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Abstract. Recently, B.-Y. Chen and O.J. Garay studied pointwise slant submanifolds of almost Hermitian
manifolds. In this paper, first we study pointwise slant and pointwise pseudo-slant submanifolds of
almost contact metric manifolds and then using this notion, we show that there exist a non-trivial class of
warped product pointwise pseudo-slant submanifolds of Sasakian manifolds by giving some useful results,
including a characterization.

1. Introduction

The study of slant submanifolds is an active field of research in differential geometry. The notion of
slant submanifolds of almost Hermitian manifolds was introduced by B.-Y. Chen [8, 9]. Many examples
of slant submanifolds in C2 and C4 were given by B.-Y. Chen and Y. Tazawa in [16]. Later on, A. Lotta
[23] has extended this study for almost contact metric manifolds. Later, Cabrerizo et al. investigated slant
submanifolds of a Sasakian manifold [6].

As a generalization of slant submanifolds of an almost Hermitian manifold, F. Etayo [19] has introduced
the notion of pointwise slant submanifolds of almost Hermitian manifolds under the name of quasi-
slant submanifolds. Recently, B.-Y. Chen and O.J. Garay [15] studied pointwise slant submanifolds of
almost Hermitan manifolds. They have obtained many interesting results, including a characterization of
such submanifolds. They also have given a method that how to construct examples of pointwise slant
submanifolds in Euclidean spaces. Later, K.S. Park [25] has extended this study for almost contact metric
manifolds. His definition of pointwise slant submanifolds of almost contact metric manifolds is similar to
pointwise slant submanifolds of almost Hermitian manifolds which have been discussed in [15].

Motivated by the above studies, we briefly study pointwise slant and pointwise pseudo-slant subman-
ifolds of Sassakian manifolds. Also, we have seen in [29] that there are no warped product submanifolds
in a Sasakian manifold, when the spherical manifold of the warped product is slant. In this paper, we
study warped product pointwise pseudo-slant sumanifolds of the form M⊥×Mθ of a Sasakian manifold M̃,
where M⊥ and Mθ are anti-invariant and pointwise slant submanifolds of M̃, respectively. Warped product
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submanifolds have been studied rapidly and actively, after B.-Y. Chen’s papers on CR-warped products of
Kaehler manifolds [10, 11]. Warped product submanifolds of Sasakian manifolds have been studied in (see
[20], [29, 33]). Moreover, different kinds of warped product submanifolds of almost Hermitian manifolds
were studied in (see [26, 27], [28], [1, 30, 31]). For the survey on warped product manifolds and warped
product submanifolds we refer to B.-Y. Chen’s books [12, 14] and his survey article [13].

The paper is organised as follows: In Section 2, we give basic definitions and preliminaries formulas
needed for this paper. In Section 3, we define pointwise slant submanifolds and our definition is quit
different from the definition of pointwise slant submanifolds given in [25]. We present an example of such
submanifolds for the justification of our definition and we prove a characterization result. In this section,
we also define pointwise pseudo-slant submanifolds and give two preparatory lemmas for further study in
the next section. Section 4 is devoted to the study of warped product pointwise pseudo-slant submanifolds
of Sasakian manifolds. In [29], we have seen that there are no warped products of the form M⊥ × f Mθ of
a Sasakian manifold M̃ such that M⊥ is an anti-invariant submanifold and Mθ is proper slant submanifold
of M̃, but if we consider Mθ is a pointwise slant submanifold of M̃, then such warped products exist. As a
generalization, we give few application of our derived results.

2. Preliminaries

An almost contact manifold is a (2n + 1) odd-dimensional manifold M̃ which carries a tensor field ϕ of the
tangent space, a vector field ξ, called characteristic or Reeb vector field and a 1-form η satisfying

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, (1)

where I : TM̃ → TM̃ is the identity map [3]. From the definition it follows that ϕξ = 0, η ◦ ϕ = 0 and the
(1, 1)-tensor field ϕ has constant rank 2n (cf. [3]). An almost contact manifold (M̃, ϕ, η, ξ) is said to be normal
when the tensor field Nϕ = [ϕ,ϕ] + 2dη ⊗ ξ vanishes identically, where [ϕ,ϕ] is the Nijenhuis torsion of ϕ.
It is known that any almost contact manifold (M̃, ϕ, η, ξ) admits a Riemannian metric 1 such that

