n, and hence $A \cong B$.

Let *A* be an abelian group and *p* be a prime number. By A(p) we indicate the subgroup $\{x \in A \mid p^n x = 0 \text{ for some } n \in \mathbb{N}\}$, called the *p*-component of *A*.

Corollary 2.12. Let A and B be two torsion abelian groups. If $\text{Hom}(A, \frac{\mathbb{Q}}{\mathbb{Z}}) \cong \text{Hom}(B, \frac{\mathbb{Q}}{\mathbb{Z}})$ and the p-components of A are bounded for any prime number p, then $A \cong B$.

Proof. It is well-known that every torsion abelian group is the direct sum of its *p*-components. Therefore $A = \bigoplus A(p)$ and $B = \bigoplus B(p)$. Also recall that $\frac{\mathbb{Q}}{\mathbb{Z}} \cong \bigoplus \mathbb{Z}_{p^{\infty}}$ and $\operatorname{Hom}(A(p), \bigoplus_{q \neq p} \mathbb{Z}_{q^{\infty}}) = (0)$. This implies that

$$\operatorname{Hom}(A, \frac{\mathbb{Q}}{\mathbb{Z}}) \cong \prod \operatorname{Hom}(A(p), \frac{\mathbb{Q}}{\mathbb{Z}}) \cong \prod \operatorname{Hom}(A(p), \mathbb{Z}_{p^{\infty}}).$$

Inasmuch as, for every prime p, A(p) is bounded, $\operatorname{Hom}(A(p), \mathbb{Z}_{p^{\infty}})$ is a torsion p-group and hence $\operatorname{Hom}(A, \frac{Q}{Z})(p) \cong \operatorname{Hom}(A(p), \mathbb{Z}_{p^{\infty}})$. Similarly, for B, we have that $\operatorname{Hom}(B, \frac{Q}{Z})(p) \cong \operatorname{Hom}(B(p), \mathbb{Z}_{p^{\infty}})$. Since $\operatorname{Hom}(A, \frac{Q}{Z}) \cong \operatorname{Hom}(B, \frac{Q}{Z})$, we may infer that

 $\operatorname{Hom}(A(p),\mathbb{Z}_{p^\infty})\cong\operatorname{Hom}(B(p),\mathbb{Z}_{p^\infty}).$

By Theorem 2.11, we conclude that $A(p) \cong B(p)$, and hence $A \cong B$. \Box

Corollary 2.13. Let A and B be two abelian groups and suppose A finitely generated torsion. If $\operatorname{Hom}(A, \frac{\mathbb{Q}}{\mathbb{Z}}) \cong \operatorname{Hom}(B, \frac{\mathbb{Q}}{\mathbb{Z}})$, then $A \cong B$. In particular, B is finitely generated.

Proof. Since *A* is a finitely generated torsion group, every *p*-component of *A* is bounded. Now we may apply Corollary 2.12. \Box

A subset $\{a_{\alpha}\}$ of an abelian group *A* is linearly independent (over \mathbb{Z}) if the only linear combination of these elements that is equal to zero is trivial: if

$$\sum_{\alpha} n_{\alpha} a_{\alpha} = 0, \quad n_{\alpha} \in \mathbb{Z}$$

where all but finitely many coefficients n_{α} are zero (so that the sum is, in effect, finite), then all coefficients are 0. Any two maximal linearly independent sets in *A* have the same cardinality, which is called the rank of *A*. The factor-group $\frac{A}{T(A)}$ is the unique maximal torsion-free quotient of *A* where by T(A) we mean the torsion subgroup of *A*. The rank of $\frac{A}{T(A)}$ coincides with the rank of *A*, because rank $A = \dim A \otimes \mathbb{Q} =$ $\dim \frac{A}{T(A)} \otimes \mathbb{Q} = \operatorname{rank} \frac{A}{T(A)}$.

Proposition 2.14. Let A and B be two abelian groups. If $Hom(A, \mathbb{Q}) \cong Hom(B, \mathbb{Q})$, then rank $A = \operatorname{rank} B$.

