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Ricci Tensors on Trans-Sasakian 3-manifolds
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Abstract. In this paper, it is proved that a trans-Sasakian 3-manifold is locally symmetric if and only if
it is locally isometric to the sphere space S3(c2), the hyperbolic spaceH3(−c2), the Euclidean space R3, the
product space R × S2(c2) or R ×H2(−c2), where c is a nonzero constant. Some examples are constructed to
illustrate main results. We also give some new conditions for a compact trans-Sasakian 3-manifold to be
proper.

1. Introduction

In geometry of almost contact manifolds, trans-Sasakian manifolds are an important class of almost
contact metric manifolds because they include Sasakian, Kenmotsu and cosymplectic manifolds as their
special cases. A connected trans-Sasakian manifold of type (α, β) of dimension greater than three satisfies
either α = 0 or β = 0 ([19]). For the later case, we even have that α is a constant. In view of this, an interesting
question has been a topic for recent ten years, namely on what conditions a trans-Sasakian 3-manifold is
proper? Where by a proper trans-Sasakian 3-manifold we mean that it satisfies either α = 0 or β = 0.

In order to give answers of the above question, some authors studied trans-Sasakian 3-manifolds from
various points of view (see De et al. [6–11] and Deshmukh et al. [12–14]). However, in these papers, a
very important geometric condition, namely local symmetry, was neglected. In this paper, we study this
condition on trans-Sasakian 3-manifolds for the first time and obtain a complete classification result (see
Theorem 3.12). Consequently, one observes easily that under the local symmetry condition a trans-Sasakian
manifold must be proper. Some examples illustrating our main results are also constructed. From these
examples, we see that local symmetry can not be replaced by certain weaker conditions.

Before closing the paper, we consider infinitesimal harmonic transformation on trans-Sasakian 3-
manifolds. We also show that on a compact trans-Sasakian 3-manifold satisfying the above condition,
the manifold is proper.

2. Trans-Sasakian Manifolds

An almost contact metric structure (see [3]) defined on a smooth manifold M of dimension 2n + 1 is a
(φ, ξ, η, 1)-structure satisfying

φ2 = − id + η ⊗ ξ, η(ξ) = 1,
φ∗1 = 1 − η ⊗ η,

(1)

2010 Mathematics Subject Classification. Primary 53D15; Secondary 53C25
Keywords. Trans-Sasakian 3-manifold, Ricci tensor, local symmetry, space form
Received: 15 December 2017; Accepted: 02 July 2018
Communicated by Ljubica Velimirović
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where φ is a (1, 1)-type tensor field, ξ is a vector field called the characteristic or the Reeb vector field and η
is a 1-form called the almost contact 1-form. A Riemannian manifold M furnished with an almost contact
metric structure is said to be an almost contact metric manifold, denoted by (M, φ, ξ, η, 1).

Let M be an almost contact metric manifold of dimension 2n + 1. On the product M ×R there exists an
almost complex structure J defined by

J
(
X, f

d
dt

)
=

(
φX − fξ, η(X)

d
dt

)
,

where X denotes a vector field tangent to M2n+1, t is the coordinate ofR and f is a C∞-function on M2n+1
×R.

An almost contact metric manifold is said to be normal if the above almost complex structure J is integrable
and this is equivalent to [φ,φ] = −2dη ⊗ ξ, where [φ,φ] denotes the Nijenhuis tensor of φ.

A normal almost contact metric manifold is called a trans-Sasakian manifold (see [19]) if it satisfies dη = αΦ
and dΦ = 2βη∧Φ, where α = 1

2n tr(φ∇ξ), β = 1
2n divξ and Φ(·, ·) = 1(·, φ·). It is known that (see [4]) an almost

contact metric manifold M is trans-Sasakian if and only if there exist two smooth functions α and β satisfying

(∇Xφ)Y = α(1(X,Y)ξ − η(Y)X) + β(1(φX,Y)ξ − η(Y)φX) (2)

for any vector fields X and Y. In view of (2), a trans-Sasakian manifold is denoted by (M, φ, ξ, η, α, β) and
called a trans-Sasakian manifold of type (α, β).

