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Abstract. For indicating the non-self-centrality extent of graphs, two new eccentricity-based measures
namely third Zagreb eccentricity index E3(G) and non-self-centrality number N(G) of a connected graph G
have recently been introduced as E3(G) =

∑
uv∈E(G) |εG(u)− εG(v)| and N(G) =

∑
{u,v}⊆V(G) |εG(u) − εG(v)|, where

εG(u) denotes the eccentricity of a vertex u in G. In this paper, we find relation between the third Zagreb
eccentricity index of graphs with some eccentricity-based invariants such as second Zagreb eccentricity
index and second eccentric connectivity index. We also give sharp upper and lower bounds on the non-
self-centrality number of graphs in terms of some structural parameters and relate it to two well-known
eccentricity-based invariants namely total eccentricity and first Zagreb eccentricity index. Furthermore,
we present exact expressions or sharp upper bounds on the third Zagreb eccentricity index and non-self-
centrality number of several graph operations such as join, disjunction, symmetric difference, lexicographic
product, strong product, and generalized hierarchical product. The formulae for Cartesian product and
rooted product as two important special cases of generalized hierarchical product and the formulae for
corona product as a special case of rooted product are also given.

1. Introduction

All graphs considered in this paper are finite, simple and connected. Let G be a graph on n vertices and
m edges. We denote the vertex set and edge set of G by V(G) and E(G), respectively. The degree degG(u) of a
vertex u ∈ V(G) is the number of edges incident to u. The distance dG(u, v) between the vertices u, v ∈ V(G)
is defined as the length of a shortest path in G connecting u and v. The eccentricity εG(u) of a vertex u ∈ V(G)
is the largest distance between u and any other vertex v of G, i.e., εG(u) = maxv∈V(G) dG(u, v). The maximum
(minimum, resp.) eccentricity over all vertices of G is called the diameter (radius, resp.) of G and denoted
by d(G) (r(G), resp.). Some novel applications of eccentricity in networks were given in [23]. A vertex
u ∈ V(G) is called a universal vertex if u is adjacent to every other vertex of G, i.e., de1G(u) = n − 1. We
denote the number of universal vertices of G by nn−1(G). Obviously, the eccentricity of a universal vertex in
a non-trivial graph is equal to 1.

A topological index (also known as graph invariant or molecular descriptor) is a numeric quantity that
is mathematically derived in a direct and unambiguous manner from the structural graph of a molecule.
It is used in theoretical chemistry for the design of chemical compounds with given physico-chemical
properties or given pharmacologic and biological activities [20]. From the graph theoretical point of view,
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a topological index can be viewed as a graph invariant under automorphisms of graphs. Many topological
indices have been proposed and employed to date with various degrees of success in QSAR/QSPR studies
[15, 28]. Some of them, based on vertex eccentricity have attracted much attention in chemistry.

The eccentric connectivity index was introduced by Sharma et al. [26] in 1997. The eccentric connectivity
index ξc(G) of a graph G is defined as

ξc(G) =
∑

u∈V(G)

de1G(u)εG(u) =
∑

uv∈E(G)

(
εG(u) + εG(v)

)
.

The sum of eccentricities of all vertices of a given graph G is called the total eccentricity of G and denoted
by τ(G).

The first and second Zagreb eccentricity indices of a graph G were introduced by Vukičević and Graovac
[29] in 2010 as follows:

E1(G) =
∑

u∈V(G)

εG(u)2, E2(G) =
∑

uv∈E(G)

εG(u)εG(v).

Note that two well-known topological indices namely first and second Zagreb indices [21, 22] of a graph
are similarly defined but based on the degrees of vertices. We refer the reader to [4, 13, 19] for some recent
surveys on Zagreb indices and to [5, 10, 11, 14, 16, 24, 30–32, 35, 36] for some results on mathematical
properties and applications of eccentricity-based topological indices.

