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Abstract. We construct a numerical scheme for solving a class of fractional optimal control problems by
employing Boubaker polynomials. In the proposed scheme, the state and control variables are approximated
by practicing Nth-order Boubaker polynomial expansion. With these approximations, the given performance
index is transformed to a function of N + 1 unknowns. The objective of the present formulation is to
convert a fractional optimal control problem with quadratic performance index into an equivalent quadratic
programming problem with linear equality constraints. Thus, the latter problem can be handled efficiently
in comparison to the original problem. We solve several examples to exhibit the applicability and working
mechanism of the presented numerical scheme. Graphical plots are provided to monitor the nature of
the state, control variable and the absolute error function. All the numerical computations and graphical
representations have been executed with the help of Mathematica software.

1. Introduction

Fractional optimal control problem (FOCP) is an extension of the classical optimal control problem,
in which the system dynamical constraints are described with fractional order operators. Nowadays,
fractional derivatives have gained the attention of researchers in describing the properties not considered
by integer order derivatives. For the historical development and applications of fractional calculus, we
refer the reader to [17, 20, 21].

A variety of FOCPs are available in the literature (see [1],[18],[22]), but Agrawal [1] first introduced the
simplest FOCP by using Riemann-Liouville fractional derivative in the governing differential equation of
the system dynamical constraints. This formulation was further enhanced by Agrawal [3] with Caputo
fractional derivatives. Some of the FOCP formulations have been suggested in [2, 22, 25]. The complexity of
obtaining analytical solutions of FOCPs leads to explore numerical methods. Previously, different numerical
techniques have been applied to solve such problems which include a central difference numerical scheme
[5], Legendre multi-wavelet collocation method [30], a discrete numerical method [4], approximation
method [29], and Beizer curves method [13].

Recently, special attention has been given to find the numerical solution of these FOCPs (see [7, 10–
12, 14, 26]) by using orthogonal polynomials expansion. The approximation of a function by orthogonal
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polynomials scales down the complexity of the fractional dynamical system by reducing it to a simpler
system of algebraic equations. For example, Chebyshev polynomials [14], modified Jacobi polynomials [10],
shifted Jacobi polynomials [11], Legendre polynomials [12], Chebyshev-Legendre operational technique [7],
Laguerre polynomials [26], have already been used to construct solution schemes for a variety of FOCPs.
The widely adopted idea is to obtain the operational matrices of the fractional derivatives and integrals
for the corresponding orthogonal polynomials (see [11, 12]). In our recent work [26], we have established
a new class of FOCP and obtained its numerical solution by Laguerre orthogonal polynomial expansion
method.

In this paper, we intend to adopt Boubaker polynomials to construct a numerical algorithm for solving
a class of FOCP. These polynomials are non-orthogonal in nature and have already been used for solving
optimal control problems [15] and FOCPs [23]. In [23], authors have obtained Boubaker operational
matrices for fractional order operators and applied them to solve FOCPs. Involvement of same non-
orthogonal polynomials in [23] and present work leads to a comparison of the results. For fundamental
properties and applications of Boubaker polynomials, one can see [8].

Our approach is based on parameterizing the state and control variables with Boubaker polynomial
expansion scheme. The parameterized state and control variables directly assist in approximating the
performance index of the concerned FOCP. The underlying objective is to convert the given FOCP into
an equivalent standard programming problem with linear equality constraints. The solution of the latter
problem corresponds to the solution of original control problem. Thus, the original FOCP can be solved
directly without using any necessary conditions or Hamiltonian formulas. With a quadratic performance
index, an equivalent quadratic programming problem with linear equality constraints can be handled
efficiently. Additionally, we have worked out both time-invariant and time-varying FOCPs to follow the
working mechanism of the proposed algorithm. To analyze the performance of the solution, we have
provided the plot of the state, control variables, and absolute error functions.

This paper is organized as follows: Section 2 discusses the FOCP statement which is considered through-
out the work. In Section 3, some basic definitions of fractional operators and Boubaker polynomials are
provided with necessary details. Section 4 corresponds to the mathematical formulation of the proposed
algorithm, followed by Section 5 discussing the convergence analysis. In Section 6, we present illustrative
examples to demonstrate the applicability of solution scheme. The last section provides the concluding
remarks and scope of future work.

