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Hartwig’s Triple Reverse Order Law in C*-algebras
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Abstract. In this paper Hartwig’s triple reverse order law for the Moore-Penrose inverse is proved for
C*-algebras. A very simple algebraic proof for Hartwig’s triple reverse order law for operators on Hilbert
spaces is given.

1. Introduction

Let A be a complex unital C*-algebra. An element a ∈ A is said to be regular (in the sense of von
Neumann) if there exists b ∈ A for which aba = a; any such b is called an inner inverse of a.
An element x ∈ Awhich satisfies the four Penrose equations [7], [1],

(1) axa = a, (2) xax = x, (3) (ax)∗ = ax, (4) (xa)∗ = xa,

if it exists, is called the Moore-Penrose inverse of a and is denoted by a†. From the definition of the Moore-
Penrose inverse, we conclude that both a†a and aa† are projections, where by a projection we mean an
element e ∈ A which is a hermitian idempotent, i.e. such that e2 = e = e∗. A Moore-Penrose inverse is
unique if it exists, and this is the case exactly when a ∈ A is regular (see [6]):

a is regular ⇔ aA is closed ⇔ a† exists.

An element a ∈ A is EP if there exists a† and aa† = a†a. (See [10].) For K ⊆ {1, 2, 3, 4}, we shall call x ∈ A a
K-inverse of a ∈ A if it satisfies the Penrose equation ( j) for each j ∈ K.We shall write aK for the collection
of all K-inverses of a ∈ A, and aK for an unspecified element x ∈ aK.

Let H1 and H2 be Hilbert spaces and let B(H1,H2) denote the set of all bounded linear operator from
H1 to H2. For A ∈ B(H1,H2), R(A) denote the range of A. It is well- known that for A ∈ B(H1,H2), the
Moore-Penrose inverse of A exists if and only if R(A) is closed.

The reverse order law for the Moore-Penrose inverse seems first to have been studied by Greville In [8]
, in the ’60s , giving a necessary and sufficient condition for the reverse order law

(AB)† = B†A†,

for matrices A and B. This has been followed by Hartwig [3], who studied the reverse order law for the
Moore-Penrose inverse of products of three matrices. Suppose A,B and C are complex matrices for which
ABC can be defined. We use notations
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Email address: jovana.milosevic@pmf.edu.rs (Jovana Milošević)
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P = A†ABCC†, Q = CC†B†A†A. (1)

Theorem 1.1. [3] The following conditions are equivalent:

(i) (ABC)† = C†B†A†;

(ii) Q ∈ P{1, 2} and both of A∗APQ and QPCC∗ are hermitian;

(iii) Q ∈ P{1, 2} and both of A∗APQ and QPCC∗ are EP;

(iv) Q ∈ P{1}, R(A∗AP) = R(Q∗) and R(CC∗P∗) = R(Q);

(v) PQ = PQPQ, R(A∗AP) = R(Q∗) and R(CC∗P∗) = R(Q).

Hartwig’s proof of this result is valid, with some comments, for the operators on infinite dimensional
Hilbert spaces except the proof of implication (v)⇒ (ii) witch use matrix rang. In this paper we will present
a very simple algebraic proof of Hartwig’s result for the regular elements in C*-algebra. Notice that one
generalization on Hartwig’s result is given in [4] for the case of closed-range bounded linear operators on
infinite dimensional Hilbert spaces based on operator matrices.
For huge number of different reverse order laws see [2]. Also, some interesting results on the reverse order
law can be founded in the following papers [11–18].

2. Result

For regular elements a, b and c of C*-algebraAwe use notations

p = a†abcc†, q = cc†b†a†a,

analogously to (1).

Theorem 2.1. LetA be a complex unital C*-algebra and let a, b, c ∈ A be such that a, b, c and abc are regular. Then
the following conditions are equivalent:

(i) (abc)† = c†b†a†;

(ii) q ∈ p{1, 2} and both of a∗apq and qpcc∗ are hermitian;

(iii) q ∈ p{1, 2} and both of a∗apq and qpcc∗ are EP;

(iv) q ∈ p{1}, a∗apA = q∗A and cc∗p∗A = qA;

(v) pq = pqpq, a∗apA = q∗A and cc∗p∗A = qA.

Proof. (i)⇔ (ii) : This can be showed exactly as in [3].
(ii) ⇒ (iii) : This will follows if we show that a∗apq and qpcc∗ are regular. Indeed, we can check that

a†(a†)∗ ∈ (a∗apq){1} and (c†)∗c† ∈ (qpcc∗){1} :

a∗apqa†(a†)∗a∗apq = a∗apqa†apq = a∗apqpq = a∗apq,

qpcc∗(c†)∗c†qpcc∗ = qpcc†qpcc∗ = qpqpcc∗ = qpcc∗.