A graph G is called a self-centered graph if all of its vertices have a same eccentricity. Otherwise, it
is called non-self-centered. However, in many applications and problems of graph theory, it is of great
importance to measure the non-self-centrality extent of graphs. Recently, Xu et al. [33] proposed two novel
eccentricity-based invariants named as third Zagreb eccentricity index and non-self-centrality number (NSC
number for short) for that purpose. The third Zagreb eccentricity index and non-self-centrality number of
a graph G are denoted by E3(G) and N(G), respectively and defined as

E3(G) =
∑

uv∈E(G)

|εG(u) − εG(v)| , N(G) =
∑

{u,v}⊆V(G)

|εG(u) − εG(v)| ,

where the second summation is taken over all unordered pairs of vertices of G. The NSC number of G can
also be expressed as

N(G) =
1
2

∑
u,v∈V(G)

|εG(u) − εG(v)| ,

where the summation is taken over all ordered pairs of vertices of G. It is easy to see that E3(G) = N(G) = 0
if and only if G is a self-centered graph. Note that these two graph non-self-centrality measures are defined
analogously to two well-known graph irregularity measures namely the irregularity [3] (also called third
Zagreb index [18]) and the total irregularity [1] by replacing the vertex degrees with the vertex eccentricities.
Since the third Zagreb eccentricity index and NSC number are newly-introduced graph invariants, only a
few mathematical results on these invariants have been obtained. Xu et al. [33] determined some lower and
upper bounds on NSC number and characterized the corresponding graphs at which the lower and upper
bounds are attained. In particular, they proved that for any tree T, N(T) uniquely attains the maximum
value at the n−vertex path Pn and the minimum value at the n−vertex star Sn, while for any tree T of order
n ≥ 3, E3(T) has only two values: n − 2 for trees with odd diameter and n − 1 for trees with even diameter.
From this fact, N(G) is better than E3(G) for indicating the non-self-centrality of a graph. In [34], the relations
between NSC number and total irregularity of graphs were established. The purpose of this paper is to
further study mathematical properties of these new graph invariants.

This paper is organized as follows. In Section 2, we find relation between the third Zagreb eccentricity
index and some eccentricity-based invariants such as second Zagreb eccentricity index and second eccentric
connectivity index. We also give sharp upper and lower bounds on the NSC number of graphs in terms
of some structural parameters and relate it to two well-known eccentricity-based invariants namely total
eccentricity and first Zagreb eccentricity index. In Section 3, we study the third Zagreb eccentricity index and
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NSC number under several graph operations such as join, disjunction, symmetric difference, lexicographic
product, strong product, and generalized hierarchical product and give exact expressions or sharp upper
bounds on these eccentricity-based invariants of the above-mentioned graph operations. In Section 4, we
apply our results to compute the third Zagreb eccentricity index and NSC number of Cartesian product and
rooted product which are two important special cases of generalized hierarchical product, and of corona
product which is a special case of rooted product.

2. Relation with some eccentricity-based invariants

In this section, we relate the third Zagreb eccentricity index and non-self-centrality number of graphs
to some other eccentricity-based invariants such as total eccentricity, first and second Zagreb eccentricity
indices, and second eccentric connectivity index.

We define the second eccentric connectivity index of a graph G as follows:

ξ(2)(G) =
∑

u∈V(G)

de1G(u)εG(u)2 =
∑

uv∈E(G)

(
εG(u)2 + εG(v)2

)
.

In the following theorem, we show that the second eccentric connectivity index is a linear combination
of the third Zagreb eccentricity index and the second Zagreb eccentricity index.

Theorem 2.1. For any graph G,

ξ(2)(G) = E3(G) + 2E2(G). (1)

Proof. It is clear that for each uv ∈ E(G), |εG(u) − εG(v)| = 0 or |εG(u) − εG(v)| = 1. So for each uv ∈ E(G),
|εG(u) − εG(v)|2 = |εG(u) − εG(v)|. Hence

ξ(2)(G) =
∑

uv∈E(G)

(
εG(u)2 + εG(v)2

)
=

∑
uv∈E(G)

(
(εG(u) − εG(v))2 + 2εG(u)εG(v)

)
=

∑
uv∈E(G)

(
|εG(u) − εG(v)|2 + 2εG(u)εG(v)

)
=

∑
uv∈E(G)

(
|εG(u) − εG(v)| + 2εG(u)εG(v)

)
=E3(G) + 2E2(G),

and Eq. (1) holds.