2. Problem Statement

In this section, we state a class of FOCPs formulated to find the optimal control u(t) that minimizes the
given performance index J

(P) Minimize J =

∫ t1

t0

F(x,u, t) dt, (1)

subject to the system dynamic constraints

G1

(
x′(t), c

t0
Dα

t x(t)
)

= G2(x,u, t), 0 < α < 1, (2)

and the initial condition

x(t0) = x0, (3)

where x(t) is the state variable known as the optimal trajectory. The functions F and G2 are continu-
ously differentiable in all the three arguments. Here, G1 is an arbitrary function of classical and fractional
derivative of the state variable x(t). Our aim is to construct a well-organized algorithm by exercising
non-orthogonal Boubaker polynomial approximation for solving the FOCP (P). For necessary and suffi-
cient optimality conditions, and a solution scheme for the problem (P) by means of Laguerre orthogonal
approximation, we refer the reader to [26].
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3. Preliminaries

In this section, we enlist some definitions of fractional order operators and Boubaker polynomials that
will be required in the sequel. We suggest the reader to [20, 21], for detailed information on existing
fractional derivatives and integrals.

Fractional Order Operators. Let f ∈ C[a, b], where C[a, b] is the space of all continuous real valued functions
defined on [a, b].

Definition 3.1. For all t ∈ [a, b] and α > 0, left Riemann-Liouville fractional integral of order α is defined as

aIαt f (t) =
1

Γ(α)

∫ t

a
(t − τ)α−1 f (τ) dτ.

Let f ∈ Cn[a, b]; n ∈ N, where Cn[a, b] is the space of all n times continuously differentiable functions
defined on the closed interval [a, b].

Definition 3.2. For all t ∈ [a, b], n − 1 ≤ α < n, left Riemann-Liouville fractional derivative of order α is defined as

aDα
t f (t) =

1
Γ(n − α)

(
d
dt

)n ∫ t

a
(t − τ)n−α−1 f (τ) dτ.

Definition 3.3. For all t ∈ [a, b], n − 1 ≤ α < n, left Caputo fractional derivative of order α is defined as

c
aDα

t f (t) =
1

Γ(n − α)

∫ t

a
(t − τ)n−α−1 f n(τ) dτ.

Boubaker Polynomials. In [8], authors have introduced Boubaker polynomials for solving a one-dimensional
heat equation. The expression of Boubaker polynomials, denoted by Bn(t), is described as

Bn(t) =

ξ(n)∑
p=0

(−1)p (n − 4p)
(n − p)

(
n − p

p

)
tn−2p, (4)

where ξ(n) = b n
2 c =

2n+((−1)n
−1)

4 , and b · c is known as the floor function.

• The first few Boubaker polynomials are

B0(t) = 1, B1(t) = t, B2(t) = t2 + 2,

B3(t) = t3 + t, B4(t) = t4
− 2.

These polynomials can also be defined with the recurrence relation given below

Bn(t) = t Bn−1(t) − Bn−2(t), n > 2. (5)

We may note that the above recurrence formula holds for n > 2, as the first three polynomials are defined
explicitly.

4. Mathematical Framework: Algorithm

Let Q ⊂ C[t0, t1] be the set of all functions satisfying the initial condition (3), and PN ⊂ Q be the class of
all Boubaker polynomials of order up to N.

In this section, we use the Nth-order Boubaker polynomials to approximate the state variable as a Nth-
order polynomial in t. The approximated state variable and the given system dynamical constraints assist
in representing the control variable with a lesser number of parameters that minimizes J.
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Algorithm: Solution scheme.

Step I. Approximate the state variable x(t) as a linear combination of Nth-order Boubaker polynomials,

x(t) u xN(t) =

N∑
k=0

ak Bk(t), N = 1, 2, 3, ... (6)

where Bk’s are the kth-order Boubaker polynomials and ak’s are the unknown coefficients to be deter-
mined.

Step II. Apply the given initial condition (3),

x(t0) u xN(t)
∣∣∣∣∣
t=t0

=

N∑
k=0

ak Bk(t)
∣∣∣∣∣
t=t0

= x0,

which results in an algebraic equation of the unknown coefficients ak’s. The above equation corresponds
to the required linear equality constraints for the equivalent standard programming problem.