Proof. Suppose Hom(A, \mathbb{Q}) \cong Hom(B, \mathbb{Q}). Equivalently,

 $\operatorname{Hom}(A, \operatorname{Hom}(\mathbb{Q}, \mathbb{Q})) \cong \operatorname{Hom}(B, \operatorname{Hom}(\mathbb{Q}, \mathbb{Q})).$

Then

$$\operatorname{Hom}(A \otimes \mathbb{Q}, \mathbb{Q}) \cong \operatorname{Hom}(B \otimes \mathbb{Q}, \mathbb{Q})$$

so that

$$\operatorname{Hom}_{\mathbb{Q}}(A \otimes \mathbb{Q}, \mathbb{Q}) \stackrel{\mathbb{Q}}{\cong} \operatorname{Hom}_{\mathbb{Q}}(B \otimes \mathbb{Q}, \mathbb{Q}).$$

Since $A \otimes \mathbb{Q} \cong \mathbb{Q}^{(I)}$ and $B \otimes \mathbb{Q} \cong \mathbb{Q}^{(J)}$ for suitable sets *I* and *J*, taking dual, we can deduce that $\mathbb{Q}^{I} \cong \mathbb{Q}^{J}$. If either *I* or *J* is finite, then |I| = |J|. If *I* and *J* are infinite, by the weak GCH, we have that |I| = |J|. So in both cases we conclude that $A \otimes \mathbb{Q} \cong B \otimes \mathbb{Q}$, and hence rank $A = \operatorname{rank} B$. \Box

Corollary 2.15. Suppose that F_1 and F_2 are two free abelian groups, and Hom $(F_1, \mathbb{Q}) \cong$ Hom (F_2, \mathbb{Q}) , then $F_1 \cong F_2$.

Remark 2.16. As far as Proposition 2.14 is concerned, we can add some comments on integral domains. Since the dual space of a finite dimensional vector space is isomorphic to the space itself, we have that if *R* is an integral domain with field of fractions *Q*, *A* and *B* are two finitely generated torsion-free *R*-modules and Hom(*A*, *Q*) $\stackrel{R}{\cong}$ Hom(*B*, *Q*), then *E*(*A*) \cong *E*(*B*), where *E*(*A*) indicates the injective hull of *A*. In particular, *A* and *B* have the same Goldie dimension. In order to see this, we have from the hypothesis that

$$\operatorname{Hom}_{R}(A, \operatorname{Hom}_{R}(Q, Q)) \stackrel{R}{\cong} \operatorname{Hom}_{R}(B, \operatorname{Hom}_{R}(Q, Q)).$$

Hence, by the Hom-tensor relation, we can write

$$\operatorname{Hom}_{R}(A \otimes_{R} Q, Q) \stackrel{R}{\cong} \operatorname{Hom}_{R}(B \otimes_{R} Q, Q).$$

Since $\operatorname{Hom}_R(M, N) = \operatorname{Hom}_Q(M, N)$ for every $M, N \in Q$ -Mod, we get that

$$\operatorname{Hom}_Q(A \otimes_R Q, Q) \stackrel{\cong}{\cong} \operatorname{Hom}_Q(B \otimes_R Q, Q).$$

Hence $A \otimes_R Q \stackrel{Q}{\cong} B \otimes Q$. This implies that $A \otimes_R Q \stackrel{R}{\cong} B \otimes Q$. But it is well-known that $E(M) \cong M \otimes_R Q$ for every finitely generated torsion-free *R*-module *M*.

We are ready to express our main result on torsion-free groups of rank 1. These kind of groups are (up to isomorphism) the subgroups of Q. For undefined terms and concepts, the reader is referred to [6, Chapter 13]. Before we state our result, we need two basic results from [6].

Theorem 2.17 (Baer). Two torsion-free groups of rank 1 are isomorphic if and only if they are of the same type

Proof. See [6, Theorem 85.1]. □

In the sequel by t(-) we mean the type of a torsion-free abelian group of rank 1, as defined in [6, Section 85].

Proposition 2.18. If A and B are torsion-free groups of rank 1, then Hom(A, B) is 0 if $t(A) \not\leq t(B)$, and is a torsion-free group of rank 1 and of type t(B) : t(A) if $t(A) \leq t(B)$.

Proof. See [6, Proposition 85.4]. □

Theorem 2.19. Let A and B be two torsion free abelian groups. Suppose Hom $(A, X) \cong$ Hom(B, X) for $X \in \{A, B, \mathbb{Q}\}$ and rank A = 1. Then $A \cong B$. In particular, the class of torsion free abelian groups of rank 1 is a Fuchs 34 class.

Proof. By Proposition 2.14, we know that rank B = 1. Since

 $\operatorname{Hom}(A, A) \cong \operatorname{Hom}(B, A),$

we have from Proposition 2.18 that $t(B) \le t(A)$. Similarly, $t(A) \le t(B)$. So t(A) = t(B). By Theorem 2.17, $A \cong B$. \Box

Now we are ready to summarize what we have done in this section. This gives a partial answer to [5, Page 208, Problem 34]. The answer is provided under ZFC together with the weak GCH.

Corollary 2.20. When A and B belong to each of the following classes of abelian groups, the relation $Hom(A, X) \cong Hom(B, X)$ for $X \in X$ implies that $A \cong B$.