A normal almost contact metric manifold is called an α-Sasakian manifold if it satisfies dη = αΦ and
dΦ = 0, where α is a nonzero constant (see [17]). An α-Sasakian manifold becomes a Sasakian manifold
when α = 1.

A normal almost contact metric manifold is called a β-Kenmotsu manifold if it satisfies dη = 0 and
dΦ = 2βη ∧ Φ, where β is a nonzero constant (see [17]). A β-Kenmotsu manifold becomes a Kenmotsu
manifold when β = 1.

A normal almost contact metric manifold is called a cosymplectic manifold if it satisfies dη = 0 and dΦ = 0.
From the definition of tran-Sasakian manifolds, substituting Y = ξ in (2) and using (1) we have

∇Xξ = −αφX + β(X − η(X)ξ) (3)

for any vector field X.
In this paper, all manifolds are assumed to be connected and smooth.

3. Ricci Tensors on Trans-Sasakian 3-manifolds

A trans-Sasakian manifold of type (α, β) is said to be of C6-class if β = 0 (see [5]). As seen in [19], α on
a trans-Sasakian manifold of C6-class of dimension greater than three is a constant. Then, a trans-Sasakian
manifold of C6-class of dimension greater than 3 is just an α-Sasakian manifold (see [17]). However, α on a
trans-Sasakian 3-manifold of C6-class is not necessarily a constant (see [19]).

A trans-Sasakian manifold of type (α, β) is said to be of C5-class if α = 0 (see [5]). On such manifolds
of dimension greater than three there holds naturally dβ ∧ η = 0. However, the above equation does not
necessarily hold for dimension three. The set of all trans-Sasakian manifolds of C5-class contains the set of
all β-Kenmotsu manifolds as its proper subset. Some non-trivial examples are given in Section 3.

In the present paper, a trans-Sasakian 3-manifold is said to be proper if it is of either C5 or C6-class.
Throughout the paper, we denote by ∇ f the gradient of a function f .

Before stating our main results, we collect some useful lemmas as follows.

Lemma 3.1 ([10]). On a trans-Sasakian 3-manifold of type (α, β) we have

ξ(α) + 2αβ = 0. (4)
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Lemma 3.2 ([10]). On a trans-Sasakian 3-manifold of type (α, β), the Ricci operator is given by

Q =
( r

2
+ ξ(β) − α2 + β2

)
id −

( r
2

+ ξ(β) − 3α2 + 3β2
)
η ⊗ ξ

+ η ⊗ (φ(∇α) − ∇β) + 1(φ(∇α) − ∇β, ·) ⊗ ξ.
(5)

On an n-dimensional Riemannian manifold (M, 1), the rough Laplacian operator ∆̄ acting on a smooth
vector field X is defined by (see [16])

∆̄X =

n∑
i=1

(∇∇ei ei X − ∇ei∇ei X),

where {ei : i = 1 · · · n} is a local orthonormal frame for the tangent space at each point of the manifold. This
operator is self adjoint elliptic operator. Using the above symbol, from [13, Lemma 2.3] we have

Lemma 3.3 ([13]). On a trans-Sasakian 3-manifold of type (α, β) we have

∆̄ξ = φ(∇α) − ∇β + (2(α2 + β2) + ξ(β))ξ. (6)

First, we discuss the constancy of scalar curvatures of α-Sasakian, β-Kenmotsu and cosymplectic 3-
manifolds, respectively.

Proposition 3.4. A β-Kenmotsu 3-manifold is of constant scalar curvature if and only if it is locally isometric to the
hyperbolic spaceH3(−β2).