Step III. With the given dynamical constraint (2), find an expression of u(t) (u uN(t)) as a function (say φ)
of t, xN(t), x′N(t), and the fractional derivative c

t0
Dα

t xN(t),

u(t) u uN(t),

= φ
(
t, xN(t), x′N(t), c

t0
Dα

t xN(t)
)
,

= φ

t,
N∑

k=0

akBk(t),
N∑

k=0

akB′k(t),
N∑

k=0

ak
c
t0

Dα
t Bk(t)

 .
Step IV. Substitute the approximated state variable xN(t) and the control variable uN(t) in the given perfor-
mance index (1),

J u Ĵ[a0, ..., aN] =

∫ t1

t0

F (t, xN(t),uN(t)) dt,

where

xN(t) =

N∑
k=0

ak Bk(t),

uN(t) = φ

t,
N∑

k=0

akBk(t),
N∑

k=0

akB′k(t),
N∑

k=0

ak
c
t0

Dα
t Bk(t)

 .
The given performance index J is now transformed into Ĵ, which is a function of N + 1 unknown

coefficients ak.

Step V. Next, the standard programming problem is to minimize Ĵ[a0, ..., aN] for ak’s, subject to the constraint

xN(t0) =
∑N

k=0 ak Bk(t)
∣∣∣∣∣
t=t0

= x0.
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Step VI. With a quadratic performance index in FOCP, the original problem (P) is converted into minimizing
a quadratic function Ĵ subject to the linear equality constraint

∑N
k=0 ak Bk(t0) = x0. Finally, we are required to

solve the quadratic programming problem described below in equivalent matrix form

Minimize
(1

2
a′Ha + G′a

)
, a ∈ RN+1, (7)

subject to the linear equality constraint

Ba = C, (8)

where a = [a0 a1... aN]′, B = [B0(t0) B1(t0)...BN(t0)], and C = [x0].

Step VII. Find the optimal value a∗ to solve the quadratic programming problem (7)-(8) as follows,

a∗ = −H−1 (G + B′λ∗),
where λ∗ = −(BH−1B′)−1(C + BH−1G).

Step VIII. At last, use the optimal value a∗ to write the expressions for xN(t), uN(t) and the optimal value of
Ĵ that approximates the original performance index J.

We have performed entire numerical and graphical part with Mathematica software. As per the con-
venience, one may also use quadratic programming problem solver in MATLAB software. In that case, the
optimal value a∗ can be obtained by providing the matrices H, G, B, C from the problem (7)-(8) as input
and extracting the column matrix a as output.

5. Convergence Analysis

In this section, we compute the αth-order Caputo’s fractional derivative of Boubaker polynomials for
α ∈ (0, 1). Afterward, we discuss an approximation formula for the fractional derivative of the state variable
followed by the convergence analysis of the designed approximation by Boubaker polynomial expansion.

Theorem 5.1. For 0 < α < 1, the αth-order Caputo fractional derivative of Boubaker polynomials of is given by

c
0Dα

t Bn(t) = Bαn(t), (9)

where Bαn(t) =

b
n
2 c∑

p=[α]

(−1)p (n − 4p)Γ(n − p)
Γ(p + 1)Γ(n − 2p − α + 1)

tn−2p−α. (10)

Proof. By Eq. (4), we have

Bn(t) =

ξ(n)∑
p=0

(−1)p (n − 4p)
(n − p)

(
n − p

p

)
tn−2p,

where ξ(n) = b n
2 c =

2n+((−1)n
−1)

4 .

For Caputo’s fractional derivative, we have

c
0Dα

t K = 0, K is a constant,

and c
0Dα

t tp =

{ Γ(p+1)
Γ(p−α+1) tp−α for p > 0,

0 for p ≤ 0.
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Next, we compute

Bαn(t) = c
0Dα

t Bn(t),

= c
0Dα

t

ξ(n)∑
p=0

(−1)p (n − 4p)
(n − p)

(
n − p

p

)
tn−2p,

=

ξ(n)∑
p=[α]

(−1)p (n − 4p)Γ(n − p)
Γ(p + 1)Γ(n − 2p − α + 1)

tn−2p−α,

which completes the proof.

Theorem 5.2. For 0 < α < 1, an approximation formula for the αth-order Caputo fractional derivative of the state
variable is given by

c
0Dα

t x(t) u c
0Dα

t xN(t) =

N∑
k=[α]

ak Bαk (t) , N = 1, 2, 3...

where Bαk (t) is given by Eq. (9). Or,

c
0Dα

t x(t) u
N∑

k=0

ak

b
k
2 c∑

p=[α]

(−1)p(k − 4p)Γ(k − p)
Γ(p + 1)Γ(k − 2p − α + 1)

tk−2p−α.