(iii)⇒ (iv) : Since a∗apA = q∗A is equivalent with the facts that a∗ap ∈ q∗A and q∗ ∈ a∗apA,we have
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a∗ap = a∗apqp = a∗apq(a∗apq)†a∗apqp = (a∗apq)†a∗apqa∗ap = q∗p∗a∗a((a∗apq)†)∗a∗ap ∈ q∗A,

and

q∗ = q∗p∗q∗ = q∗p∗a†aq∗ = q∗p∗a∗(a†)∗q∗ = q∗p∗a∗aa†(a†)∗q∗ = (a∗apq(a∗apq)†a∗apq)∗a†(a†)∗q∗

= a∗apq(a∗apq)†q∗ ∈ a∗apA.

Similarly, cc∗p∗A = qA is equivalent with the facts that cc∗p∗ ∈ qA and q ∈ cc∗p∗A, so we have

cc∗p∗ = cc∗p∗q∗p∗ = (qpcc∗(qpcc∗)†qpcc∗)∗p∗ = qpcc∗(qpcc∗)†cc∗p∗ ∈ qA,

and

q = qpq = qpcc†q = qpcc∗(c†)∗c†q = qpcc∗(qpcc∗)†qpcc∗(c†)∗c†q = cc∗p∗q∗((qpcc∗)†)∗q ∈ cc∗p∗A.

(iv)⇒ (v) : Trivial.
(v)⇒ (ii) : First we will show that pc and qa† are regular. Indeed, pc = a†abc and a†abc(abc)†aa†abc = a†abc.

Also, cc∗p∗((pc)†)∗c†cc∗p∗ = cc∗p∗, so cc∗p∗ is regular and then, since qa† ∈ qA = cc∗p∗A and cc∗p∗(cc∗p∗)† ∈
cc∗p∗A = qA we have qa† = cc∗p∗x = cc∗p∗(cc∗p∗)†cc∗p∗x = qycc∗p∗x = qyqa† = qa†ayqa†. Hence qa† is regular.
Now, analogously using cc∗p∗A = qA,we get

p = pcc† = pc(pc)†pcc† = pcc∗p∗((pc)†)∗c† = pqu,

and consequently pqp = pqpqu = pqu = p. This shows that q ∈ p{1} and qpqp = qp. Also, using a∗apA = q∗A,
we get

q = qa†a = qa†(qa†)†qa†a = qa†(a†)∗q∗((qa†)†)∗a = qa†(a†)∗a∗apv = qa†apv = qpv,

which gives qpq = qpqpv = qpv = q. To complete the proof notice that, by a∗apA = q∗A and cc∗p∗A = qA,

q∗p∗a∗apq = q∗p∗q∗t = q∗t = a∗apq

and

qpcc∗p∗q∗ = qpqz = qz = cc∗p∗q∗

imply that a∗apq and qpcc∗ are hermitian.

Remark 2.1. In the case when A,B and C are bounded linear operators on Hilbert spaceH can be seen by Theorem
1. from [5] that condition (iv) ((v)) from Theorems 1.1 and 2.1 are equivalent.

Remark 2.2. Let Hi, i = 1, 4 be arbitrary Hilbert spaces, C ∈ B(H1,H2),B ∈ B(H2,H3) and A ∈ B(H3,H4)
bounded operators with closed ranges such that ABC has closed range. Hartwig’s proof of Theorem 1.1 can be
improved for the case of closed range operators with pure algebraic technique similarly as in proof of Theorem 2.1.
Namely, the regularity of elements A∗APQ and QPCC∗ can be shown as in the proof of Theorem 2.1.Now, as we said,
the proof given by Hartwig’s stay valid except for the implication (v)⇒ (ii).The regularity of element PC can be verified
as in the proof of Theorem 2.1, and now as in [3] we get that PQP = P and consequently QPQP = QP. To see that
the element QA† is regular notice that R(PCC∗) = R(PC) is closed and consequently R(QA†) = R(Q) = R(CC∗P∗) is
closed. Now, using R(Q∗) = R(A∗AP), follows

R(Q) = R(QA†) = R(QA†(QA†)∗) = R(QA†(A†)∗Q∗) = R(QA†(A†)∗A∗AP) = R(QA†AP) = R(QP)

and now, since QP is idempotent with range R(Q) then QPQ = Q. The rest of the proof is as in [3].
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Remark 2.3. Let us mention for some special cases when triple reverse order low for the Moore-Penrose inverse of
products of three regular elements a, b and c of C* algebraA holds.
If a is unitary we get that

(abc)† = c†b†a† ⇔ (bc)† = c†b†.

Similarly, if c is unitary
(abc)† = c†b†a† ⇔ (ab)† = b†a†.

The case when b is unitary is not trivial as previous two, but can be deduce easily from known result. For elements
x, y ∈ A set [x, y] = xy − yx. In an analogical manner as in Theorem 3. from [9] can be shown:

Theorem 2.2. Let A be a complex unital C*-algebra, let a, b, c ∈ A be regular elements and let b be unitary. Then
the following conditions are equivalent:

(i) abc is regular and (abc)† = c†b†a†,

(ii) [bcc†b†, a∗a] = 0 and [b†a†ab, cc∗] = 0.
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