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Abstract. This paper presents generalized orthogonal cascade filters based on bilinear transformation for
mapping poles to zeroes and zeroes to poles in transfer functions. The filters are orthogonal with respect
to a new generalized inner product. Actually, they represent a generalization of several classes of existing
traditional filters: the ones obtained by using linear transformation of poles to zeroes, and the ones obtained
by reciprocal transformation of poles to zeroes. Generalized filters provide obtaining more precise models
of dynamic systems. This is verified by comparison between models based on new filters and models based
on classical filters. Practical realization of these filters with adjusting parameters of bilinear transformation
and transfer function is performed. An application in modeling continuous-time systems as a complex
industrial process is given, and it is shown that in that way we obtain more quality models than by using
the classical filters.

1. Introduction

In the second half of the 20th century several classes of rational orthogonal basis functions, which were
used for designing new classes of orthogonal filters, were developed [5, 10, 11, 20, 21]. From these classes
of rational functions orthogonal Müntz polynomials were derived [4, 14, 22].

The method of obtaining a class of Müntz polynomials orthogonal with respect to a special inner product
from orthogonal rational Malmquist function is presented by [18]. A generalization of this method is given
by [9, 13].

It can be noticed that the most of already existing classes of orthogonal rational functions are obtained
by using either a linear transformation of poles to zeroes s→ as + b or reciprocal transformation s→ b/(cs)
[6, 12].

This class of orthogonal rational functions is used for designing a new class of orthogonal filters [7, 9, 19].
In this paper, the orthogonal filters which represent a generalization of filters obtained by using linear

and reciprocal mapping poles to zeroes are presented. These filters are designed using a sequence of rational
functions where zeroes are obtained via symmetric bilinear transformation s → (as + b)/(cs − a). Filters
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designed in this way are more general than classical Laguerre, Legendre (c = 0), and Takenaka-Malmquist
(a = 0, b , 1) and generalized Malmquist filters (a = 0, b , 1). The filters obtained by using bilinear
transformation are orthogonal with respect to a new generalized inner product which is degenerated into
the classical inner product for c = 0.

The method for mapping poles to zeroes was also used for design of generalized cascade orthogonal
filters [19], quasi-orthogonal filters [2, 16], almost orthogonal filters [1, 3, 8, 17], and the filters which are
orthogonal with respect to a special inner product [9].

The filters obtained by mapping poles to zeroes using symmetric bilinear transformation are a general-
ization of all the mentioned filters. By adjusting the parameters of bilinear transformation, in some cases,
the obtained filters could be superior to the classical ones with respect to specific criteria functions for
estimation of matching between the system which is being identified and its model.

2. Orthogonal Filters Based on Mapping Poles to Zeroes Using Symmetric Bilinear Transformation

By using Legendre orthogonal functions

Wn(x) =

n−1∏
j=0

s + α j + 1
s − α j

1
s − αn

, (1)

Müntz-Legendre polynomials, which are orthogonal on the interval (0, 1), were obtained by [6, 14, 22]

Pn(x) =
1

2πi

∮
Γ

n−1∏
j=0

s + α j + 1
s − α j

xs

s − αn
ds, (2)

where the contour Γ surrounds all the poles of the integrand. Functions Wn(x) are used for designing
orthogonal Legendre filters. MüntzLegendre polynomials are used for obtaining outputs from these filters.
Let us notice that in these filters the zeroes are obtained by linear transformation of the poles.

Orthogonal Laguerre functions where the zeroes have reciprocal values of the poles

Wn(s) =

√

1 − α2

1 − α

(1 − αs
s − α

)n−1

(3)

are used for design of orthogonal Laguerre filters [12, p. 319].
The Malmquist (Takenaka-Malmquist) rational function system [10, 11, 15, 18]

Wn(s) =

√
1 − αn

2

1 − αns

n−1∏
k=0

αk − s
1 − αks

,n = 0, 1, 2, ... (4)

is used for designing appropriate orthogonal filters ( Takenaka-Malmquist filters, [7, 12, 18]1)). Let us notice
that the zeroes of have reciprocal values of the poles.