1(ϕX, ϕY) = 1(X,Y) − η(X)η(Y) (2)

for any X,Y ∈ Γ(TM̃), the Lie algebra of vector fields on M̃. This metric 1 is called a compatible metric
and the manifold M̃ together with the structure (ϕ, ξ, η, 1) is called an almost contact metric manifold. As an
immediate consequence of (2), one has η(X) = 1(X, ξ) and 1(ϕX,Y) = −1(X, ϕY). Hence the fundamental
2-form Φ of M̃ is defined Φ(X,Y) = 1(X, ϕY) and the manifold is said to be contact metric manifold if Φ = dη.
If ξ is a Killing vector field with respect to 1, then the contact metric structure is called a K−contact structure.
A normal contact metric manifold is said to be a Sasakian manifold. In terms of the covariant derivatives of
ϕ, the Sasakian condition can be expressed by

(∇̃Xϕ)Y = 1(X,Y)ξ − η(Y)X (3)

for all X,Y ∈ Γ(TM̃), where ∇̃ is the Levi-Civita connection of 1. From the formula (3), it follows that
∇̃Xξ = −ϕX.

Let M be a Riemannian manifold isometrically immersed in M̃ and denote by the same symbol 1 the
Riemannian metric induced on M. Let Γ(TM) be the Lie algebra of vector fields in M and Γ(T⊥M), the set
of all vector fields normal to M. Let ∇ be the Levi-Civita connection on M, then the Gauss and Weingarten
formulas are respectively given by [34]

∇̃XY = ∇XY + h(X,Y) (4)

and

∇̃XV = −AVX + ∇⊥XV (5)
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for any X,Y ∈ Γ(TM) and V ∈ Γ(T⊥M), where ∇⊥ is the normal connection in the normal bundle T⊥M and
AV is the shape operator of M with respect to the normal vector V. Moreover, h : TM × TM → T⊥M is the
second fundamental form of M in M̃. Furthermore, AV and h are related by

1(h(X,Y),V) = 1(AVX,Y) (6)

for any X,Y ∈ Γ(TM) and V ∈ Γ(T⊥M).
For any X tanget to M, we write

ϕX = TX + FX, (7)

where TX and FX are the tangential and normal components of ϕX, respectively. Then T is an endomor-
phism of tangent bundle TM and F is a normal bundle valued 1-form on TM. Similarly, for any vector field
V normal to M, we put

ϕV = tV + f V, (8)

where tV and f V are the tangential and normal components of ϕV, respectively. Moreover, from (2) and
(7), we have

1(TX,Y) = −1(X,TY), (9)

for any X,Y ∈ Γ(TM).
Throughout the paper, we consider the structure field ξ is tangent to M. Let M be a Riemannian

manifold, isometrically immersed in an almost contact metric manifold (M̃, ϕ, ξ, η, 1). Hence, if we denote
D the orthogonal distribution to ξ in TM, then TM = D ⊕ 〈ξ〉. For each nonzero vector X tangent to M at
p ∈ M, such that X is not proportional to ξp, we denote the angle θ(X) the angle between ϕX and TpM. In
fact, since ϕξ = 0, θ(X) agrees with the angle between ϕX and Dp. A submanifold M of an almost contact
metric manifold M̃ is said to be slant [6], if for each non-zero vector X tangent to M such that X is not
proportional to 〈ξ〉, the angle θ(X) between ϕX and TpM is a constant, i.e., it does not depend on the choice
of p ∈M and X ∈ TpM − 〈ξp〉. In this case D is a slant distribution with slant angle θ.

A slant submanifold is said to be proper slant, if neither θ = 0 nor θ = π
2 . We note that on a slant sub-

manifold if θ = 0, then it is an invariant submanifold and if θ = π
2 , then it is an anti-invariant submanifold.

A slant submanifold is said to be proper slant if it is neither invariant nor anti-invariant.

3. Pointwise Slant Submanifolds of Almost Contact Metric Manifolds

As a generalization of slant submanifolds F. Etayo [19] introduced pointwise slant submanifolds of an
almost Hermitian manifold under the name of quasi-slant submanifolds. After that, B.-Y. Chen and O.J.
Garay studied pointwise slant submanifolds of almost Hermitian manifolds and obtained many interesting
results [15].

