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Abstract. For a generalized one-point extension algebra, it is proved that under certain conditions, each
Jordan derivation is the sum of a derivation and an anti-derivation. Moreover, we prove that every Jordan
derivation of a dual extension algebra is a derivation.

1. Introduction

Let us begin with some basic definitions. Let R be a commutative ring with identity,A a unital algebra
over R andZ(A) the center ofA. We denote the Jordan product by

a ◦ b = ab + ba

for all a, b ∈ A. Recall that an R-linear mapping Θ fromA into itself is called a derivation if

Θ(ab) = Θ(a)b + aΘ(b)

for all a, b ∈ A, an anti-derivation if
Θ(ab) = Θ(b)a + bΘ(a)

for all a, b ∈ A, and a Jordan derivation if

Θ(a ◦ b) = Θ(a) ◦ b + a ◦Θ(b).

Every derivation is obviously a Jordan derivation. The converse statement is in general not true. Moreover,
in the 2-torsion free case the definition of a Jordan derivation is equivalent to that for all x ∈ A,

Θ(x2) = Θ(x)x + xΘ(x).

Those Jordan derivations which are not derivations are said to be proper.
There has been an increasing interest in the study of Jordan derivations of various algebras since last

decades. The standard problem is to find out whether a Jordan derivation degenerates to a derivation.
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Jacobson and Rickart [10] proved that every Jordan derivation of the full matrix algebra over a 2-torsion
free unital ring is a derivation by relating the problem to the decomposition of Jordan homomorphisms.
In [9], Herstein showed that every Jordan derivation from a 2-torsion free prime ring into itself is also a
derivation. Zhang and Yu [24] obtained that every Jordan derivation on a triangular algebra with faithful
assumption is a derivation. This result was extended to the higher case by Xiao and Wei [22]. They obtained
that any Jordan higher derivation on a triangular algebra is a higher derivation. The aforementioned results
have been extended to various algebras in different directions, see [4, 8, 17, 18, 23, 24] and the references
therein.

Note that each associative algebra with non trivial idempotents is isomorphic to a generalized matrix
algebra. The form of Jordan derivations on generalized matrix algebras has been characterized by current
authors in [15]. We proved that under certain conditions, each Jordan derivation is the sum of a derivation
and an anti-derivation. An example of proper Jordan derivations was also given there. To find a proper
Jordan derivation is not an easy task in general. Fortunately, the so-called generalized one-point extension
algebras introduced by the current authors in [14] just provide us another class of examples of proper Jordan
derivations. We prove that under certain conditions, each Jordan derivation on a generalized one-point
extension algebra is the sum of a derivation and an anti-derivation. This result implies that the faithful
condition in [15] is not necessary.

More recently, Bencovič and Širovnik [3] introduced the so-called singular Jordan derivations which are
usually anti-derivations. They gave a sufficient condition for a Jordan derivation on a unital algebra with
a nontrivial idempotent to be the sum of a derivation and a singular Jordan derivation. It is natural to ask
whether the conditions in [3] are necessary. We will give a negative answer in this paper by studying dual
extension algebras, which was introduced by Xi in [19].

The paper is organized as follows. After a quick review of some preliminaries on path algebras
and generalized matrix algebras in Section 2, we investigate Jordan derivations of generalized one-point
extension algebras in Section 3. Then in Section 4, we study Jordan derivations of dual extension algebras.

2. Path algebras and generalized matrix algebras

In this section, we recall some basic facts concerning path algebras of quivers and generalized matrix
algebras. For more details, we refer the reader to [1, 2, 22].

2.1. Path algebras
Recall that a finite quiver Γ = (Γ0,Γ1) is an oriented graph with the set of vertices Γ0 and the set of arrows

between vertices Γ1 being both finite. For an arrow α, we write s(α) = i and e(α) = j if it is from the vertex
i to the vertex j. A sink is a vertex without arrows beginning at it and a source is a vertex without arrows
ending at it. A nontrivial path in Γ is an ordered sequence of arrows p = αn · · ·α1 such that e(αm) = s(αm+1)
for each 1 ≤ m < n. Define s(p) = s(α1) and e(p) = e(αn). The length of p is defined to be n. A trivial path is
the symbol ei for each i ∈ Γ0 and its length is defined to be zero. A nontrivial path p is called an oriented
cycle if s(p) = e(p). Denote the set of all paths by P .