Proof. For a β-Kenmotsu 3-manifold M we have from Lemma 3.2 that

QX =
( r

2
+ β2

)
X −

( r
2

+ 3β3
)
η(X)ξ

for any vector field X. Taking the covariant derivative of the above relation we have

(∇YQ)X = −
( r

2
+ 3β2

)
1(∇Yξ,X)ξ −

( r
2

+ 3β2
)
η(X)∇Yξ

for any vector fields X,Y. Applying the well known formula divQ = 1
2∇r on the above equation we have

X(r) = −
(
r + 6β2

)
η(X)divξ.

From (3) we have divξ = 2β ∈ R∗. When the scalar curvature of M is a constant, using divξ = 2β
and considering X = ξ on the above equation we have r = −6β2. Thus, it is clear that M is Einstein, i.e.
Q = −2β2id. Since M is of dimension three, then it is of constant sectional curvature −β2. The converse is
easy to check. This completes the proof.

From proof of Proposition 3.4, we have

Corollary 3.5. On a β-Kenmotsu 3-manifold, the scalar curvature is invariant along the distribution {ξ}⊥.

Cosymplectic 3-manifolds with constant scalar curvatures were classified by the first present author in
[25].

Proposition 3.6 ([25]). A cosymplectic 3-manifold is of constant scalar curvature if and only if it is locally isometric
to the Euclidean space R3, the product space R × S2(c2) or R ×H2(−c2), where c is a nonzero constant.

In fact, from proof of [25, Proposition 4.2] we have
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Remark 3.7. On any cosymplectic 3-manifold, the scalar curvature is invariant along the Reeb vector field ξ.

Given an almost contact metric manifold (M, φ, ξ, η, 1). Let X be a vector field on M orthogonal to ξ. The
plane section {X, φX} spanned by X and φX is called a φ-section and 1(R(X,φX)φX,X)

1(X,X)2 is called its φ-sectional
curvature.

A cosymplectic manifold M2n+1 with constant φ-sectional curvature c is said to be a cosymplectic space
from, denoted by M2n+1(c), whose curvature tensor is given (see [1]) as the following

R(X,Y)Z =
c
4

(1(φY, φZ)X − 1(φX, φZ)Y + η(Y)1(X,Z)ξ

− η(X)1(Y,Z)ξ + 1(φY,Z)φX − 1(φX,Z)φY − 21(φX,Y)φZ)
(7)

for any vector fields X,Y,Z. From Proposition 3.6, one can check that the φ-sectional curvature of a
cosymplectic 3-manifold of constant scalar curvature is constant. Thus, we have

Proposition 3.8. A cosymplectic 3-manifold is of constant scalar curvature if and only if it is a cosymplectic space
form.

An almost contact metric manifold (M, φ, ξ, η, 1) is called locally φ-symmetric (see [28]) if there holds

φ2(∇WR)(X,Y)Z = 0 (8)

for any vector fields X,Y,Z,W orthogonal to the Reeb vector field ξ. Obviously, any locally symmetric space
is also locally φ-symmetric but the converse is not necessarily true. In this paper, a locally φ-symmetric
space is said to be strictly locally φ-symmetric if it is not locally symmetric.

Proposition 3.9. An α-Sasakian 3-manifold is of constant scalar curvature if and only if it is locally φ-symmetric.

Proof. For an α-Sasakian 3-manifold M, from [10, Corollary 4.2], we know that the curvature tensor of M is
given by

R(X,Y)Z =
( r

2
− 2α2

)
[1(Y,Z)X − 1(X,Z)Y]

−

( r
2
− 3α2

)
η(X)1(Y,Z)ξ +

( r
2
− 3α2

)
η(Y)1(X,Z)ξ

−

( r
2
− 3α2

)
η(Y)η(Z)X +

( r
2
− 3α2

)
η(X)η(Z)Y

(9)

for any vector fields X,Y,Z. From the above relation and (1) we have

(∇WR)(X,Y)Z =
1
2

W(r)(1(Y,Z) − η(Y)η(Z))X +
1
2

W(r)(η(X)η(Z) − 1(X,Z))Y

+
1
2

W(r)(1(X,Z)η(Y) − 1(Y,Z)η(X))ξ

−

( r
2
− 3α2

)
((∇Wη)X ξ + η(X)∇Wξ)1(Y,Z)