For any nonzero vector X ∈ TpM, p ∈ M, orthogonal to ξ, the angle θ(X) between ϕX and the tangent
space TpM is called the Wirtinger angle of X. The Wirtinger angle gives rise to a real-valued function
θ : T∗M = TpM − {0} → R , called the Wirtinger function, defined on the set T∗M consisting of all nonzero
tangent vectors on M.

In a similar way, we can define these submanifolds of almost contact metric manifolds as follows:

Definition 3.1. A submanifold M of an almost contact metric manifold M̃ is said to be pointwise slant, if for
a nonzero vector X tangent to M at p ∈ M, such that X is orthogonal to ξp, the angle θ(X) between ϕX and
T∗M = TpM− {0} is independent of the choice of nonzero vector X ∈ T∗pM. In this case, θ can be regarded as
a function on M, which is called the slant function of the pointwise slant submanifold.
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We note that every slant submanifold is a pointwise slant submanifold but converse may not be true.
We also note that a pointwise slant submanifold is invariant ( respectively, anti-invariant) if for each point
p ∈ M, the slant function θ = 0 (respectively, θ = π

2 ). A pointwise slant submanifold is slant if the slant
function θ is constant on M. Moreover, a pointwise slant submanifold is proper if neither θ = 0, π2 nor θ is
constant.

Now, we provide a non-trivial example of pointwise slant submanifolds of an almost contact metric
manifold.

Example 3.2. Let (R5, ϕ, ξ, η, 1) be an almost contact metric manifold with cartesian coordinates
(x1, y1, x2, y2, t) and the almost contact structure

ϕ

(
∂
∂xi

)
= −

∂
∂yi

, ϕ

(
∂
∂y j

)
=

∂
∂x j

, ϕ

(
∂
∂t

)
= 0, 1 ≤ i, j ≤ 2

such that ξ = ∂
∂t , η = dt and 1 is the standard Euclidean metric on R5. Then (ϕ, ξ, η, 1) is an almost contact

metric structure on R5. Now, consider a submanifold M of R5 defined by

χ(u, v, t) = (u cos v, u sin v, −u + v, u − v, t),

where u is a non vanishing real valued function on M. Then the tangent space TM is spanned by the
following vector fields

v1 = cos v
∂
∂x1

+ sin v
∂
∂y1
−

∂
∂x2

+
∂
∂y2

,

v2 = −u sin v
∂
∂x1

+ u cos v
∂
∂y1

+
∂
∂x2
−

∂
∂y2

,

v3 =
∂
∂t
.

From the assumed almost contact structure on R5, we have

ϕv1 = − cos v
∂
∂y1

+ sin v
∂
∂x1

+
∂
∂y2

+
∂
∂x2

,

ϕv2 = u sin v
∂
∂y1

+ u cos v
∂
∂x1
−

∂
∂y2
−

∂
∂x2

,

ϕv3 = ϕ

(
∂
∂t

)
= 0.

Thus, M is a pointwise slant submanifold of R5 with slant function θ = cos−1
(

u
3

)
.

We note that some examples of pointwise slant submanifolds are given in [25], when the structure vector
field ξ is normal to the submanifold.

Now, we prove the following characterization theorem.

Theorem 3.3. Let M be a submanifold of an almost contact metric manifold M̃ such that ξ ∈ Γ(TM). Then, M is
pointwise slant if and only if

T2 = cos2 θ
(
−I + η ⊗ ξ

)
, (10)

for some real valued function θ defined on the tangent bundle TM of M.

Proof. If M is a pointwise slant submanifold with slant function θ : M→ R, then at any point p ∈ M, from
the definition we have

cosθ
(
p
)

=
‖TX‖
‖ϕX‖
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for any X ∈ TpM, which gives

1(TX,TX) = cos2 θ
(
p
)
1(ϕX, ϕX)

= cos2 θ
(
p
)
{1(X,X) − η2(X)}.

Using polarization identity, we obtain

1(TX,TY) = cos2 θ
(
p
)
{1(X,Y) − η(X)η(Y)}. (11)

Then, from (9) and (11), we derive

T2 = − cos2 θ
(
I − η ⊗ ξ

)
.