Let K be a field and Γ a quiver. Then the path algebra KΓ is the K-algebra generated by the paths in Γ
and the product of two paths x = αn · · ·α1 and y = βt · · · β1 is defined by

xy =

{
αn · · ·α1βt · · · β1, e(y) = s(x)
0, otherwise.

Clearly, KΓ is an associative algebra with the identity 1 =
∑

i∈Γ0
ei.

A relation σ on a quiver Γ over a field K is a K-linear combination of paths σ =
∑n

i=1 kipi, where ki ∈ K
and e(p1) = · · · = e(pn), s(p1) = · · · = s(pn). Moreover, the length of each path is assumed to be at least 2. Let
ρ be a set of relations on Γ over K. The pair (Γ, ρ) is called a quiver with relations over K. Denote by < ρ >
the ideal of KΓ generated by ρ. The K-algebra K(Γ, ρ) = KΓ/ < ρ > is always associated with (Γ, ρ). For
arbitrary element x ∈ KΓ, write by x the corresponding element in K(Γ, ρ). We often write x as x if there is no
confusion caused.
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2.2. Generalized matrix algebras
Let R be a commutative ring with identity. A Morita context consists of two R-algebras A and B, two

bimodules AMB and BNA, and two bimodule homomorphisms called the pairings ΦMN : M ⊗
B

N −→ A and

ΨNM : N ⊗
A

M −→ B satisfying the following commutative diagrams:

M ⊗
B

N ⊗
A

M
ΦMN⊗IM //

IM⊗ΨNM

��

A ⊗
A

M

�

��
M ⊗

B
B � // M

and N ⊗
A

M ⊗
B

N
ΨNM⊗IN //

IN⊗ΦMN

��

B ⊗
B

N

�

��
N ⊗

A
A � // N .

If (A,B,A MB, BNA, ΦMN,ΨNM) is a Morita context, then the set[
A M
N B

]
=

{[
a m
n b

]
a ∈ A,m ∈M,n ∈ N, b ∈ B

}
forms an R-algebra under matrix-like addition and matrix-like multiplication. Such an R-algebra is called
a generalized matrix algebra and is usually denoted byG = (A,M,N,B). The structure and properties of linear
mappings on generalized matrix algebras have been investigated in our systemic works [13, 15, 16, 22].

From now on, we always assume, without specially mentioned, that every algebra and every bimodule
considered is 2-torsion free. We end this section by recalling some indispensable descriptions about
derivations and Jordan derivations of generalized matrix algebras.

Lemma 2.1. [13, Proposition 4.2] An additive map Θ from G into itself is a derivation if and only if it has the form

Θ

([
a m
n b

])
=

[
δ1(a) −mn0 −m0n am0 −m0b + τ2(m)
n0a − bn0 + ν3(n) n0m + nm0 + µ4(b)

]
, (F1)

∀

[
a m
n b

]
∈ G,

where m0 ∈M,n0 ∈ N and

δ1 :A −→ A, τ2 :M −→M, ν3 :N −→ N, µ4 :B −→ B

are all R-linear mappings satisfying the following conditions:
(1) δ1 is a derivation of A with δ1(mn) = τ2(m)n + mν3(n);
(2) µ4 is a derivation of B with µ4(nm) = nτ2(m) + ν3(n)m;
(3) τ2(am) = aτ2(m) + δ1(a)m and τ2(mb) = τ2(m)b + mµ4(b);
(4) ν3(na) = ν3(n)a + nδ1(a) and ν3(bn) = bν3(n) + µ4(b)n.