Proof. Using Eq. (6), we approximate c
0Dα

t x(t) as

c
0Dα

t x(t) u c
0Dα

t xN(t),

= c
0Dα

t

N∑
k=0

ak Bk(t),

=

N∑
k=0

ak Bαk (t),

=

N∑
k=0

ak

b
k
2 c∑

p=[α]

(−1)p(k − 4p)Γ(k − p)
Γ(p + 1)Γ(k − 2p − α + 1)

tk−2p−α,

which completes the proof.

Remark 5.3. With Boubaker polynomial expansion scheme, one may observe that the powers {t1−α, t2−α, ..., tn−α
}

arising in the fractional derivative of the approximated state variable can be described in terms of Boubaker polynomials
as follows

Tα = K Bα,

where Tα = [t1−α t2−α t2−α ... tn−α], Bα = [Bα1 (t) Bα2 (t) Bα2 (t) ... Bαn(t)], and K is the corresponding coefficient
matrix.
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To make the comments clear, let us describe the above matrix structure for n = 5. We first compute the
αth-order Caputo’s fractional derivative of Boubaker polynomials as given below

Bα1 (t) =
1!

Γ(2 − α)
t1−α,

Bα2 (t) =
2!

Γ(3 − α)
t2−α,

Bα3 (t) =
1!

Γ(2 − α)
t1−α +

3!
Γ(4 − α)

t3−α,

Bα4 (t) =
4!

Γ(5 − α)
t4−α,

Bα5 (t) = −3 ∗
1!

Γ(2 − α)
t1−α
−

3!
Γ(4 − α)

t3−α +
5!

Γ(6 − α)
t5−α.

Rearranging the above system of equations to get the desired form Tα = K Bα,

t1−α =
Γ(2 − α)

1!
Bα1 (t),

t2−α =
Γ(3 − α)

2!
Bα2 (t),

t3−α =
Γ(4 − α)

3!
(Bα3 (t) − Bα1 (t)),

t4−α =
Γ(5 − α)

4!
Bα4 (t),

t5−α =
Γ(6 − α)

5!
(Bα5 (t) + Bα3 (t) + 2 ∗ Bα1 (t)).

Or,
t1−α

t2−α

t3−α

t4−α

t5−α

 =



Γ(2−α)
1! 0 0 0 0
0 Γ(3−α)

2! 0 0 0
−

Γ(4−α)
3! 0 Γ(4−α)

3! 0 0
0 0 0 Γ(5−α)

4! 0
2 ∗ Γ(6−α)

5! 0 Γ(6−α)
5! 0 Γ(6−α)

5!




Bα1 (t)
Bα2 (t)
Bα3 (t)
Bα4 (t)
Bα5 (t)

 .

Next, we discuss the convergence analysis of the proposed algorithm provided by the Weierstrass ap-
proximation theorem.

Theorem 5.4. (Wierstrass approximation theorem [24]) Let f ∈ C[a, b]. Then, there is a sequence of polynomials
Pn(x), that converges uniformly to f (x) on [a, b].

We clearly observe that a continuous function (say the state variable x(t)) can be uniformly approximated
by a sequence of Boubaker polynomials {Bn(t)}. Mathematically, if xm(t) =

∑m
k=0 ak Bk(t). So, for m→∞, we

have xm(t)→ x(t).

Theorem 5.5. (See [14]) If ξn = infQn J, n ∈N, where Qn is a subset of Q, consisting of all polynomials of degree at
most n. Then, limn→∞ξn = ξ, where ξ = infQ J.

Theorem 5.6. If J has continuous first order derivatives, and for n ∈ N, βn = infQn J. Then, limn→∞βn = β, where
β = infQ J.

Proof. This theorem is already proved when Qn is a class of Chebyshev polynomials [14], Laguerre polyno-
mials [26], Boubaker Polynomials [15].
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6. Computational segment: Examples

In this section, we demonstrate the applicability of the formulated numerical scheme. For this purpose,
we consider some examples of time-invariant and time-varying FOCPs. The efficiency and accuracy of the
strategy are observed by comparing the solution obtained by the proposed scheme with the solution given
in [23]. Furthermore, we analyze the plot of the state and control variable together with their absolute error
functions.