Conversely, if M is a submanifold of M̃ such that T2 = cos2 θ
(
−I + η ⊗ ξ

)
holds, for some function θ on

M, then

1(TX,TX) = −1(T2X,X) = cos2 θ {1(X,X) − η2(X)},

which means that the Wirtinger angle is independent of the choice of X ∈ T∗pM at each given point p ∈ M.
Hence the submanifold is pointwise slant. This ends the proof of the theorem.

The following corollary is an immediate consequence of Theorem 3.3.

Corollary 3.4. Let M be a pointwise slant submanifold of an almost contact metric manifold M̃. Then, we have

1(TX,TY) = cos2 θ [1(X,Y) − η(X)η(Y)] (12)

1(FX,FY) = sin2 θ [1(X,Y) − η(X)η(Y)] (13)

for any X,Y ∈ Γ(TM).

Proof. The proof follows from Theorem 3.3 and the relations (2) and (7).

Another useful relation for a pointwise slant submanifold of an almost contact metric manifold is obtained
by using (7), (8) and (10) as follows:

tFX = sin2 θ
(
−X + η(X)ξ

)
, f FX = −FTX (14)

for any X ∈ Γ(TM).
Now, we define and study pointwise pseudo-slant submanifolds, the generalised version of pseudo-

slant submanifolds defined and studied by Cabrerizo [5] and Carriazo [7] under the name of anti-slant
submanifolds.

Definition 3.5. A submanifold M of an almost contact metric manifold M̃ is said to be a pointwise pseudo-
slant submanifold if there exist a pair of orthogonal distributions D⊥ and Dθ on M such that

(i) The tangent bundle TM admits the orthogonal direct decomposition TM = D⊥ ⊕Dθ ⊕ 〈ξ〉.
(ii) The distribution D⊥ is anti-invariant, i.e., ϕD⊥ ⊂ T⊥M.

(iii) The distribution Dθ is pointwise slant with slant function θ.

Notice that the anti-invariant distribution D⊥ of a pointwise pseudo-slant submanifold is a pointwise
slant distribution with slant function θ = π

2 . Moreover, if we denote the dimensions of D⊥ and Dθ by m1
and m2, respectively, then we have the following possible cases:

(i) If m1 = 0, then M is a pointwise slant submanifold.
(ii) If m2 = 0, then M is an anti-invariant submanifold.
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(iii) If m1 = 0 and θ = 0, then M is an invariant submanifold.
(iv) If θ = 0, then M is a contact CR-submanifold.
(v) If θ is constant on M, then M is a pseudo-slant submanifold with slant angle θ.

We note that a pointwise pseudo-slant submanifold is proper if m1 , 0 and θ , 0, π2 , which should not be a
constant.

The normal bundle T⊥M of a pointwise pseudo-slant submanifold M is decomposed by

T⊥M = ϕD⊥ ⊕ FDθ ⊕ ν, ϕD⊥ ⊥ FDθ,

where ν is a ϕ−invariant normal subbundle of T⊥M .
For the integrability of the involved distributions in the Definition 3.5, we give the following useful

lemmas for Sasakian manifolds.

Lemma 3.6. Let M be a pointwise pseudo-slant submanifold of a Sasakian manifold M̃. Then the anti-invariant
distribution D⊥ is always integrable.

The proof of Lemma 3.6 is similar to a result of [22].

Lemma 3.7. Let M be a pointwise pseudo-slant submanifold of a Sasakian manifold M̃. Then
(i) For any Z,W ∈ Γ(D⊥ ⊕ 〈ξ〉) and X ∈ Γ(Dθ), we have

1(∇ZW,TX) = 1(h(X,Z), ϕW) − 1(h(Z,W),FX).

(ii) For any X,Y ∈ Γ(Dθ) and Z ∈ Γ(D⊥ ⊕ 〈ξ〉), we have

cos2 θ 1(∇XY,Z) = 1(h(X,TY), ϕZ) − 1(h(X,Z),FTY) − η(Z) 1(X,TY).

Proof. From (4) and (7), we have

1(∇ZW,TX) = 1(∇̃ZW, ϕX) − 1(h(Z,W),FX)

for any Z,W ∈ Γ(D⊥ ⊕ 〈ξ〉) and X ∈ Γ(Dθ). Using (2), (3) and the orthogonality of the distributions, we
obtain

1(∇ZW,TX) = −1(∇̃ZϕW,X) − 1(h(Z,W),FX).