+
( r

2
− 3α2

)
((∇Wη)Y ξ + η(Y)∇Wξ)1(X,Z)

−

( r
2
− 3α2

)
(η(Z)(∇Wη)Y + η(Y)(∇Wη)Z)X

+
( r

2
− 3α2

)
(η(Z)(∇Wη)X + η(X)(∇Wη)Z)Y

(10)

for any vector fields X,Y,Z,W. Because of (1), it follows directly that

φ2(∇WR)(X,Y)Z = −
1
2

W(r)(1(Y,Z)X − 1(X,Z)Y) (11)
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for any vector fields X,Y,Z,W orthogonal to ξ. If M is locally φ-symmetric, from (8) and (11), we observe
that the scalar curvature r is invariant along the distribution {ξ}⊥, or equivalently, dr = ξ(r)η. Taking the
exterior differentiation of this relation we have

dξ(r) ∧ η + ξ(r)Φ = 0. (12)

Let e be a unit vector field orthogonal to ξ. The action of (12) on (e, φe) gives ξ(r) = 0. This implies that r is
a constant. The converse follows directly from (11). This completes the proof.

By a similar proof as that of Corollary 3.5, we have

Corollary 3.10. On an α-Sasakian 3-manifold, the scalar curvature is invariant along the Reeb vector field ξ.

Unlike Kenmotsu case, the constancy of the scalar curvature of an α-Sasakian 3-manifold does not
necessarily imply that the manifold is of constant sectional curvature.

An α-Sasakian manifold having constant φ-sectional curvature c is said to be an α-Sasakian space form
and is denoted by M2n+1(α, c). It becomes the well known Sasakian space form when α = 1. The curvature
tensor of α-Sasakian space form is given by (see [1])

R(X,Y)Z =
c + 3α2

4
(1(Y,Z)X − 1(X,Z)Y)

+
c − α2

4
(1(φY,Z)φX − 1(φX,Z)φY − 21(φX,Y)φZ)

+
c − α2

4
(η(X)η(Z)Y − η(Y)η(Z)X + η(Y)1(X,Z)ξ − η(X)1(Y,Z)ξ)

(13)

for any vector fields X,Y,Z, where c and α are both constants. One can check that M(α, c) is an α-Sasakian
manifold with constant scalar curvature whose sectional curvature is not a constant unless c = α2.

From (9) and (13), we have the following result which is similar as Proposition 3.8.

Proposition 3.11. An α-Sasakian 3-manifold is of constant scalar curvature if and only if it is an α-Sasakian space
from.

Now are ready to give our main results which generalize Propositions 3.4, 3.8 and 3.11.

Theorem 3.12. A trans-Sasakian 3-manifold is locally symmetric if and only if it is locally isometric to the sphere
space S3(c2), the hyperbolic space H3(−c2), the Euclidean space R3, the product space R × S2(c2) or R ×H2(−c2),
where c is a nonzero constant.

Proof. Let M be a trans-Sasakian 3-manifold. Taking the covariant derivative of (5) we have

(∇YQ)X =Y
( r

2
+ ξ(β) − α2 + β2

)
X − Y

( r
2

+ ξ(β) − 3α2 + 3β2
)
η(X)ξ

−

( r
2

+ ξ(β) − 3α2 + 3β2
)

(1(∇Yξ,X)ξ + η(X)∇Yξ)

+ 1(∇Yξ,X)(φ∇α − ∇β) + η(X)(∇Y(φ∇α) − ∇Y∇β)
+ 1(∇Y(φ∇α) − ∇Y∇β,X)ξ + 1(φ∇α − ∇β,X)∇Yξ