Example 6.1. Find an optimal control u(t) for the time invariant FOCP with quadratic performance index

Minimize J =
1
2

∫ 1

0
[x2(t) + u2(t)] dt, (11)

subject to the system dynamic constraints

C
0 Dα

t x(t) = −x(t) + u(t), α ∈ (0, 1), (12)

and the initial condition

x(0) = 1. (13)

Following the numerical scheme detailed in Section 4, we parameterize the state variable x(t) with Boubaker
polynomials (Bk’s) of order up to N = 5.

x(t) u x5(t) =

5∑
k=0

ak Bk(t), (14)

= (a0 + 2a2 − 2a4) + (a1 + a3 − 3a5) t + a2 t2 + (a3 − a5) t3 + a4 t4 + a5 t5, (15)

where ak’s (k = 0, 1, ..., 5) are the unknown coefficients to be determined.

By given initial condition (13), we have

x5(0) = 1 = a0 + 2a2 − 2a4. (16)

Next, we approximate the control variable u(t) (u u5(t)) by substituting (15) in (12) as

u5(t) = x5(t) + c
0Dα

t x5(t),

= (a0 + 2a2 − 2a4) + (a1 + a3 − 3a5)t + a2t2 + (a3 − a5) t3 + a4t4 + a5t5 +
1

Γ(2 − α)
(a1 + a3 − 3a5)t1−α

+
2

Γ(3 − α)
a2 t2−α +

3!
Γ(4 − α)

(a3 − a5) t3−α +
4!

Γ(5 − α)
a4 t4−α +

5!
Γ(6 − α)

a5 t5−α,

where α ∈ (0, 1).

To make the mechanism evident, choose α = 0.9 (refer to Table 1 for optimal values of J corresponding to
different values of α and N = 5).

u5(t) = (a0 + 2a2 − 2a4) + (a1 + a3 − 3a5)t + a2t2 + (a3 − a5)t3 + a4t4 + a5t5 + 1.05113701(a1 + a3 − 3a5)t0.1

+1.91115819a2t1.1 + 2.73022599(a3 − a5)t2.1 + 3.52287224a4t3.1 + 4.29618566a5t4.1. (17)



N. Singha, C. Nahak / Filomat 32:13 (2018), 4485–4502 4493

Using x5(t) and u5(t), we transform the performance index J into Ĵ as follows

Ĵ[a0, a1, ..., a5] = a2
0 + 1.95558 a0a1 + 5.57674 a0a2 + 3.3363 a0a3 − 2.7407 a0a4

−6.07173 a0a5 + 1.29425 a2
1 + 6.27987 a1a2 + 4.8076 a1a3

−1.79929 a1a4 − 7.95382 a1a5 + 8.39033 a2
2 + 11.5271 a2a3

−6.16371 a2a4 − 19.2868 a2a5 + 4.2053 a2
3

−1.87868 a3a4 − 14.5067 a3a5 + 2.88941 a2
4

+6.03077 a4a5 + 12.321 a2
5 ,

=
1
2

a′Ha ,

where

H =



2 1.955579 5.576742 3.336297 -2.740763 -6.071733
1.955579 2.588490 6.279869 4.807599 -1.799288 -7.953817
5.576742 6.279869 16.780654 11.527069 -6.163708 -19.286782
3.336297 4.807599 11.527069 9.641066 -1.878678 -14.506717
-2.740763 -1.799288 -6.163708 -1.878678 5.778817 6.030768
-6.071733 -7.953817 -19.286782 -14.506717 6.030768 24.642043


.

Finally, the fractional optimal control problem (11)-(13) is converted into an equivalent quadratic program-
ming problem described below.

Minimize J =
1
2

a′Ha,

subject to Ba = C ,

where a = [a0 a1 a2 a3 a4 a5]′, B = [1 0 2 0 − 2 0], and C = [1].

On simplifying, we obtain

a =



a0
a1
a2
a3
a4
a5


=



2.35720894
0.37306204
3.47757762
-6.38926186
4.15618209
-1.35545937


.