Thus (i) follows from above equation by using (5) and (6). Now, we have

1(∇XY,Z) = 1(∇̃XY,Z) = 1(ϕ∇̃XY, ϕZ) + η(Z) 1(∇̃XY, ξ),

for any X,Y ∈ Γ(Dθ) and Z ∈ Γ(D⊥ ⊕ 〈ξ〉). Using the covariant derivative property of the Riemannian
connection, we derive

1(∇XY,Z) = 1(∇̃XϕY, ϕZ) − 1((∇̃Xϕ)Y, ϕZ) − η(Z) 1(∇̃Xξ,Y).

Then from (3), (4), (7) and the fact that ξ is orthogonal to Dθ, we get

1(∇XY,Z) = 1(∇̃XTY, ϕZ) + 1(∇̃XFY, ϕZ) + η(Z) 1(ϕX,Y)

= 1(h(X,TY), ϕZ) − 1(∇̃XϕFY,Z) + 1((∇̃Xϕ)FY,Z)
+ η(Z) 1(TX,Y).

Again, using (3), (8) and (9), we obtain

1(∇XY,Z) = 1(h(X,TY), ϕZ) − 1(∇̃XtFY,Z) − 1(∇̃X f FY,Z)
− η(Z) 1(X,TY).

From (14), we find that

1(∇XY,Z) = 1(h(X,TY), ϕZ) +
(
sin2 θ

)
1(∇̃XY,Z) + (sin 2θ) X(θ) 1(Y,Z)

+ 1(∇̃XFTY,Z) − η(Z) 1(X,TY).

Hence, the second part of the lemma follows from the above equation by using the orthogonality of vector
fields and the relations (4)-(6), which proves the lemma completely.
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4. Warped Products M⊥ × f Mθ with Pointwise Slant Factor

In this section, we study warped product submanifolds of Sasakian manifolds, by considering that
one of the factor is a pointwise slant submanifold. First, we give a brief introduction of warped product
manifolds.

In [2], Bishop and O’Neill introduced the notion of warped product manifolds as follows: Let M1 and M2
be two Riemannian manifolds with Riemannian metrics 11 and 12, respectively, and a positive differentiable
function f on M1. Consider the product manifold M1 ×M2 with its projections π1 : M1 ×M2 → M1 and
π2 : M1 ×M2 → M2. Then their warped product manifold M = M1 × f M2 is the Riemannian manifold
M1 ×M2 = (M1 ×M2, 1) equipped with the Riemannian structure such that

1(X,Y) = 11(π1?X, π1?Y) + ( f ◦ π1)212(π2?X, π2?Y)

for any vector field X,Y tangent to M, where ? is the symbol for the tangent maps. A warped product
manifold M = M1 × f M2 is said to be trivial or simply a Riemannian product manifold if the warping function
f is constant. Let X be an unit vector field tangent to M1 and Z be an another unit vector field on M2, then
from Lemma 7.3 of [2], we have

∇XZ = ∇ZX = (X ln f )Z (15)

where ∇ is the Levi-Civita connection on M. If M = M1 × f M2 be a warped product manifold then the base
manifold M1 is totally geodesic in M and the fiber M2 is totally umbilical in M [2, 10].

Analogous to CR-warped products introduced in [10], we define the warped product pointwise pseudo-
slant submanifolds as follows.

Definition 4.1. A warped product of anti-invariant and pointwise slant submanifolds, say M⊥ and Mθ, of
a Sasakian manifold M̃ is called a warped product pointwise pseudo-slant submanifold.

A warped product pointwise pseudo-slant submanifold is called proper if Mθ is a proper pointwise
slant submanifold and M⊥ is an anti-invariant submanifold of M̃.

There are two kinds of warped product pointwise pseudo-slant submanifolds M⊥ × f Mθ and Mθ × f M⊥
in a Sasakian manifold M̃ such that M⊥ is an anti-invariant submanifold and Mθ is a pointwise slant
submanifold of M̃.

Note that a warped product pointwise pseudo-slant submanifold M = M⊥ × f Mθ or M = Mθ × f M⊥
is a warped product contact CR-submanifold if the slant function θ = 0. Similarly, the warped product
pointwise pseudo-slant submanifold of the form M = M⊥ × f Mθ or M = Mθ × f M⊥ is a warped product
pseudo-slant submanifold if θ is constant, i.e., Mθ is proper slant.