(14)

for any vector fields X,Y,Z.
Let e be an arbitrary unit vector field orthogonal to the Reeb vector field ξ on M. Then, {ξ, e, φe} forms

a local orthonormal frame for tangent space at each point of M. Note that the scalar curvature of a locally
symmetric space is always a constant. Also, a Reimannian 3-manifold is locally symmetric if and only if its
Ricci tensor is parallel. From now on, we assume that M is locally symmetric.
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Putting X = Y = e in (14) we see that (∇eQ)e = 0 if and only if

e(ξ(β) − α2 + β2) − 2β(φe(α) + e(β)) = 0,
β(e(α) − φe(β)) + α(φe(α) + e(β)) = 0,

1(∇e(φ∇α − ∇β), e) − β(
r
2

+ 2ξ(β) − 3α2 + 3β2) = 0.

(15)

Similarly, putting X = Y = φe in (14), (∇φeQ)φe = 0 if and only if

φe(ξ(β) − α2 + β2) + 2β(e(α) − φe(β)) = 0,
−β(φe(α) + e(β)) + α(e(α) − φe(β)) = 0,

1(∇φe(φ∇α − ∇β), φe) − β(
r
2

+ 2ξ(β) − 3α2 + 3β2) = 0.

(16)

Similarly, putting X = e and Y = φe in (14), (∇eQ)φe = 0 if and only if

φe(ξ(β) − α2 + β2) − 2α(φe(α) + e(β)) = 0,
−β(φe(α) + e(β)) + α(e(α) − φe(β)) = 0,

1(∇φe(φ∇α − ∇β), e) − α(
r
2

+ 2ξ(β) − 3α2 + 3β2) = 0.

(17)

Similarly, putting X = φe and Y = e in (14), (∇φeQ)e = 0 if and only if

e(ξ(β) − α2 + β2) − 2α(e(α) − φe(β)) = 0,
β(e(α) − φe(β)) + α(φe(α) + e(β)) = 0,

1(∇e(φ∇α − ∇β), φe) + α(
r
2

+ 2ξ(β) − 3α2 + 3β2) = 0.

(18)

Combining the second terms of (17) and (18) we get

(α2 + β2)(e(α) − φe(β)) = (α2 + β2)(φe(α) + e(β)) = 0. (19)

In view of (19), we consider the fist possible case, namely α2 + β2 = 0. Obviously, this implies that M is a
cosymplectic manifold. Since the scalar curvature is a constant, then from Proposition 3.6 we know M is
locally isometric to the Euclidean space R3, the product R × S2(c2) or R ×H2(−c2).

Otherwise, when α2 + β2 , 0, from (19) we have

e(α) − φe(β) = φe(α) + e(β) = 0.

The second equality of the above relation is equivalent to 1(e, φ∇α − ∇β) = 0. In view of e an arbitrary
unit vector field orthogonal to ξ, the above relation is also equivalent to φ∇α − ∇β = η(φ∇α − ∇β)ξ, or
equivalently,

φ∇α − ∇β + ξ(β)ξ = 0. (20)

The Levi-Civita connection ∇ of M can be written as the following (see [15]):

∇ξξ =0, ∇ξe = λφe, ∇ξφe = −λe,
∇eξ =βe − αφe, ∇ee = −βξ + γφe, ∇eφe = αξ − γe,
∇φeξ =αe + βφe, ∇φee = −αξ − δφe, ∇φe = −βξ + δe,

where λ, γ and δ are smooth functions on some open subset of the manifold. Therefore, making use of the
previous relations and substituting (20) into the last term of (15) or (16) we obtain

β(r − 6α2 + 6β2 + 6ξ(β)) = 0. (21)
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If β = 0, from (20) we obtain that ∇α = ξ(α)ξ. In view of Lemma 3.1 we obtain ∇α = 0 and hence α is
a nonzero constant. Because the scalar curvature is a constant, from Proposition 3.11, M is an α-Sasakian
space form. From (13) we have

Q =
1
4

(7α2 + c)id +
1
4

(α2
− c)η ⊗ ξ.

By (3), one can check that the Ricci tensor of M is parallel if and only if c = α2 and in this case M is of
constant sectional curvature α2 > 0.