- 1. Finitely generated abelian groups; X the class of cyclic groups.
- 2. Divisible groups; $X = \{\mathbb{Q}, \mathbb{Z}_{p^{\infty}}: p \text{ is prime }\}.$
- 3. Torsion abelian groups with bounded p-components; $X = \{ \frac{\mathbb{Q}}{\mathbb{Z}} \}$.
- 4. Torsion-free abelian groups of rank 1; X the class of torsion-free abelian groups of rank 1.

3. Partial Answers to the Second Question

This section is devoted to the second question. We begin with a useful observation.

Proposition 3.1. Let A and B be two finitely generated semisimple R-modules. Suppose Hom $(A, X) \stackrel{S}{\cong}$ Hom(B, X) for every simple module $X \in R$ -Mod, where S = End(X). Then $B \stackrel{R}{\cong} A$.

Proof. Let *T* be a simple *R*-module with D = End(T).

Since $D^n \cong \text{Hom}(A, T) \stackrel{D}{\cong} \text{Hom}(B, T) \cong D^m$ for $n, m \ge 0$, we conclude that n = m. Hence $\text{Tr}(T, A) \cong \text{Tr}(T, B)$ for every simple *R*-module *T*. This implies that $A \cong B$. \Box

Lemma 3.2. Let Q be a quasi-injective R-module with S = End(Q). Then the S-module Hom(T, Q) is either simple or 0 for every simple R-module T.

Proof. See [4, Page 191]. □

The next proposition can be compared with Corollary 2.13. Remember that for an *R*-module M, by E(M) we mean the injective hull of M.

Proposition 3.3. Let A and B be two finitely generated R-modules. Suppose $\text{Hom}(A, I) \stackrel{\circ}{\cong} \text{Hom}(B, I)$ for every injective module $I \in R$ -Mod, where S = End(I). If A is simple, then $A \cong B$.

Proof. Let *B* be non-semisimple. Then there exists a proper essential submodule *K* in *B* which is maximal. Since Hom(B, E(B/K)) $\neq 0$, we have Hom(A, E(B/K)) $\neq 0$. This implies that $A \cong B/K$ due to *A* and B/K being simple. On the other hand, Hom(B, E(B)) $\neq 0$ which implies that Hom(A, E(B)) $\neq 0$. Hence there exists a map $f : B \longrightarrow E(B)$ with ker(f) = *K*. By injectivity of E(B), we have an *R*-homomorphism extension (of f) $g : E(B) \longrightarrow E(B)$ with $K \subseteq \text{ker}(g)$ and hence ker(g) $\leq_e E(B)$ due to *K* being essential in *B*. Consider the following diagram, where ϕ : Hom(A, E(B)) \longrightarrow Hom(B, E(B)), is an *S*-module isomorphism with S = End(E(B)):

 $\begin{array}{ccc} \operatorname{Hom}(A, E(B)) & \stackrel{\phi}{\longrightarrow} & \operatorname{Hom}(B, E(B)) \\ & & & \downarrow & & \downarrow & \\ \operatorname{Hom}(A, g) \downarrow & & & \downarrow & & \\ \operatorname{Hom}(A, E(B)) & \stackrel{\phi}{\longrightarrow} & \operatorname{Hom}(B, E(B)) \end{array}$

This diagram is commutative. To see this, let $h \in \text{Hom}(A, E(B))$. Since $g \in S$, $\phi(g \circ h) = g \circ \phi(h)$. Therefore $\phi \circ \text{Hom}(A, g) = \text{Hom}(B, g) \circ \phi$. Now consider, the inclusion map $\iota : B \longrightarrow E(B)$, so there exists $\alpha \in \text{Hom}(A, E(B))$ such that $\phi(\alpha) = \iota$. From the one hand, $g \circ \phi(\alpha) = g \circ \iota = g|_B = f \neq 0$. On the other hand, $\phi(g \circ \alpha) = 0$ because $g \circ \alpha = 0$, which is a contradiction with the commutativity of the above diagram. So *B* is semisimple. Let *T* be a simple submodule of *B*. Since $\text{Hom}(B, E(T)) \neq 0$, hence $\text{Hom}(A, E(T)) \neq 0$, and therefore $T \cong A$. This implies that $B \cong A^n$, for some $n \ge 1$. Since by Lemma 3.2, Hom(A, E(A)) is a simple *S*-module, where S = End(E(A)), so n = 1 and hence $A \cong B$. \Box

In the following by a *coretractable R*-module *M* we mean a module *M* such that $\text{Hom}_R(\frac{M}{K}, M) \neq 0$ for every proper submodule *K* of *M*. In the sequel, by a homogenous seimisimple module we mean a semisimple module which is the direct sum of isomorphic simple modules.