In this section, we study the warped product pointwise pseudo-slant submanifold of the form M =
M⊥ × f Mθ of a Sasakian manifold M̃. If we consider the structure vector field ξ is tangent to M, then either
ξ ∈ Γ(TM⊥) or ξ ∈ Γ(TMθ). When ξ is tangent to Mθ, then it is easy to check that warped product is trivial
(see [29]), therefore we consider ξ ∈ Γ(TM⊥), and in this case we prove the following useful results for such
warped products.

Lemma 4.2. Let M = M⊥× f Mθ be a warped product pointwise pseudo-slant submanifold of a Sasakian manifold M̃
such that ξ ∈ Γ(TM⊥), where M⊥ is an anti-invariant submanifold and Mθ is a proper pointwise slant submanifold
of M̃. Then, we have

1(h(Y,Z),FTX) − 1(h(TX,Z),FY) = (sin 2θ) Z(θ) 1(X,Y) (16)

for any X,Y ∈ Γ(TMθ) and Z ∈ Γ(TM⊥).

Proof. For any X,Y ∈ Γ(TMθ) and Z ∈ Γ(TM⊥), we have

1(∇̃ZX,Y) = Z(ln f ) 1(X,Y). (17)
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On the other hand, we also have

1(∇̃ZX,Y) = 1(ϕ∇̃ZX, ϕY) + η(Y) 1(∇̃ZX, ξ).

The second term in the right hand side of the above equation vanishes identically by using the fact that
ξ ∈ Γ(TM⊥), thus we derive

1(∇̃ZX,Y) = 1(∇̃ZϕX, ϕY) − 1((∇̃Zϕ)X, ϕY).

Using (3), (4), (7), (15) and the orthogonality of vector fields, we find

1(∇̃ZX,Y) = 1(∇̃ZTX,TY) + 1(∇̃ZTX,FY) + 1(∇̃ZFX, ϕY)

= Z(ln f ) 1(TX,TY) + 1(h(TX,Z),FY) − 1(ϕ∇̃ZFX,Y)

=
(
cos2 θ

)
Z(ln f ) 1(X,Y) + 1(h(TX,Z),FY) − 1(∇̃ZϕFX,Y)

+ 1((∇̃Zϕ)FX,Y).

The last relation in the above equation is zero by using (3) and the orthogonality of vector fields. Then,
from (8) and (14), the above equation takes the form

1(∇̃ZX,Y) =
(
cos2 θ

)
Z(ln f ) 1(X,Y) + 1(h(TX,Z),FY) − 1(∇̃Z(− sin2 θ)X,Y)

+ 1(∇̃ZFTX,Y)

=
(
cos2 θ

)
Z(ln f ) 1(X,Y) + 1(h(TX,Z),FY) +

(
sin2 θ

)
1(∇̃ZX,Y)

+ (sin 2θ)Z(θ) 1(X,Y) − 1(AFTXZ,Y).

Again, using (4) and (15), we derive

1(∇̃ZX,Y) = Z(ln f ) 1(X,Y) + 1(h(TX,Z),FY) + (sin 2θ)Z(θ) 1(X,Y)
− 1(h(Y,Z),FTX). (18)

Then, from (17) and (18), we get (16), which completes the proof.

Lemma 4.3. Let M = M⊥ × f Mθ be a warped product pointwise pseudo-slant submanifold of a Sasakian manifold
M̃ such that ξ ∈ Γ(TM⊥), where M⊥ and Mθ are anti-invariant and pointwise slant submanifolds of M̃, respectively.
Then

1(h(X,Y), ϕZ) − 1(h(X,Z),FY) = Z(ln f ) 1(X,TY) + η(Z) 1(X,Y) (19)

for any X,Y ∈ Γ(TMθ) and Z ∈ Γ(TM⊥).

Proof. From (4), we have

1(h(X,Y), ϕZ) = 1(∇̃XY, ϕZ) = −1(ϕ∇̃XY,Z)

for any X,Y ∈ Γ(TMθ) and Z ∈ Γ(TM⊥). Then, by using the covariant derivative formula of the Riemannain
connection, we derive

1(h(X,Y), ϕZ) = 1((∇̃Xϕ)Y,Z) − 1(∇̃XϕY,Z).

Thus, from (3) and (7), we obtain

1(h(X,Y), ϕZ) = η(Z) 1(X,Y) − 1(∇̃XTY,Z) − 1(∇̃XFY,Z).