Finally, from (21) we next consider the last case, namely β , 0 and hence r − 6α2 + 6β2 + 6ξ(β) = 0.
Substituting this and (20) into (5) we observe that M is Einstein, i.e., Q = r

3 id. Since M is of dimension
three, then M is of constant sectional curvature. In particular, when α = 0 and β is a nonzero constant, by
Proposition 3.4 we see that M is locally isometric to the hyperbolic spaceH3(−β2). The converse is easy to
check. This competes the proof.

Example 3.13. Let x, y, z be the standard coordinates in R3. On R3 there exists Sasakian structure (φ, ξ, η, 1) (see
[3]) given as the following:

ξ = 2
∂
∂z
, η =

1
2

(dz − ydx), 1 = η ⊗ η +
1
4

(dx ⊗ dx + dy ⊗ dy),

φ
∂
∂x

= −
∂
∂y
, φ

∂
∂y

=
∂
∂x

+ y
∂
∂z
, φ

∂
∂z

= 0.

One can check that (R3, φ, ξ, η, 1) is a Sasakian space form with constant φ-sectional curvature −3.

By Proposition 3.4, local symmetry and constancy of the scalar curvature are equivalent for β-Kenmotsu
3-manifolds. However, from proof of Theorem 3.12, Examples 3.13, 3.17 and relation (13) we have

Remark 3.14. If local symmetry assumption is replaced by a weaker condition, namely the scalar curvature is a
constant, then conclusion of Theorem 3.12 is not necessarily true.

Example 3.15. Let x, y, z be the standard coordinates in R3. Let M := {(x, y, z) ∈ R3 : z , 0}. On M we consider
three linearly independent vector fields e1, e2 and e3 defined as the following

e1 = z2 ∂
∂x
, e2 = z2 ∂

∂y
, e3 =

∂
∂z
.

Let 1 be a Riemannian metric such that {e1, e2, e3} is a orthonormal frame. On M we defined an almost contact metric
structure {φ, ξ, η} as the following

φe1 = e2, φe2 = −e1, φe3 = 0,

ξ := e3, η = 1(e3, ·).

One can check that M is a trans-Sasakian 3-manifold of type (0,− 2
z ) (see [29]). Moreover, the Levi-Civita connection

of M is given by

∇e1 e1 =
2
z

e3, ∇e1 e2 = 0, ∇e1 e3 = −
2
z

e1,

∇e2 e1 = 0, ∇e2 e2 =
2
z

e3, ∇e2 e3 = −
2
z

e2,

∇e3 e1 = 0, ∇e3 e2 = 0, ∇e3 e3 = 0.

By a direction calculation, the Ricci operator Q is given as the following

Qe1 = −
10
z2 e1, Qe2 = −

10
z2 e2, Qe3 = −

12
z2 e3.
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Applying the above relations, we have

(∇e1 Q)e2 = (∇e2 Q)e1 = 0,

(∇e1 Q)e1 = (∇e2 Q)e2 =
4
z3 e3.

An almost contact metric manifold (M, φ, ξ, η, 1) is said to be Ricci η-parallel if its Ricci tensor satisfies
(∇φXS)(φY, φZ) = 0 for any vector fields X,Y,Z. Obviously, Ricci parallelism implies the above condition
but the converse is not necessarily true.

Note that an almost contact metric 3-manifold is normal if and only if it is trans-Sasakian (see [22]). It
was proved in [11] that a trans-Sasakian 3-manifold satisfies dr = ξ(r)η if it is locally φ-symmetric or Ricci
η-parallel. Thus, from Example 3.15 and relation (8), by a direct calculation, we have

Remark 3.16. If local symmetry assumption is replaced by some weaker conditions such as Ricci η-parallelism or
local φ-symmetry, then conclusion of Theorem 3.12 not necessarily holds.