Using the optimal value of a, we write the expression for the approximated state x5(t) and optimal control
u5(t) variable, as a function of time t.

x5(t) = 1 − 1.949822 t + 3.477578 t2
− 5.033802 t3 + 4.156182 t4

− 1.355459 t5,

u5(t) = x5(t) − 2.049530 t0.1 + 6.646201 t1.1
− 13.743418 t2.1 + 14.641698 t3.1

− 5.823305 t4.1,

and thus we arrive at the approximate minimum value of the performance index J = 0.17996229.
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Note that for α = 1, given fractional optimal control problem reduces to a classical optimal control problem.
The classical case is widely investigated (see [11]) and the analytic solution for this system is given as

x(t) = β e
√

2 t + (1 − β) e−
√

2 t,

y(t) = β (
√

2 t + 1)e
√

2 t
− (1 − β) (

√

2 − 1)e−
√

2 t,

and J =
e−
√

2 t

2

(
(
√

2 + 1) (e4
√

2
− 1) β2 + (

√

2 − 1) (e2
√

2
− 1) (1 − β)2

)
,

where β = 2
√

2−3
−e
√

2+2
√

2−3
.

The exact solution for the performance index is J = 0.1929092978, while J = 0.19290929 by the proposed 5th-
order Boubaker polynomial expansion method (as shown in Table 1). The graphs for the state and control
variables for different values of α are plotted in Figure 1. We have also plotted the exact and approximated
state and control variable (α = 1) in Figure 2.
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Figure 1: The approximated state x5(t) and control variable u5(t), as a function of time t (Example 6.1).
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Figure 2: The approximated, exact state and control variables, as a function of time t (α = 1, Example 6.1).

α Optimal J

0.6 0.15167258
0.7 0.15940466
0.8 0.16880011
0.9 0.17996229
0.99 0.19153506
1.0 0.19290929

Table 1: Approximate optimal value of performance index J.
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Example 6.2. Find an optimal control u(t) to solve the time-varying FOCP with quadratic performance index given
below.

Minimize K =
1
2

∫ 1

0
[3 x2(t) + u2(t)] dt, (18)

subject to the system dynamic constraints

C
0 Dα

t x(t) = −x(t) + u(t), α ∈ (0, 1), (19)

and the boundary conditions

x(0) = 0, and x(1) = 2. (20)

Following the same way as in previous example, we parameterize the state variable x(t) (u x5(t)) by
Boubaker polynomials (see equation (15)) with the initial condition given in (20). The approximated
control variable u(t) (u u5(t)) can be determined by equation (19), that is,

u(t) u u5(t) = C
0 Dα

t x5(t) − x5(t).

Choose α = 0.99, and substitute the approximated state and control variable into the performance index
K given by equation (18). The FOCP (18)-(20) is now transformed into a quadratic programming problem
described below.

Minimize K̂ =
1
2

a′Ha,

subject to Ba = C,

where a = [a0 a1 a2 a3 a4 a5]′, B =

[
1 0 2 0 −2 0
1 1 3 2 −1 −3

]
, C = [0 2]′, and

H =



4 2.995749 10.324128 4.983252 -6.214959 -9.325009
2.995749 3.325650 8.978763 6.107542 -3.347468 -10.213858

10.324128 8.978763 28.403046 16.083744 -13.951122 -27.625773
4.983252 6.107542 16.083744 12.209985 -3.884646 -18.364262
-6.214959 -3.347468 -13.951122 -3.884646 12.513145 11.090903
-9.325009 -10.213858 -27.625773 -18.364262 11.090903 31.678212


.

On simplifying the above quadratic programming problem, we obtain

a =



a0
a1
a2
a3
a4
a5


=



-1.97596702
0.97662053

-0.35168571
2.56243119

-1.33966922
0.80337599


.

Using the optimal value of a, we write the expressions for the approximated state x5(t) and optimal control
u5(t) variable, as a function of time t.

x5(t) = 3.552714 ∗ 10−15 + 1.128924 t − 0.351686 t2 + 1.759055 t3
− 1.339669 t4 + 0.803375 t5,

u5(t) = x5(t) + 1.135366 t0.01
− 0.700381 t1.01 + 5.228590 t2.01

− 5.291711 t3.01 + 3.956790 t4.01,

and the approximate optimal value of performance index is K = 6.09978305 (one may look at Table 2, for
approximate optimal value of performance index K corresponding to different values of α).
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For α = 1, the classical optimal control problem (see [23]) possess an analytical solution given below

x5 ∗ (t) =
2 Sinh(2 t)

Sinh(2)

u5 ∗ (t) =
2 (Sinh(2 t) + cosh(2 t))

Sinh(2)
,

and the optimal value of performance index is K = 6.149258. On applying our method for 5th-order
Boubaker polynomials expansion, K = 6.14925898 (see Table 2).