The result follows from the above relation by using (4)-(6) and (15). Hence, the proof is complete.
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Lemma 4.4. Let M = M⊥ × f Mθ be a warped product pointwise pseudo-slant submanifold of a Sasakian manifold
M̃ such that ξ ∈ Γ(TM⊥), where M⊥ and Mθ are anti-invariant and pointwise slant submanifolds of M̃, respectively.
Then

1(h(Y,Z),FTX) − 1(h(TX,Z),FY) =
(
2 cos2 θ

)
Z(ln f ) 1(X,Y) (20)

for any X,Y ∈ Γ(TMθ) and Z ∈ Γ(TM⊥).

Proof. Interchanging X by Y in (19), we get

1(h(X,Y), ϕZ) − 1(h(Y,Z),FX) = −Z(ln f ) 1(X,TY) + η(Z) 1(X,Y). (21)

Subtracting (21) from (19), we obtain

2Z(ln f ) 1(X,TY) = 1(h(Y,Z),FX) − 1(h(X,Z),FY).

Interchanging X by TX and using (12), we get the required result, which completes the proof.

A warped product submanifold M = M1 × f M2 of a Sasakian manifold M̃ is said to be mixed totally
geodesic if h(X,Z) = 0, for any X ∈ Γ(TM1) and Z ∈ Γ(TM2).

The following corollary is an immediate consequence of Lemma 4.4.

Corollary 4.5. There does not exist any proper warped product mixed totally geodesic submanifold of the form
M = M⊥ × f Mθ of a Sasakian manifold M̃ such that M⊥ is an anti-invariant submanifold and Mθ is a proper
pointwise slant submanifold of M̃.

Proof. From (20) and the mixed totally geodesic condition, we have(
cos2 θ

)
Z(ln f ) 1(X,Y) = 0.

Since 1 is Riemannian metric and M is proper, then cos2 θ , 0. Thus the proof follows from the above
relation.

Now, from Lemma 4.2 and Lemma 4.4, we have following result.

Theorem 4.6. Let M = M⊥ × f Mθ be a warped product pointwise pseudo-slant submanifold of a Sasakian manifold
M̃ such that ξ ∈ Γ(TM⊥), where M⊥ is an anti-invariant submanifold and Mθ is a proper pointwise slant submanifold
of M̃. Then, one of the following statements holds:

(i) Either M is warped product of anti-invariant submanifods, i.e., θ = π
2 ,

(ii) or if θ , π
2 , then Z(ln f ) = (tanθ) Z(θ), for any Z ∈ Γ(TM⊥).

Proof. From (16) and (20), we have

cos2 θ{Z(ln f ) − (tanθ) Z(θ)} 1(X,Y) = 0. (22)

Since 1 is Riemannian metric, therefore from (22), we conclude that either cos2 θ = 0 or Z(ln f )−(tanθ) Z(θ) =
0. Consequently, either θ = π

2 or Z(ln f ) = (tanθ) Z(θ), which proves the theorem completely.

Now, we have the following applications of the above theorem.

1. If we consider the slant function θ = 0, which is of course differ from π
2 in Theorem 4.7, then, we get

Z(ln f ) = 0, i.e., f is constant. Thus, the Theorem 2.1 of [20] is a special case of Theorem 4.7.

2. Also, if we assume that the slant function θ is constant, i.e., Mθ is a proper slant submanifold in Theorem
4.7, then again Z(ln f ) = 0. In this case the warped is of the form M⊥ × f Mθ such that Mθ is proper slant and
in this case also, the warped products do not exist. Hence, Theorem 4.7 is the generalization of Theorem
4.1 of [29] as well.

In the sequel, we give the following characterization by using a well-known result of Hiepko [21].
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Theorem 4.7. Let M be a pointwise pseudo-slant submanifold of a Sasakian manifold M̃. Then M is locally a warped
product submanifold of the form M⊥ × f Mθ if and only if

AϕZTX − AFTXZ = η(Z)TX −
(
cos2 θ

)
Z(µ)X, ∀Z ∈ Γ(D⊥), X ∈ Γ(Dθ), (23)

for some smooth function µ on M satisfying Y(µ) = 0, for any Y ∈ Γ(Dθ).