Let N be a Kähler manifold of dimension 2 and t the coordinate of R. It was proved in [1, pp.179] that
the warped product R × f N admits a trans-Sasakian structure of type (0, f ′

f ), where f = f (t) is the positive
warping function defined on the baseRwith coordinate t. Let σ be the natural projection fromR× f N onto
the fiber N. Moreover, from [21, Corollary 43] we know that the scalar curvature r of the warped product
R × f N is given by

r =
rN

f 2 − 4
∆ f
f
− 2
||∇ f ||2

f 2 , (22)

where rN, ∆ f and∇ f denote the pullback of the scalar curvature of the fiber N by projection σ, the Laplacian
and the gradient of the warping function f , respectively.

Applying the above statement and (22), we can construct a trans-Sasakian 3-manifolds of type (0, β)
with constant scalar curvature.

Example 3.17. Let N be the complex projective space CP1 of dimension two with standard Kähler structure whose
holomorphic sectional curvature is equal to 1. Let t be the global coordinate of R. A simple calculation gives that
rN = 2, ∆ f = 0 and ∇ f = ∂

∂t . Then, the warped product R ×t N is a trans-Sasakian 3-manifold of type (0, 1
t ) with

constant scalar curvature equal to zero.

It was proved in [2, Proposition 4.2] that a warped product manifold B × f F is locally symmetric if and

only if B is locally symmetric and F is of constant curvature K such that ∇X

(Hess f

f

)
= 0 for any vector field X

on B and κ f 2 + ‖grad f ‖2 = K for certain constant κ. Applying such proposition, we know that the warped
product in Example 3.17 can not be locally symmetric. Therefore, we have

Remark 3.18. Example 3.17 shows that conclusions of Propositions 3.4 and 3.6 are not necessarily true for trans-
Sasakian 3-manifolds of type (0, β).

Remark 3.19. As far as we know, Example 3.17 is the first trans-Sasakian 3-manifold having constant scalar
curvature which is of neither the type (α, 0) with α ∈ R∗ nor the type (0, β) with β ∈ R∗.

Before closing this paper, next we give a new condition under which a compact trans-Sasakian 3-manifold
is proper.

A vector field V on a Riemannian manifold (M, 1) is called an infinitesimal harmonic transformation if the
local 1-parameter group of infinitesimal point transformations generated by V forms a group of harmonic
transformations (see [20, 24]), or equivalently, trace1(LV∇) = 0, where L denotes the Lie derivative.

It has been proved in [24, Theorem 2.1] that a vector field V on M generates an infinitesimal harmonic
transformation if and only if ∆V = 2QV, where ∆ is known as the Laplacian and is determined by the
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Weitzenböck formula ∆V = ∇∗∇V + QV, and ∇∗ is the formal adjoint of ∇ and Q denotes the usual Ricci
operator. The rough Laplacian ∆̄ defined in page 3 can be expressed as ∆̄V = −trace∇2V = ∇∗∇V, and
therefore ∆V = ∆̄V + QV. Thus, we say that V generates an infinitesimal harmonic transformation if and
only if

∆̄V = QV.

Theorem 3.20. If the Reeb vector field of a compact trans-Sasakian 3-manifold of type (α, β) generates an infinitesimal
harmonic transformation, then β vanishes.

Proof. From Lemmas 3.2, we obtain immediately the following relation

Qξ = φ(∇α) − ∇β + (2(α2
− β2) − ξ(β))ξ. (23)

Obviously, from (23) and Lemma 3.3, the Reeb vector field ξ generates an infinitesimal harmonic transfor-
mation if and only if

2β2 + ξ(β) = 0. (24)

Applying (3), we compute the divergence of β3ξ as the following:

divβ3ξ = 3β2ξ(β) + β3divξ = −4β4,

where we have used (24). Since the manifold is assumed to compact, applying the divergence theorem on
the above relation we obtain β = 0. This completes the proof.

Note that α on a trans-Sasakian 3-manifold of type (α, 0) is not necessarily a constant even if the manifold
is compact (for such example we refer the reader to [26, 27]).
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