In the following theorem, we give a sharp upper bound on the NSC number of a graph G in terms of
the order, total eccentricity, and first Zagreb eccentricity index of G.

Theorem 2.2. Let G be a graph of order n. Then

N(G) ≤
√(n

2
)(

nE1(G) − τ(G)2
)
, (2)

with equality if and only if G is a self-centered graph.

Proof. By Cauchy–Schwarz inequality, we have

N(G)2 =
( ∑
{u,v}⊆V(G)

|εG(u) − εG(v)|
)2
≤

(
n
2

) ∑
{u,v}⊆V(G)

|εG(u) − εG(v)|2

=
1
2

(
n
2

) ∑
u,v∈V(G)

(
εG(u)2 + εG(v)2

− 2εG(u)εG(v)
)

=
1
2

(
n
2

)(
2nE1(G) − 2τ(G)2

)
=

(
n
2

)(
nE1(G) − τ(G)2

)
,
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from which we straightforwardly arrive at Eq. (2). By Cauchy–Schwarz inequality, the equality holds in
(2) if and only if for every {u, v} ⊆ V(G), |εG(u) − εG(v)| is constant, which implies that G is a self-centered
graph.

In the following theorem, we give a sharp lower bound on the NSC number of a non-self-centered graph
G in terms of the order, radius, diameter, total eccentricity, and first Zagreb eccentricity index of G.

Theorem 2.3. Let G be a non-self-centered graph of order n. Then

N(G) ≥ nE1(G)−τ(G)2

d(G)−r(G) , (3)

with equality if and only if d(G) − r(G) = 1.

Proof. It is easy to see that for every {u, v} ⊆ V(G), |εG(u) − εG(v)| ≤ d(G) − r(G). Hence

nE1(G) − τ(G)2 =
∑

{u,v}⊆V(G)

|εG(u) − εG(v)|2 ≤
(
d(G) − r(G)

) ∑
{u,v}⊆V(G)

|εG(u) − εG(v)| =
(
d(G) − r(G)

)
N(G),

which is easily transformed into Eq. (3). The equality holds in (3) if and only if for every {u, v} ⊆ V(G),
|εG(u) − εG(v)| = d(G) − r(G) or |εG(u) − εG(v)| = 0. If d(G) − r(G) = 1, then for every {u, v} ⊆ V(G),
0 ≤ |εG(u)−εG(v)| ≤ d(G)−r(G) = 1. This implies that, for every {u, v} ⊆ V(G), |εG(u)−εG(v)| = 1 = d(G)−r(G)
or |εG(u) − εG(v)| = 0 and the equality holds in (3). If the equality holds in (3), then for every {u, v} ⊆ V(G),
|εG(u) − εG(v)| = d(G) − r(G) or |εG(u) − εG(v)| = 0. It is clear that for each uv ∈ E(G), |εG(u) − εG(v)| = 1
or |εG(u) − εG(v)| = 0. Since G is a non-self-centered graph, so there exists an edge uv ∈ E(G) such that
|εG(u) − εG(v)| = 1. This implies that d(G) − r(G) = 1.

3. Graph operations

In this section, we present exact expressions or sharp upper bounds on the third Zagreb eccentricity
index and NSC number of several graph operations in terms of the respective indices of the components,
the number of their vertices, the number of their universal vertices, and in some cases also the number of
their edges. The considered operations are binary. Hence, we will deal with two graphs G1 and G2 which
are considered to be simple connected graphs. For given component graphs Gi, the number of vertices and
edges are denoted by ni and mi, respectively, where i = 1, 2. When more than two graphs can be combined
using a given operation, the values of subscripts will vary accordingly. We refer the reader to monograph
[25] for detailed exposition on graph operations and to [2, 6–10, 17, 27] for more information on computing
topological invariants of graph operations.

We start with the following lemma which will be used in the rest of the paper.

Lemma 3.1. Let G be a graph of order n with diameter at most two. Then

E3(G) = N(G) = nn−1(G)
(
n − nn−1(G)

)
.