In Figure 3, we have plotted the approximated state and control variable as a function of time t. Fig-
ure 4 represents the exact and approximate solution of the state and control variable, and assists us in
visualizing the efficiency of the method.

One may observe Figures 5, for the absolute error functions of state (|x5(t)−x5∗(t)|) and control (|u5(t)−u5∗(t)|)
variable corresponding to α = 1.
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Figure 3: The approximated state x5(t) and control variable u5(t), as a function of time t (Example 6.2).
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Figure 4: The approximated, exact state and control variables, as a function of time t (α = 1, Example 6.2).
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Figure 5: The absolute error function of the state and control variable, as a function of time t (α = 1, Example 6.2).
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α Optimal K

0.6 2.70717907
0.7 3.69418458
0.8 4.69524002
0.9 5.54278048
0.99 6.09978305
1.0 6.14925898

Table 2: Approximate optimal value of performance index K.

Example 6.3. Find an optimal control u(t) for solving a time-varying FOCP with quadratic performance index

Minimize L =
1
2

∫ 1

0
[x2(t) + u2(t)] dt, (21)

subject to the system dynamic constraints

C
0 Dα

t x(t) = t x(t) + u(t), α ∈ (0, 1), (22)

and the initial condition

x(0) = 1. (23)

One may note that the given constraint (22) contains t explicitly, and the above problem is referred as
time-varying FOCP.

After applying the proposed numerical algorithm for Boubaker polynomials of order up to N = 5 (α = 0.8),
the FOCP (21)-(23) is converted into an equivalent quadratic programming problem with linear equality
constraint described below in matrix form:

Minimize L̂ =
1
2

a′Ha,

subject to Ba = C,

where a = [a0 a1 a2 a3 a4 a5]′, B = [1 0 2 0 − 2 0], C = [1], and

H =



1.333333 0.254943 2.632748 0.082257 -2.918829 -0.894583
0.254943 0.699910 1.058790 1.150214 -0.127056 -2.216009
2.632748 1.058790 5.811469 1.334241 -5.157620 -3.457544
0.082257 1.150214 1.334241 2.301541 0.960807 -3.503244
-2.918829 -0.127056 -5.157620 0.960807 7.165086 0.773835
-0.894583 -2.216009 -3.457544 -3.503244 0.773835 7.121949


.

On simplifying the above quadratic programming problem, we obtain

a =



a0
a1
a2
a3
a4
a5


=



4.59504630
1.57490790
4.95809701
-9.84913127
6.75562016
-2.10450060


.
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Using the optimal value of a, we write the expression of approximated state and control variable as

x5(t) = 1 − 1.96072156 t + 4.95809701 t2
− 7.74463067 t3 + 6.75562016 t4

− 2.10450060 t5,

u5(t) = −2.13546973 t0.2
− 1 t + 8.99997423 t1.2 + 1.96072156t2

− 19.17015089t2.2
− 4.95809701t3

+20.90258778 t3.2 + 7.74463067 t4
− 7.75183645t4.2

− 6.75562016t5 + 2.10450060t6,

and the approximate optimal value of given performance index is L = 0.46782331 (The optimal value of L
is enlisted in Table 3 for distinct values of α).

The graphs of approximated state x5(t) and control u5(t) variables are presented as a function of time t,
see Figure 6.
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Figure 6: The approximated state x5(t) and control variable u5(t), as a function of time t (Example 6.3).

α Optimal L

0.6 0.45990240
0.7 0.45984642
0.8 0.46782331
0.9 0.47609956
0.99 0.48346526
1.0 0.48426776

Table 3: The approximate optimal value of L.

Example 6.4. Find the optimal control u(t) that minimizes the time varying fractional optimal control problem with
quadratic performance index

M =
1
2

∫ 1

0
[t u(t) − (α + 2) x(t)]2 dt, (24)

subject to the system dynamic constraints

x′(t) + C
0 Dα

t x(t) = u(t) + t2, α ∈ (0, 1), (25)

and the boundary conditions

x(0) = 0, and x(1) =
2

Γ(3 + α)
. (26)
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Following the numerical algorithm for α = 0.99, the FOCP (24)-(26) is transformed into an equivalent
quadratic programming problem described as