Lemma 2.2. [15, Proposition 4.2] An additive map Θ from G into itself is a Jordan derivation if and only if it is of
the form

Θ

([
a m
n b

])
=

[
δ1(a) −mn0 −m0n am0 −m0b + τ2(m) + τ3(n)

n0a − bn0 + ν2(m) + ν3(n) n0m + nm0 + µ4(b)

]
, (F2)

∀

[
a m
n b

]
∈ G,

where m0 ∈M,n0 ∈ N and
δ1 :A −→ A, τ2 :M −→M, τ3 :N −→M,
ν2 :M −→ N, ν3 :N −→ N, µ4 :B −→ B

are all R-linear mappings satisfying the following conditions:
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(1) δ1 is a Jordan derivation on A and δ1(mn) = τ2(m)n + mν3(n);
(2) µ4 is a Jordan derivation on B and µ4(nm) = nτ2(m) + ν3(n)m;
(3) τ2(am) = aτ2(m) + δ1(a)m and τ2(mb) = τ2(m)b + mµ4(b);
(4) ν3(bn) = bν3(n) + µ4(b)n and ν3(na) = ν3(n)a + nδ1(a);
(5) τ3(na) = aτ3(n), τ3(bn) = τ3(n)b, nτ3(n) = 0, τ3(n)n = 0;
(6) ν2(am) = ν2(m)a, ν2(mb) = bν2(m), mν2(m) = 0, ν2(m)m = 0.

3. Jordan derivations of generalized one-point extensions

We introduced generalized one-point extension algebras in [14]. In this section, we prove that under
certain conditions, each Jordan derivation of a generalized one-point extension algebra is the sum of a
derivation and an anti-derivation.

Let Γ = (Γ0,Γ1) be a finite quiver without oriented cycles and |Γ0| ≥ 2. Let Γ∗ be the quiver whose vertex
set is Γ0 and

Γ∗1 = {α∗ : i→ j | α : j→ i is an arrow in Γ1}.

For a path p = αn · · ·α1 in Γ, write the path α∗1 · · ·α
∗
n in Γ∗ by p∗. Given a set ρ of relations, denote by

Λ = K(Γ, ρ). Define the generalized one-point extension algebra E(Λ) to be the path algebra of the quiver
(Γ0,Γ1 ∪ Γ∗1) with relations

ρ ∪ ρ∗ ∪ {αβ∗ | α, β ∈ Γ1} ∪ {α
∗β | α, β ∈ Γ1}.

If we choose a suitable idempotent, then neither M nor N need to be faithful. Let us illustrate an example
here.

Example 3.1. Let K be a field. Let Γ be a quiver as follows

•
1

α // •
2

β // • •
γ

34
oo

and let Λ = KΓ. The generalized one-point extension algebra E(Λ) has a basis

{e1, e2, e3, e4, α, β, γ, α
∗, β∗, γ∗, βα, α∗β∗}.

Taking the idempotent e1 + e2, then E(Λ) is isomorphic to a generalized matrix algebra G = (A,M,N,B), where A
has a basis {e1, e2, α, α∗}, B has a basis {e3, e4, γ, γ∗}, M has a basis {α∗β∗, β∗} and N has a basis {β, βα}. It is easy to
check that α ∈ Ann(AM) and γ ∈ Ann(MB), that is, M is neither faithful as a left A-module nor as a right B-module.
Similarly, we obtain γ ∈ Ann(BN) and α ∈ Ann(NA), that is, N is neither faithful as a left B-module nor as a right
A-module.

In [3] Benkovič proved that for G = (A,M,N,B), if

(1) aM = 0 and Na = 0 imply that a = 0;
(2) Mb = 0 and bN = 0 imply that b = 0,

then every Jordan derivation on G is the sum of a derivation and an anti-derivation. Clearly, our example
does not satisfy Benkovič’s conditions.

Let us characterize anti-derivations of generalized one-point extension algebras.

Lemma 3.2. Let Γ be a finite quiver without oriented cycles and Λ = K(Γ, ρ). Let θ be an anti-derivation on E(Λ)
and α ∈ Γ1 ∪ Γ∗1 with s(α) = r and e(α) = t. Then

(1) Θ(ei) =
∑

s(p)=i, or e(p)=i
ki

pp;
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(2) Θ(α) =
∑

s(p)=t,e(p)=r
kαp p.

Moreover, Θ(p) = 0 for all path p with length more than one. If there exists a nontrivial path β such that βα , 0
or αβ , 0, then Θ(α) = 0.