Proof. Let M = M⊥× f Mθ be a warped product pointwise pseudo-slant submanifold of a Sasakian manifold
M̃. Then for any X ∈ Γ(TMθ) and Z,W ∈ Γ(TM⊥), we have

1(AϕZX,W) = 1(h(X,W), ϕZ) = 1(∇̃WX, ϕZ).

Using (4), (15) and the orthogonality of vector fields, we get

1(AϕZX,W) = W(ln f ) 1(X, ϕZ) = 0,

which means that AϕZX has no component in TM⊥. Similarly, we can find that 1(AFXZ,W) = 0, for any
X ∈ Γ(TMθ) and Z,W ∈ Γ(TM⊥), i.e., AFXZ also has no component in TM⊥. Therefore, we conclude that
AϕZX − AFXZ lies in TMθ. Then, from Lemma 4.3 with this fact, we get (23).

Conversely, if M is a pointwise pseudo-slant submanifold such that (23) holds, then from Lemma 3.7 (i),
we have

1(∇ZW,TX) = 1(AϕWX − AFXW,Z)

for any X ∈ Γ(Dθ) and Z,W ∈ Γ(D⊥ ⊕ 〈ξ〉). Interchanging X by TX and using (10), we obtain

1(∇ZW,X) = −
(
sec2 θ

)
1(AϕWTX − AFTXW,Z)

Then from the given condition (23), we get

1(∇ZW,X) = (Zµ) 1(X,Z) −
(
sec2 θ

)
η(Z) 1(TX,Z) = 0,

which means that the leaves of the distributionD⊥ ⊕ 〈ξ〉 are totally geodesic in M. On the other hand, from
Lemma 3.7 (ii), we also have,(

cos2 θ
)
1(∇XY,Z) = 1(AϕZTY − AFTYZ,X) − η(Z) 1(X,TY), (24)

By polarization identity, we find(
cos2 θ

)
1(∇YX,Z) = 1(AϕZTX − AFTXZ,Y) + η(Z) 1(X,TY), (25)

Subtracting (25) from (24) and using (23), we get(
cos2 θ

)
1([X,Y],Z) = 0. (26)

Since Dθ is a proper pointwise slant distribution, i.e., cos2 θ , 0, then (26) implies that Dθ is integrable. If
we consider Mθ be a leaf of Dθ and hθ is the second fundamental form of Mθ in M, then we have

1(hθ(X,Y),Z) = 1(∇XY,Z).

Using (24), we derive

1(hθ(X,Y),Z) =
(
sec2 θ

)
{1(AϕZTY − AFTYZ,X) − η(Z) 1(X,TY)}.
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Then from (23), we obtain

1(hθ(X,Y),Z) = −Z(µ) 1(X,Y),

or equivalently, we find

hθ(X,Y) = −~∇µ 1(X,Y).

Hence, Mθ is a totally umbilical submanifold of M with the mean curvature vector Hθ = −~∇µ, where ~∇µ is
the gradient vector of the function µ. Since Y(µ) = 0, for any Y ∈ Γ(Dθ), then we show that Hθ = −~∇µ is
parallel with respect to the normal connection, say Dn of Mθ in M (see [1]). Thus, Mθ is a totally umbilical
submanifold of M with a non vanishing parallel mean curvature vector Hθ = −~∇µ, i.e., Mθ is an extrinsic
sphere in M. Then from a result of Heipko [21], we conclude that M is a warped product manifold of the
form M⊥ ×µ Mθ. Hence, the proof is complete.

We note that the inequality for the squared norm of the second fundamental form ‖h‖2 of these kinds
of warped products is not sharp because to evaluate the squared norm of the second fundamental form,
we have to assume that the warped product is mixed totally geodesic but this is a case of non-existence of
such warped products (see; Corollary 4.5). Secondly, if we do not assume that the warped product is mixed
totally geodesic, then to discuss the equality case in the inequality, from the leaving terms in inequality,
we will get again that M is a mixed totally geodesic submanifold and consequently it is again a case of the
non-existence of such warped products. Hence, the inequality is not sharp.

In the end of discussion, we also note that we haven’t considered the study of warped product pointwise
pseudo-slant submanifolds of the form Mθ × f M⊥ in this paper. The reason is that: These kinds of warped
products are the special case of pseudo-slant warped products Mθ × f M⊥ studied in [33], where Mθ is a
proper slant submanifold.
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