Proof. By proof of Theorem 3.1 in [33], E3(G) = N(G) if and only if the diameter of G is at most two. On the
other hand, by definition of the NSC number, we have

N(G) =
∑

{u,v}⊆V(G)

|εG(u) − εG(v)| =
∑

{u,v}⊆V(G):
εG(u)=εG(v)=1

|1 − 1| +
∑

{u,v}⊆V(G):
εG(u)=1,εG(v)=2

|1 − 2| +
∑

{u,v}⊆V(G):
εG(u)=εG(v)=2

|2 − 2|

=nn−1(G)
(
n − nn−1(G)

)
.

This completes the proof of the lemma.
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3.1. Join

The join G1 + G2 of graphs G1 and G2 with disjoint vertex sets V(G1) and V(G2) and edge sets E(G1)
and E(G2) is the graph union G1 ∪ G2 together with all the edges joining V(G1) and V(G2). The definition
generalizes to the case of k ≥ 3 graphs in a straightforward manner. The join of graphs is also known as
their sum. The eccentricity of a vertex u ∈ V(G1 + G2 + ... + Gk) is given by

εG1+G2+...+Gk (u) =

{
1 i f εGi (u) = 1,
2 i f εGi (u) ≥ 2.

Here Gi denotes the component of G1,G2, . . . , or Gk containing vertex u.

Theorem 3.2. The third Zagreb eccentricity index and NSC number of G1 + G2 + ... + Gk are given by

E3(G1 + G2 + ... + Gk) = N(G1 + G2 + ... + Gk) =
( k∑

i=1

nni−1(Gi)
)(

n −
k∑

i=1

nni−1(Gi)
)
, (4)

where n =
∑k

i=1 ni.

Proof. The graph G1 + G2 + ... + Gk is an n-vertex graph with diameter at most two and the number of
universal vertices of this graph is nn−1(G1 + G2 + ... + Gk) =

∑k
i=1 nni−1(Gi). Now by Lemma 3.1 we can get

Eq. (4).

3.2. Disjunction

The disjunction G1∨G2 of graphs G1 and G2 is a graph with the vertex set V(G1)×V(G2) and two vertices
(u1,u2) and (v1, v2) are adjacent, whenever u1v1 ∈ E(G1) or u2v2 ∈ E(G2). The eccentricity of a vertex (u1,u2)
in G1 ∨ G2 is given by

εG1∨G2 ((u1,u2)) =

{
1 i f εG1 (u1) = εG2 (u2) = 1,
2 i f εG1 (u1) ≥ 2 or εG2 (u2) ≥ 2.

Theorem 3.3. The third Zagreb eccentricity index and NSC number of G1 ∨ G2 are given by

E3(G1 ∨ G2) = N(G1 ∨ G2) = nn1−1(G1)nn2−1(G2)
(
n1n2 − nn1−1(G1)nn2−1(G2)

)
. (5)

Proof. The graph G1 ∨ G2 is an n1n2-vertex graph with diameter at most two and the number of universal
vertices of this graph is nn1n2−1(G1 ∨ G2) = nn1−1(G1)nn2−1(G2). Now by Lemma 3.1 we can get Eq. (5).

3.3. Symmetric difference

The symmetric difference G1 ⊕G2 of graphs G1 and G2 is a graph with vertex set V(G1)×V(G2) and edge
set E(G1 ⊕ G2) = {(u1,u2)(v1, v2) : u1v1 ∈ E(G1) or u2v2 ∈ E(G2) but not both}. The eccentricity of every vertex
(u1,u2) in G1 ⊕ G2 is given by

εG1⊕G2 ((u1,u2)) = 2.

So, the symmetric difference G1 ⊕ G2 is self-centered and we easily arrive at:

Theorem 3.4. The third Zagreb eccentricity index and NSC number of G1 ⊕ G2 are given by

E3(G1 ⊕ G2) = N(G1 ⊕ G2) = 0.
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3.4. Lexicographic product
The lexicographic product G1[G2] of graphs G1 and G2 is a graph with vertex set V(G1)×V(G2) and two

vertices (u1,u2) and (v1, v2) are adjacent if and only if u1v1 ∈ E(G1) or [u1 = v1 ∈ V(G1) and u2v2 ∈ E(G2)].
The lexicographic product of two graphs is also known as their composition. The eccentricity of a vertex
(u1,u2) in G1[G2] is given by

εG1[G2]((u1,u2)) =


1 i f εG1 (u1) = εG2 (u2) = 1,
2 i f εG1 (u1) = 1, εG2 (u2) ≥ 2,
εG1 (u1) i f εG1 (u1) ≥ 2.