Proof. (1) Suppose that
Θ(er) =

∑
i∈Γ0

kiei +
∑

s(p),e(p)

kr
pp. (3.1)

It follows from the fact e2
r = ei that

Θ(er) = Θ(er)er + erΘ(er). (3.2)

Combining (3.1) with (3.2) gives that kr = 0. If there exists j ∈ Γ0 with i , j such that k j , 0, then the
coefficient of e j in the expansion of Θ(er)e j is k j. On the other hand, since e j does not appear in the expansion
of Θ(e j), we conclude that e j does not appear in the expansion of erΘ(e j) too. This implies that Θ(e jer) , 0,
which is impossible.

(2) Let Θ be an anti-derivation on E(Λ) and let α ∈ Γ1 with s(α) = r and e(α) = t. Suppose that

Θ(α) =
∑
i∈Γ0

kiei +
∑

s(p),e(p)

kαp p. (3.3)

Then
Θ(α) = Θ(etα) = Θ(α)et + αΘ(et). (3.4)

Taking (3.3) into (3.4) gives that∑
i∈Γ0

kiei +
∑

s(p),e(p)

kαp p = (
∑
i∈Γ0

kiei +
∑

s(p),e(p)

kαp p)et + αΘ(et)

= ktet +
∑

s(p)=t

kαp p + αΘ(et).
(3.5)

On the other hand,
Θ(α) = Θ(αer) = erΘ(α) + Θ(er)α. (3.6)

Substituting (3.3) into (3.6) yields that∑
i∈Γ0

kiei +
∑

s(p),e(p)

kαp p = er(
∑
i∈Γ0

kiei +
∑

s(p),e(p)

kαp p) + Θ(er)α

= krer +
∑

e(p)=r

kαp p + Θ(er)α.
(3.7)

Combining (3.5) with (3.7) leads to∑
i∈Γ0

kiei +
∑

s(p),e(p)

kαp p = ktet +
∑

s(p)=t

kαp p + αΘ(et)

= krer +
∑

e(p)=r

kαp p + Θ(er)α.

This implies that ki = 0 for all i ∈ Γ0 and the coefficients of all paths p with s(p) , t or e(p) , r in the expansion
of Θ(α) are zero, that is,

Θ(α) =
∑

s(p)=t,e(p)=r

kαp p.
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If there exists a non trivial path β such that βα , 0, then αβ∗ = 0. However,

Θ(αβ∗) = Θ(β∗)α + β∗Θ(α).

If Θ(α) , 0, then by (3.5) we know that

β∗Θ(α) =
∑

s(p)=t,e(p)=r

kαpβp , 0,

and hence Θ(αβ∗) , 0, which is a contradiction. This forces that Θ(α) = 0. Similarly, one can show that if
αβ , 0, then Θ(α) = 0.

Since Γ is a quiver without oriented cycles, we can take a source i in Γ. Let ei be the corresponding
idempotent in E(Λ). Then E(Λ) ' G = (A,M,N,B) with A ' E(Λ′), where the quiver Γ′ of Λ′ is obtained
by removing the vertex i and the relations starting at i. Moreover, we have from the construction of E(Λ)
that the bilinear pairings are both zero. In this case, the form of an arbitrary Jordan derivation of E(Λ) is as
follows:

Lemma 3.3. Let Λ = KΓ and E(Λ) be the generalized one-point extension. Then an arbitrary Jordan derivation Θ
on E(Λ) is of the form

Θ

([
a m
n b

])
=

[
δ1(a) am0 −m0b + τ2(m) + τ3(n)

n0a − bn0 + ν2(m) + ν3(n) 0

]
, (�1)

∀

[
a m
n b

]
∈ G,

where m0 ∈M,n0 ∈ N and

δ1 :A −→ A, τ2 :M −→M, τ3 :N −→M, ν2 :M −→ N, ν3 :N −→ N

are all R-linear mappings satisfying the following conditions:

(1) δ1 is a Jordan derivation on A;
(2) τ2(am) = aτ2(m) + δ1(a)m and τ2(mb) = τ2(m)b;
(3) ν3(bn) = bν3(n) and ν3(na) = ν3(n)a + nδ1(a);
(4) τ3(na) = aτ3(n), τ3(bn) = τ3(n)b;
(5) ν2(am) = ν2(m)a, ν2(mb) = bν2(m).