The generalization of Malmquist functions was performed in [9] by using mapping s→ b/s

W(s) = b0
1

s + α0
+

3∑
l=1

bl
1

s + α0

l∏
k=1

s +
b

αk − 1
s + ak

. (5)

By using these functions and the following relation

Pn(x) =
1

2πi

∮
Γ

Wn(s)xsds (6)

1)[12, p. 32]
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a class of orthogonal Müntz polynomials which are orthogonal with respect to the special inner product
was derived. In this way, generalized Takenaka-Malmquist filters are designed. Outputs of these filters are
obtained using (6). A new class of Müntz polynomials derived from a sequence of orthogonal Malmquist
functions, is introduced by [18]. These Müntz polynomials are orthogonal with respect to the special inner
product. They have been applied for design of a new class of filters (generalized Malmquist type) which
are orthogonal with respect to a new special inner product [9].

Hence, the zeroes in the above mentioned rational orthogonal basis functions are obtained either by
linear transformation (s → as + b) or reciprocal transformation (s → b/(cs)) of poles. Transfer functions of
the orthogonal filters are Wn(s), and the outputs are obtained using Müntz polynomials derived by (4). In
this paper, a class of orthogonal cascade filters which represents a generalization of all the mentioned filters
obtained by using linear and reciprocal mapping poles to zeroes, will be introduced. The generalization is
performed by using symmetric bilinear transformation

s→
as + b
cs − a

, (a2 + bc > 0), (a, b, c ∈ R). (7)

By using this transformation for mapping poles αk to zeroes α∗k we obtain

α∗k =
aαk + b
cαk − a

. (8)

For design of orthogonal cascade filters with real poles, with taking into account that the bilinear transfor-
mation is symmetric, we have

α∗k =
aαk + b
cαk − a

, αk =
aα∗k + b
cα∗k − a

. (9)

The sequence of the appropriate rational functions has the following form now

Wn(s) =

∏n−1
k=0

(
s −

aαk + b
cαk − a

)
∏n

k=0(s − αk)
. (10)

If we apply transformation (7) onto Wn(s) we obtain

W∗

n(s) =

∏n−1
k=0 (s − αk)∏n

k=0

(
s −

aαk + b
cαk − a

) . (11)

Let us consider the inner product

(Wn,Wm) =
1

2πi

∮
Γ

Wn(s)W∗

m(s)ds, (12)

where the contour Γ surrounds all the poles of Wn(s). If m , n due to symmetry of the bilinear transformation,
all the poles of the integrand (12) that lie inside the contour Γ are annulled with appropriate zeros of W∗

m(s),
so the contour integral (12) is equal to zero. In the case of m = n, there exists one first-order pole inside the
contour Γ. After applying Cauchy theorem, we can obtain the following expression: (Wn(s),Wm(s)) = N2

n , 0.
Finally, all the expressions stated above imply

(Wn,Wm) = N2
nδn,m (13)

where δn,m represents Kronecker symbol, and poles αk lie inside the contour Γ , while all the zeroes α∗k (9)
lie outside the contour Γ. Thus, the sequence of the rational functions Wn(s) is orthogonal in the complex
domain bordered by the contour Γ with respect to the inner product (13).
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Using the sequence Wn(s) we can obtain a class of orthogonal Müntz polynomials based on (6) in the
following way [13, 18]

Pn(x) =
1

2πi

∮
Γ

∏n−1
k=0

(
s −

aαk + b
cαk − a

)
∏n

k=0(s − ak)
ds. (14)

These polynomials can be written as

Pn(x) =

n∑
k=0

An.kxαk , (15)

where

An,k =

∏n−1
j=0

(
αk −

aα j + b
cα j − a

)
∏n

j=0, j,k

(
αk − α j

) , k = 0, 1, 2, ...,n.

It is shown that these Müntz polynomials are orthogonal with respect to an inner product which is defined
below.