Theorem 3.5. If G1 contains universal vertices, then

E3(G1[G2]) = N(G1[G2]) = nn1−1(G1)nn2−1(G2)
(
n1n2 − nn1−1(G1)nn2−1(G2)

)
; (6)

whereas otherwise

E3(G1[G2]) = n2
2E3(G1), (7)

N(G1[G2]) = n2
2N(G1). (8)

Proof. If G1 contains universal vertices, then G1[G2] is an n1n2-vertex graph with diameter at most two and
the number of universal vertices of this graph is nn1n2−1(G1[G2]) = nn1−1(G1)nn2−1(G2). Now by Lemma 3.1
we can get Eq. (6). Now, let G1 contain no universal vertices. By definition of the third Zagreb eccentricity
index we obtain

E3(G1[G2]) =
∑

(u1,u2)(v1,v2)∈E(G1[G2])

∣∣∣εG1[G2]((u1,u2)) − εG1[G2]((v1, v2))
∣∣∣

=
∑

u1v1∈E(G1)

∑
u2,v2∈V(G2)

∣∣∣εG1 (u1) − εG1 (v1)
∣∣∣ +

∑
u1∈V(G1)

∑
u2v2∈E(G2)

∣∣∣εG1 (u1) − εG1 (u1)
∣∣∣

=n2
2E3(G1),

and Eq. (7) holds.
By definition of the non-self-centrality number we obtain

N(G1[G2]) =
1
2

∑
(u1,u2),(v1,v2)∈V(G1[G2])

∣∣∣εG1[G2]((u1,u2)) − εG1[G2]((v1, v2))
∣∣∣

=
1
2

∑
u1,v1∈V(G1)

∑
u2,v2∈V(G2)

∣∣∣εG1 (u1) − εG1 (v1)
∣∣∣

=n2
2N(G1),

and Eq. (8) holds.

3.5. Strong product
The strong product G1�G2 of graphs G1 and G2 is a graph with vertex set V(G1)×V(G2) and two vertices

(u1,u2) and (v1, v2) are adjacent if and only if [u1 = v1 ∈ V(G1) and u2v2 ∈ E(G2)] or [u2 = v2 ∈ V(G2) and
u1v1 ∈ E(G1)] or [u1v1 ∈ E(G1) and u2v2 ∈ E(G2)]. The eccentricity of a vertex (u1,u2) of G1 �G2 was given in
[27],

εG1�G2 ((u1,u2)) = max{εG1 (u1), εG2 (u2)}.

Theorem 3.6. Let r(G2) ≥ d(G1). The third Zagreb eccentricity index and NSC number of G1 � G2 are given by

E3(G1 � G2) = (n1 + 2m1)E3(G2), (9)

N(G1 � G2) = n1
2N(G2). (10)
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Proof. Under the condition r(G2) ≥ d(G1), for every vertex u1 ∈ V(G1), u2 ∈ V(G2), εG2 (u2) ≥ εG1 (u1), so
εG1�G2 ((u1,u2)) = εG2 (u2). Now by definition of the third Zagreb eccentricity index we obtain

E3(G1 � G2) =
∑

(u1,u2)(v1,v2)∈E(G1�G2)

∣∣∣εG1�G2 ((u1,u2)) − εG1�G2 ((v1, v2))
∣∣∣

=
∑

u1∈V(G1)

∑
u2v2∈E(G2)

∣∣∣εG2 (u2) − εG2 (v2)
∣∣∣ +

∑
u2∈V(G2)

∑
u1v1∈E(G1)

∣∣∣εG2 (u2) − εG2 (u2)
∣∣∣

+
∑

u1v1∈E(G1)

∑
u2v2∈E(G2)

[∣∣∣εG2 (u2) − εG2 (v2)
∣∣∣ +

∣∣∣εG2 (v2) − εG2 (u2)
∣∣∣]

=(n1 + 2m1)E3(G2),

and Eq. (9) holds.
By definition of the NSC number we obtain

N(G1 � G2) =
1
2

∑
(u1,u2),(v1,v2)∈V(G1�G2)

∣∣∣εG1�G2 ((u1,u2)) − εG1�G2 ((v1, v2))
∣∣∣

=
1
2

∑
u1,v1∈V(G1)

∑
u2,v2∈V(G2)

∣∣∣εG2 (u2) − εG2 (v2)
∣∣∣

=n1
2N(G2),

and Eq. (10) holds.