Proof. We have from Lemma 2.2 that it is sufficient to prove that µ4 = 0. But, this is clear because µ4 is a
Jordan derivation on B = K.

In [15], the form of an arbitrary anti-derivation on a generalized matrix algebra G = (A,M,N,B) has
been characterized under the condition that M being faithful as left A-module and also as right B-module.
If we remove the faithful assumption on M, the form of an anti-derivation on G is as follows:

Lemma 3.4. An additive mapping Θ is an anti-derivation of G if and only if Θ has the form

Θ

([
a m
n b

])
=

[
δ1(a) am0 −m0b + τ3(n)

n0a − bn0 + ν2(m) µ4(b)

]
, (�2)

∀

[
a m
n b

]
∈ G,

where m0 ∈M,n0 ∈ N are two elements such that for all a, a′ ∈ A, b, b′ ∈ B, m ∈M and n ∈ N

(1) [a, a′]m0 = 0, m0[b, b′] = 0, n0[a, a′] = 0, [b, b′]n0 = 0;
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(2) m0n = 0, nm0 = 0, mn0 = 0, n0m = 0

and
δ1 :A −→ A, τ3 :N −→M, ν2 :M −→ N, µ4 :B −→ B

are R-linear mappings satisfying the following condition: for all a ∈ A, b ∈ B, m,m′ ∈M and n,n′ ∈ N

(3) δ1 is an anti-derivation on A and δ1(mn) = 0, δ1(a)m = 0, nδ1(a) = 0;
(4) µ4 is an anti-derivation on B and µ4(nm) = 0, mµ4(b) = 0, µ4(b)n = 0;
(5) τ3(na) = aτ3(n), τ3(bn) = τ3(n)b, nτ3(n′) = 0, τ3(n)n′ = 0;
(6) ν2(am) = ν2(m)a, ν2(mb) = bν2(m), mν2(m′) = 0, ν2(m)m′ = 0.

Proof. It can be proved as that of [15, Proposition 3.6].

As a consequence of Lemma 3.3 and Lemma 3.4 we have

Proposition 3.5. Let Θ be a Jordan derivation on a generalized one-point extension algebra E(Λ) ' G = (A,M,N,B).
If there exists an anti-derivation f on A with Im( f ) ⊂ Ann(AM) such that δ1 − f is a derivation of A, then Θ is the
sum of a derivation and an anti-derivation.

We are now in a position to state the main result of this section.

Theorem 3.6. Let Γ be a finite quiver without oriented cycles and Λ = K(Γ, ρ). If there is no path p with length more
than one, then every Jordan derivation on the generalized one point extension algebra E(Λ) is the sum of a derivation
and an anti-derivation.

Proof. Let Θ be a Jordan derivation on E(Λ). Then by Lemma 3.2 it is of the form (�1). We claim that if each
Jordan derivation on A is the sum of a derivation and an anti-derivation, then so is E(Λ). In fact, assume
δ1 = d + f , where d is a derivation of A and f is an anti-derivation of A. By Lemma 3.2 we know that all ei
do not appear in f (a) for a ∈ A. Note that the length of each path is not more than one. This implies that
f (a)m = 0 for all a ∈ A and m ∈ M. Similarly, we can show that n f (a) = 0 for all a ∈ A and n ∈ N. Define a
linear mapping f ′ on E(Λ) by

∆

([
a m
n b

])
=

[
f (a) τ3(n)
ν2(m) 0

]
, ∀

[
a m
n b

]
∈ E(Λ).

Then Lemma 3.2 and Lemma 3.4 give that ∆ is a anti-derivation of E(Λ). Furthermore, the linear mapping

D
([

a m
n b

])
=

[
d(a) am0 −m0b + τ2(m)

n0a − bn0 + ν3(n) 0

]
is a derivation of E(Λ). This completes the proof of our claim. Repeating this process, we arrive at the
algebra K, on which every Jordan derivation is zero. This completes the proof.

By Lemma 3.2 and Theorem 3.6 we immediately get

Corollary 3.7. Let Γ be a finite quiver without oriented cycles and ρ a relations set containing all paths of length 2.
Then each Jordan derivation of E(Λ) is the sum of a derivation and an anti-derivation.