Minimize M̂ =
1
2

a′Ha + G′a + k,

subject to Ba = C,

where a = [a0 a1 a2 a3 a4 a5]′, B =

[
1 0 2 0 −2 0
1 1 3 2 −1 −3

]
, C =

[
0 2

Γ(3.99)

]
, k = 0.142857,

G = [1.495 0.39452 2.657272−0.456378−4.22877−1.872604], and

H =



2*8.9401 2.957998 33.777269 -1.489586 -41.683147 -11.330328
2.957998 2*0.325144 5.424313 -0.523977 -7.543968 -2.727826

33.777269 5.424313 2*31.993151 -2.480172 -77.986391 -20.445735
-1.489586 -0.523977 -2.480172 2*0.417930 5.041098 2.848491

-41.683147 -7.543968 -77.986391 5.041098 2*50.334591 30.724071
-11.330328 -2.727826 -20.445735 2.848491 30.724071 2*6.303430


.

On simplifying the above quadratic problem with linear equality constraints, we obtain

a =



a0
a1
a2
a3
a4
a5


=



-0.00631042
-0.33687207
0.00314584
0.33483620
-0.00001873
-0.00053194


.

Using the optimal value of a, we express the approximated state and optimal control variable as a function
of time t.

x5(t) = 0.00001873 − 0.00044004 t + 0.00314584 t2 + 0.33536814 t3
− 0.00001873 t4

− 0.00053194 t5,

u5(t) = −0.00044004 − 0.00044255 t0.01 + 0.00629168 t + 0.00626494 t1.01 + 0.00610443 t2 + 0.99684331 t2.01

−0.00007493 t3
− 0.00007399 t3.01

− 0.00265971 t4
− 0.00261993 t4.01,

and thus the approximate minimum value of given performance index is M = 4.73327022 ∗ 10−10.

For α ∈ (0, 1), the FOCP (24)-(26) possess an analytical solution given below

(x∗(t),u∗(t)) =

(
2 tα+2

Γ(α + 3)
,

2 tα+1

Γ(α + 2)

)
,

and the optimal value of the performance index is M = 0 (One may look at Table 4 for approximate mini-
mum value of M, corresponding to different values of α).

One may observe Figures 7,8 for approximated and exact state, control variables followed by the abso-
lute error function in Figure 9.

6.1. Discussion on graphical representations
The graphs of every example presented here are essential to analyze the action of the approximated state

and control variable for different values of α ∈ (0, 1). We have provided the approximate value of optimal
performance index J, K, L,M, in Tables 1, 2, 3, 4, respectively. To review the less error in computation, one
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Figure 7: The approximated state x5(t) and control variable u5(t), as a function of time t (Example 6.4).
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Figure 8: The approximated, exact state and control variables, as a function of time t (α = 1, Example 6.4).
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Figure 9: The absolute error function of the state and control variable, as a function of time t (Example 6.4).

α Optimal M

0.6 4.37156092 ∗ 10−7

0.7 2.89930096 ∗ 10−7

0.8 1.48802417 ∗ 10−7

0.9 4.24179444 ∗ 10−8

0.99 4.73327022 ∗ 10−10

1.0 1.91463271 ∗ 10−19

Table 4: The approximate optimal value of M.

can look at the absolute error function of the state and control variable (i.e. |x(t) − x∗5(t)| and |u(t) − u∗5(t)|) in
Figure 5 (Example 6.2), and Figure 9 (Example 6.4). We conclude that for approximated state and control
variable, the edges come closer as α approaches 1 and meet the exact solution for α = 1. For instance, dotted
line in Figure 6 corresponds to the exact solution whereas pink and orange lines correspond to α = 1.0 and
α = 0.99, respectively. To have a nice interpretation, one may observe Figure 9 for the absolute error of the
control function corresponding to α = 0.6, 0.7, 0.8, 0.9, 0.99, 1.0.
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7. Conclusion

We have formulated a computational technique to find an approximate optimal control for solving a
class of FOCPs. The non-orthogonal Boubaker polynomials have been utilized to approximate the state and
control variable. The presented algorithm is advantageous as it does not require the necessary optimality
conditions or Hamiltonian equations. In addition to this, we have easily converted the original FOCP
into a quadratic programming problem that can be handled conveniently. We work out some examples
of time-invariant and time-varying FOCPs to demonstrate the applicability of the method. The graphs of
the approximated state, control variable, and their absolute error functions are provided to validate the
efficiency and accuracy of the presented numerical scheme.
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