First, the operation ⊗ on monoms xα and xβ is defined in the following way [13]

xα ⊗ xβ = xcαβ−a(α+β)−b. (16)

Using this operation, the product of two Müntz polynomials, Pn(x) =
∑n

k=0 pkxαk and Pm(x) =
∑m

j=0 q jxα j can
be defined in the following manner

Pn(x) ⊗Qm(x) =

n∑
k=0

m∑
j=0

pkq jxcαkα j − a(αk + α j)−b. (17)

Using this product of Müntz polynomials, a new inner product can be defined as

(Pn(x),Pm(x))⊗ =

∫ 1

0
Pn(x) ⊗ Pn(x)

dx
x2 . (18)

Finally, by using (12) and (18) we obtain [13]

(Pn(x),Pm(x))⊗ =

(
a2 + bc

)n∏n−1
k=0 |cαk − a|2

δn,m

c|αn|
2 − 2aReαn − b

= N2
nδn,m. (19)

Hence, Müntz polynomials (6) derived from orthogonal rational functions Wn(s) are orthogonal on interval
(0, 1) with respect to the inner product (18). If rational functions Wn(s) have real poles, then Müntz
polynomials Pn(x) are with real exponents. In that case, substituting x = e−t into Pn(x) , we obtain exponential
functions

ϕn(t) = Pn(e−t) =

n∑
k=0

An,ke−αkt. (20)

Using(13), (16), and (20) we obtain

(
ϕn(t), ϕm(t)

)
⊗

=

∫
∞

0
ϕn(t) ⊗ ϕm(t)e−tdt = N2

nδn,m, (21)
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where:
(
ϕn(t)ϕm(t)

)∑n
k=0 An,ke−αkt

⊗
∑m

j=0 Am, je−α jt =
∑n

k=0
∑m

j=0 An,kAm, je−[cαkα j−a(αk+α j)−b]. This is a new gener-
alized inner product based on the bilinear transformation of poles to zeroes.

Functions Wn(s) andϕn(t) will be used for designing the new class of cascade filters which are orthogonal
with respect to the new inner product (21). In order to obtain the transfer function of the filters which are
designed, we need to rewrite the expression (10) as

Wn(s)→
1

s − α0

n∏
k=1

s −
aαk−1 + b
cαk−1 − a
s − αk

. (22)

Complete transfer function of the filter fits the Fig. 1.

Figure 1: Block diagram of the designed filter.

Outputs of this filter can be determined on the basis of (12) and (18), i.e.

ϕl(t) =

l∑
k=0

Alke−αkt, l = 1, 2, ...,n. (23)

In this way, we obtain a generalized orthogonal filter by using the bilinear transformation. In complex
s-domain, outputs of the filter are orthogonal with respect to the inner product (13). Outputs of the filter in
time domain are

ϕl(t) = L−1
{Wl(s)} =

1
2πi

∮
Γ

Wl(s)estds = Pl(et), (24)

where: Wl(s) =
∏l

k=0

s −
aαk−1 + b
cαk−1 − a
s − αk

, l = 0, 1, 2, ...,n, Pl are Müntz polynomials derived from Wl(s) by using

(10). Filter outputs ϕl(t) are orthogonal in the time domain on (0,∞) with respect to the inner product (21).

A new class of orthogonal filters derived above represents a generalization of classical orthogonal
filters. Therefore, filters of Legendre type are obtained for the following values of parameters of bilinear
transformation a , 0, b , 0, c = 0 and where poles ak are integer, while filters of Laguerre type are obtained
when poles have the same values. Filters of generalized Legendre type are obtained in the case when
poles are arbitrary real numbers and a , 0, b , 0, c = 0. Takenaka-Malmquist filters are obtained for
a = 0, b = 1, c = 1, while generalized Malmquist filters are obtained for a = 0, b , 0, c , 0. New filters
proposed in this paper when a , 0, b , 0, c , 0 include all the mentioned classes and have all the good
performances of them.
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3. Practical Realization of the New Orthogonal Filter Based on Bilinear Transformation for Mapping
Poles to Zeroes

The sequence of orthogonal rational functions (22) given in the previous section is used for designing a
new class of orthogonal filters

Wn(s)→
1

s − α0

n∏
k=1

s −
aαk−1 + b
cαk−1 − a
s − αk

, αk ∈ R, αk ≥ 0. (25)

Relation (25) represents a transfer function of the new orthogonal filter, and it is a base for its practical
realization (Fig. 2).