Finally, we illustrate an example which satisfies the condition of Theorem 3.6.

Example 3.8. Let Γ be a quiver as follows

•
1

α // • •
β

32
oo
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and let Λ = KΓ. Then E(Λ) has a basis {e1, e2, e3, α, β, α∗, β∗}. Define a linear mapping on E(Λ) by

Θ(e1) = Θ(e2) = Θ(e3) = 0, Θ(α) = α∗, Θ(α∗) = α,

Θ(β) = β + β∗, Θ(β∗) = β − β∗.

Then a direct computation shows that Θ is a proper Jordan derivation on E(Λ).
On the other hand, we can also define two linear mappings Θ1 and Θ2 by

Θ1(e1) = Θ1(e2) = Θ1(e3) = 0, Θ1(α) = 0, Θ1(α∗) = 0,
Θ1(β) = β, Θ1(β∗) = −β∗

and
Θ2(e1) = Θ2(e2) = Θ2(e3) = 0, Θ2(α) = α∗, Θ2(α∗) = α,

Θ2(β) = β∗, Θ2(β∗) = β.

It is easy to see that Θ1 is a derivation on E(Λ) and Θ2 is an anti-derivation on E(Λ). Therefore, Θ is the sum of the
derivation Θ1 and the anti-derivation Θ2.

4. Jordan Derivations of Dual Extensions of Algebras

For path algebras of finite quivers without oriented cycles, Xi [19] constructed their dual extension
algebras to study quasi-hereditary algebras. This construction were further refined by Deng and Xi in
[5, 7, 20]. A more general construction, the twisted doubles, were studied in [6, 11, 21]. In this section, we
prove that every Jordan derivation of a dual extension algebra is a derivation.

Let Λ = K(Γ, ρ), where Γ is a finite quiver. Define D(Λ) to be the path algebra of the quiver (Γ0,Γ1 ∪ Γ∗1)
with relations

ρ ∪ ρ∗ ∪ {αβ∗ | α, β ∈ Γ1}.

If Γ has no oriented cycles, then D(Λ) is called the dual extension of Λ. Assume that |Γ0| ≥ 2. Then D(Λ)
is isomorphic to a generalized matrix algebra G = (A,M,N,B). According to the construction of dual
extension, it is easy to verify that the pairings ΦMN = 0 and ΨNM , 0. If M , 0, then N , 0. Moreover, it is
helpful to point out that M need not to be faithful as left A-module or as right B-module. Some examples
were given in [14].

Let Λ = K(Γ, ρ), where Γ is a finite connected quiver without oriented cycles, and let D(Λ) be the dual
extension algebra. Assume that i ∈ Γ0 is a source and D(Λ) ' G = (A,M,N,B), where B ' eiD(Λ)ei. Thus a
Jordan derivation on D(Λ) can be characterized by the methods of generalized matrix algebras as follows.

Lemma 4.1. Let Θ be a Jordan derivation of D(Λ). Then Θ is of the form

Θ

([
a m
n b

])
=

[
δ1(a) am0 −m0b + τ2(m)

n0a − bn0 + ν3(n) n0m + nm0 + µ4(b)

]
, ∀

[
a m
n b

]
∈ G,

where m0 ∈M,n0 ∈ N and

δ1 :A −→ A, τ2 :M −→M, ν3 :N −→ N, µ4 :B −→ B

are all R-linear mappings satisfying the following conditions:

(1) δ1 is a Jordan derivation on A;
(2) µ4 is a derivation on B and µ4(nm) = nτ2(m) + ν3(n)m;
(3) τ2(am) = aτ2(m) + δ1(a)m and τ2(mb) = τ2(m)b + mµ4(b);
(4) ν3(bn) = bν3(n) + µ4(b)n and ν3(na) = ν3(n)a + nδ1(a).
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Proof. Let Θ be a Jordan derivation of D(Λ) with the form (F2). We first prove that τ3 = 0, ν2 = 0. Let
α ∈ N be an arbitrary arrow. Then e(α) = i. Assume that s(α) = j, where j ∈ Γ0. In view of condition
(5) of Lemma 2.2 we know that τ3(α) = τ3(αe j) = e jτ3(α). This implies that if τ3(α) , 0, then ατ3(α) , 0.
However, ατ3(α) , 0 is impossible by condition (5) of Lemma 2.2. Thus τ3(α) = 0 for all α ∈ N. Note
that all path p ∈ N with length more than 1 is of the form αp′, where α is an arrow ending at i. Then
τ3(p) = τ3(αp′) = p′τ3(α) = 0. This shows that τ3 = 0. Similarly, one can prove that ν2 = 0. Furthermore, we
have from the commutativity of B that every Jordan derivation of B is a derivation. Finally, the fact ΦMN = 0
leads to mn0 = m0n = 0 for all m ∈M and n ∈ N.