Proposition 3.4. Let A and B be two finitely generated R-modules and Hom $(A, X) \stackrel{\sim}{\cong}$ Hom(B, X), where X = B or X is a simple R-module and S =End(X). If A is semisimple, then under each of the following conditions, $A \stackrel{R}{\cong} B$:

- a. A is homogenous;
- b. B is coretractable.

Proof. By Proposition 3.1, it is enough to show that *B* is also semisimple. Suppose that *B* is not semisimple, hence there exists a maximal submodule *K* of *B* which is essential. Now, consider the map $\pi : B \longrightarrow \frac{B}{K}$. If *B* is coretractable, there exists a non-zero map $\beta : \frac{B}{K} \longrightarrow B$ and hence $0 \neq \beta \circ \pi : B \longrightarrow B$ with $K = \ker(\beta \circ \pi)$. In case *A* is homogenous, since Hom $(B, \frac{B}{K}) \neq 0$, we have Hom $(A, \frac{B}{K}) \neq 0$. It is not difficult to observe that, in this case too, there exists a non-zero map $f : B \longrightarrow B$ with $K = \ker f$. So, in either case, we have such a map $g : B \longrightarrow B$ with $\ker g = K$. Now, consider the following diagram which is commutative due to Hom $(A, B) \stackrel{S}{\cong}$ Hom(B, B), where $S = \operatorname{End}(B)$ and $g \in S$:

 $\begin{array}{ccc} \operatorname{Hom}(A,B) & \stackrel{\phi}{\longrightarrow} & \operatorname{Hom}(B,B) \\ & & & \downarrow & & \downarrow & \operatorname{Hom}(B,g) \\ \operatorname{Hom}(A,B) & \stackrel{\phi}{\longrightarrow} & \operatorname{Hom}(B,B) \end{array}$

which, similar to the proof of Proposition 3.3, leads us to a contradiction. Therefore, *B* is semisimple. \Box

Recall that an *R*-module *M*, is called reflexive if the canonical map $M \rightarrow M^{**} = \text{Hom}(M^*, R)$, is an isomorphism. Knowing that for a ring *R*, End(*R*) \cong *R*, we have the following result.

Proposition 3.5. Let A and B be two reflexive modules over a ring R. If Hom(A, R) $\stackrel{R}{\cong}$ Hom(B, R), then $A \stackrel{R}{\cong} B$.

Proof. The verification is immediate. \Box

A ring is said to be quasi-Frobenius if the class of its projective modules coincides with the class of its injective modules.

Corollary 3.6. Let A and B be two modules over a ring R. Under each of the following cases, from Hom $(A, R) \cong$ Hom(B, R) we conclude that $A \cong B$.

- 1. A and B are finitely generated projective modules.
- 2. *R* is quasi-Frobenius and *A*,*B* are finitely generated modules.

Proof. Recall that in these cases *A* and *B* are reflexive (see [9, Theorem 15.11]). \Box

Acknowledgement

The authors would like to thank the referees for their valuable comments and careful readings to improve the quality of the article.

References

- [1] U.F.Albrecht and H. P. Goeters, A note on Fuch's problem 34, Proc. Amer. Math. Soc. 124, 1996, 1319-1328.
- [2] U. F. Albrecht, Fuchs's problem 34 for mixed abelian groups, Proc. Amer. Math. Soc. 131, 2002, 1021-1029.
- [3] U. F. Albrecht and S. Breaz, Quasi-isomorphisms and groups of quasi-homomorphisms, J. Algebra Appl, 08, 617 2009.
- [4] F.W. Anderson and K. Fuller, *Rings and Categories of Modules*, Springer Verlag, NewYork, 1992.
- [5] L. Fuchs, Infinite Abelian groups, vol I, Academic Press, 1970.
- [6] L. Fuchs, Infinite Abelian groups, vol II, Academic Press, 1970.
- [7] M. Foreman and W.Hugh Woodin, *The Generalized Continuum Hypothesis Can Fail Everywhere*, Annals of Mathematics, 133, 1991, 1-35.
- [8] N. Jacobson, Lectures In Abstract Algebra, Vol. 2, Springer Verlag, NewYork, 1984.
- [9] T. Y. Lam, Lectures on modules and rings, Springer Verlag, New York, 1999.
- [10] L. Lovász, operations with structures, Acta Matkematica Academiae Sclentiarum Hungarica, Tomus 18 (3–4), 1967, 321–328.
- [11] L. Lovász, On the cancellation law among finite relational structures, Periodica Mathematica Hungarica Vol. 1 (2), 1971, 145–156.
- [12] L. Lovász, Direct product in locally finite categories, Acta Scientarium Mathematicarum, Tomus 33, 1972, 319–322.
- [13] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, 1991.