Figure 2: An orthogonal filter based on bilinear transformation, a printed circuit board.

This filter is orthogonal in the complex domain with respect to the new inner product (19) on the contour
Γ and in the time domain with respect to the new inner product (21).

For illustrative purposes, a sequence of functions on the outputs in the time domain of the first few
cascades of the proposed analogue filter (25) for the following values of poles α0 = −2, α1 = −3, α2 = −4, α3 =
−5, α4 = −6 and parameters of bilinear transformation a = 1, b = 1, c = 1 is shown. Mathematically obtained
outputs using Müntz polynomials (20) are

ϕ0(t) = e−2t

ϕ1(t) =
10
3

e−3t
−

7
3

e−2t

ϕ2(t) =
39
4

e−4t
−

35
3

e−3t
−

35
12

e−2t (26)

ϕ3(t) =
1232
45

e−5t
−

897
20

e−4t
− 21e−3t

−
9

36
e−2t

ϕ4(t) =
2717

36
e−6t
−

20944
135

e−5t
−

2093
20

e−4t
−

77
3

e−3t
−

91
54

e−2t

The outputs from the realized filter are shown in Fig. 3.
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Figure 3: Outputs of the analogue filter, signals sensed on a printed circuit board.

Orthogonality with respect to the new inner product of these outputs can be verified using relation (19),
i.e.:

∫
∞

0 ϕn(t) ⊗ ϕm(t)dt = N2
nδn,m, and relation eαkt

⊗ eα jt = e−[αlα j−(αk+α j)−1].

4. Case Study Application in Modeling of a Protector Cooling System

The newly designed cascade orthogonal filter has been applied in modeling of one technological process
in tire industry (Tigar Tyres, a radial tire factory). It is a process of protector (a rubber strip which forms
the outer part of a tire) cooling [2, 19, 23]. This is a complex electromechanical and thermodynamic system
which consists of 5 − 16 about 12 − 20m long cascades. There are about several hundred systems like that
in the world. The cascade modeling is performed successively, starting with the first one using the genetic
algorithm. We used the adjustable model shown in Fig. 4. The outputs of cascades in the model are given
by

yM,i =

3∑
l=0

blϕl(t), i = 1, 2, ...,N, (27)

where N is a number of cascades of the system, and bl are summation coefficients.

Figure 4: Block diagram of an adjustable model with the proposed orthogonal filter.
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Step input was used for determining a model of the first cascade, while for modeling of other cascades,
we used the output of the previous cascade (e.g. for i-th cascade’s input, (i-1)-th cascade’s output is used).
The outputs of the first cascade in the process, yS(t) , and the model based on the proposed filter, yM(t) , are
given in Fig. 5.

Using a genetic algorithm [2, 19] with minimization of the mean squared error

J =
1
T

∫ T

0

(
yS(t) − yM(t)

)2 dt,

we obtained poles of the process αi, summation coefficients bi, and parameters of bilinear transformation a, b
and c. The genetic algorithm used in the experiments has the following parameters: an initial population
of 800 individuals, a number of generations of 400, a stochastic uniform selection, a reproduction with ten
elite individuals, and Gaussian mutation with shrinking. The used structure of chromosome was with 11
parameters coded by real numbers: α0, α1, α2, α3, a, b, and c. The main goal of the experiments was to obtain
the best model of the unknown system in regard to the given criteria function J. The obtained results are
shown in Table 1.

In order to verify the quality of the model based on the new filter with four sections, a comparison
with the models based on the some already existing orthogonal filters (Laguerre (3), generalized Legendre

( Wn(s)
1

s + α0

∏3
i=1

s − αi−1 + λ
s + αi

) and generalized Malmquist filters (5) is performed. The criteria function is

J again and the number of sections is four. The output of the models based on these filters are calculated
as yM(t) =

∑3
l=0 blϕl(t). In all the experiments the structure of chromosome that is used is with 8 standard

parameters coded by real numbers: α0, α1, α2, α3, β0, β1, β2, and β3 and two additional parameters: λ for
generalized Legendre filters, and b for generalized Malmquist filters).