Now we can describe Jordan derivations of a dual extension algebra.

Theorem 4.2. Let Γ be a finite connected quiver without oriented cycles and Λ = K(Γ, ρ). Let D(Λ) be the dual
extension algebra of Λ. Then each Jordan derivation of D(Λ) is a derivation.

Proof. If the algebra D(Λ) is trivial, then the theorem clearly holds. Suppose that Γ0 ≥ 2. Let Θ be a
Jordan derivation on D(Λ). Let us denote by (Γ′, ρ′) the quiver obtained by removing the vertex i and
the relations starting at i and write Λ′ = K(Γ′, ρ′). It follows from Lemma 2.1 and Lemma 4.1 that each
Jordan derivation on D(Λ) is a derivation if each Jordan derivation on D(Λ′) is a derivation. Thus it is
sufficient to determine whether every Jordan derivation on D(Λ′) is a derivation. We continuously repeat
this process and ultimately arrive at the algebra K after finite times, since Γ0 is a finite set. Clearly, every
Jordan derivation on K is a derivation. This completes the proof.

Remarks 4.3. (1) Our result on Jordan derivations of dual extension algebras implies that neither the conditions in
[15] nor those in [3] are necessary.

(2) As applications of Theorem 4.2, we can prove that every Jordan generalized derivation (see [12] for the
definition) and every generalized Jordan derivation of dual extension algebras are both generalized derivations. We
omit the details here and left it to the reader.
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[12] Y.-B. Li, D. D. Benkovič, Jordan generalized derivations on triangular algebras, Linear Multilinear Algebra, 59 (2011), 841–849.
[13] Y.-B. Li, F. Wei, Semi-centralizing maps of generalized matrix algebras, Linear Algebra Appl., 436 (2012) 1122–1153.
[14] Y.-B. Li, F. Wei, Lie derivations of dual extensions of algebras, Colloquium Mathematicum, 141 (2015) 65–82.
[15] Y.-B. Li, L. V. Wyk, Feng Wei, Jordan derivations and antiderivations of generalized matrix algebras, Operators and Matrices, 7

(2013) 399–415.
[16] Y.-B. Li, Z.-K. Xiao, Additivity of maps on generalized matrix algebras, Electronic Journal of linear alegbra, 22 (2011) 743–757.
[17] F.-Y. Lu, The Jordan structure of CSL algebras, Studia Math., 190 (2009) 283–299.
[18] F.-Y. Lu, Jordan derivations of reflexive algebras, Integr. Equ. Oper. Theory, 67 (2010) 51–56.
[19] C.-C. Xi, Quasi-hereditary algebras with a duality, J. Reine Angew. Math., 449 (1994) 201–215.



Y. Li, F. Wei / Filomat 32:11 (2018), 4089–4098 4098

[20] C.-C. Xi, Global dimensions of dual extension algebras, Manuscripta Math., 88 (1995) 25–31.
[21] C.-C. Xi, Twisted doubles of algebras I: Deformations and the Jones index, CMS Conf. Proc., 24 (1998) 513–523.
[22] Z.-K. Xiao, F. Wei, Jordan higher derivations on triangular algebras, Linear Algebra Appl., 433 (2010) 2615–2622.
[23] Z.-K. Xiao, F. Wei, Jordan higher derivations on some operator algebras, Houston J. Math., 38 (2012) 275–293.
[24] J.-H. Zhang, W.-Y. Yu, Jordan derivations of triangular algebras, Linear Algebra Appl., 419 (2006) 251–255.