Figure 5: Outputs of the first cascade of a protector cooling system and the adjustable models.
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Criteria function / orthogonal model i 0 1 2 3
J = 0.0331 ∗ 10−3 / orthogonal model with a new filter based on
bilinear transformation (a = 0.26, b = 0.62, c = 3.38)

αi 1.14 2.27 4.68 7.64
bi 1.28 0.57 3.90 7.64

J = 0.6465 ∗ 10−3 / orthogonal model with generalized Malmquist
filter (b = 0.84)

αi 1.78 1.18 4.63 6.42
bi 2.16 −0.19 3.27 3.64

J = 0.8132 ∗ 10−3 / orthogonal model with generalized Legendre
filter (λ = 0.58)

αi 0.38 0.76 0.98 1.95
bi 0.88 1.02 0.67 0.47

J = 2.5071 ∗ 10−3 / orthogonal model with Laguerre filter αi 2.19 2.19 2.19 2.19
bi 3.17 −0.60 2.09 2.03

Table 1: Obtained parameters of the orthogonal models based on a new and existing types of filters

The model of the first cascade has the following form

W1(s) = b0
1

s + α0
+

3∑
k=1

bl
1

s + α0

l∏
k=1

s +
aαk−1 + b
cαk−1 − a
s + αk

, (28)

where obtained values for parameters of bilinear transformation, poles, and summation coefficients are
given in Table 1.

From Table 1 we can see that the mean squared error is much bigger for the classic orthogonal filters
(Laguerre and Legendre filters), and also for generalized Malmquist filter [9], than for the filter presented
in this paper. The excellent matching between the system output and the output of the adjustable model
based on the proposed filter (Fig. 5) has shown the quality and need for new filters described in this paper.
Finally, a transfer function of the model based on new orthogonal filters by using (28) and obtained values
in Table 1 can be written as

W1(s) = 1.44
(

0.067s3 + 0.496s2 + 1.131s + 1
0.0114 + 0.17s3 + 0.970s2 + 1.662s + 1

)
. (29)

Modeling of other cascades of the protector cooling system is performed in the same manner. Models
of other cascades are very similar to (29). Namely, gains of other cascades have very close values because
contractions of the rubber strip which is cooled become smaller and smaller. Finally, the gains of the second
to the last cascade and the last cascade are equal.

5. Conclusion

This paper presents a new class of cascade orthogonal filters based on use of bilinear transformation for
mapping poles to zeroes and vice versa. By using this transformation we obtained a sequence of generalized
Malmquist functions which were applied in designing of new filters. New filters are orthogonal in the
complex domain on the contour which surrounds all the poles of the filters, while zeroes lie outside the
contour. From generalized Malmquist functions a new class of Müntz polynomials which are orthogonal
with respect to the new inner product was obtained. Outputs of the filter are determined using these
polynomials. The outputs are also orthogonal in the time domain with respect to the special inner product.
The proposed filter is adjustable because parameters of bilinear transformation can be set. The filters
obtained in this way present a generalization of the existing classes of orthogonal filters: Legendre, Laguerre,
Takenaka-Malmquist, generalized Malmquist filters, etc. Each of these classes can be generated by choosing
the specific values of parameters of bilinear transformation. Having in mind that proposed orthogonal
filters provide adjustments of parameters of bilinear transformation, beside the adjustment of the values
of the poles, we expect better results in modeling of dynamic systems regarding to the mentioned classical
orthogonal filters. These filters can be applied in determining mathematical models using different criterions
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for optimizations of the process model (min/max criterion, or criterions used in adaptive control). The
quality of the new class of cascade orthogonal filters is demonstrated in the case of determining a model of
the complex technological process in tire industry. This model can be used for adaptive control design of
this process. Design of more general cascade orthogonal filters, based on mapping poles to zeroes using
more general symmetric transformation, could be of interest in some future works.
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[18] G. Milovanović, B. Danković, S. Rančić, Some Müntz orthogonal systems, Journal of Computational and Applied Mathematics
99(1) (1998) 299–310.
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