3.6. Generalized hierarchical product
Let φ , U ⊆ V(G1). The generalized hierarchical product G1(U) u G2 of graphs G1 and G2 is a graph

with vertex set V(G1) × V(G2) and vertices (u1,u2) and (v1, v2) are adjacent if and only if [u1 = v1 ∈ U and
u2v2 ∈ E(G2)] or [u2 = v2 ∈ V(G2) and u1v1 ∈ E(G1)].

For φ , U ⊆ V(G), a path between vertices u, v ∈ V(G) through U is a uv-path in G containing some
vertex z ∈ U (vertex z could be the vertex u or vertex v). The distance between u and v through U, denoted
by dG(U)(u, v), is the length of a shortest path between u and v through U. Note that if one of the vertices u
and v belongs to U, then dG(U)(u, v) = dG(u, v). For u ∈ V(G), we define

εG(U)(u) = max
v∈V(G)

dG(U)(u, v).

For notational convenience, we introduce the invariants E3(G(U)) and N(G(U)) as follows:

E3(G(U)) =
∑

uv∈E(G)

∣∣∣εG(U)(u) − εG(U)(v)
∣∣∣ ,

N(G(U)) =
1
2

∑
u,v∈V(G)

∣∣∣εG(U)(u) − εG(U)(v)
∣∣∣ .

The eccentricity of a vertex (u1,u2) in G1(U) u G2 was given in [12],

εG1(U)uG2 ((u1,u2)) = εG1(U)(u1) + εG2 (u2).

Theorem 3.7. Let φ , U ⊆ V(G1). The third Zagreb eccentricity index and NSC number of G1(U) u G2 are given
by

E3(G1(U) u G2) = n2E3(G1(U)) + |U|E3(G2), (11)

N(G1(U) u G2) ≤ n2
2N(G1(U)) + n1

2N(G2). (12)

Equality holds in (12) if and only if for every u1, v1 ∈ V(G1), εG1(U)(u1) = εG1(U)(v1) or G2 is a self-centered graph.
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Proof. By definition of the third Zagreb eccentricity index we obtain

E3(G1(U) u G2) =
∑

(u1,u2)(v1,v2)∈E(G1(U)uG2)

∣∣∣εG1(U)uG2 ((u1,u2)) − εG1(U)uG2 ((v1, v2))
∣∣∣

=
∑

u1v1∈E(G1)

∑
u2∈V(G2)

∣∣∣∣(εG1(U)(u1) + εG2 (u2)
)
−

(
εG1(U)(v1) + εG2 (u2)

)∣∣∣∣
+

∑
u1∈U

∑
u2v2∈E(G2)

∣∣∣∣(εG1(U)(u1) + εG2 (u2)
)
−

(
εG1(U)(u1) + εG2 (v2)

)∣∣∣∣
=

∑
u1v1∈E(G1)

∑
u2∈V(G2)

∣∣∣εG1(U)(u1) − εG1(U)(v1)
∣∣∣ +

∑
u1∈U

∑
u2v2∈E(G2)

∣∣∣εG2 (u2) − εG2 (v2)
∣∣∣

=n2E3(G1(U)) + |U|E3(G2),

and Eq. (11) holds.
By definition of the non-self-centrality number we obtain

N(G1(U) u G2) =
1
2

∑
(u1,u2),(v1,v2)∈V(G1(U)uG2)

∣∣∣εG1(U)uG2 ((u1,u2)) − εG1(U)uG2 ((v1, v2))
∣∣∣

=
1
2

∑
u1,v1∈V(G1)

∑
u2,v2∈V(G2)

∣∣∣∣(εG1(U)(u1) + εG2 (u2)
)
−

(
εG1(U)(v1) + εG2 (v2)

)∣∣∣∣
=

1
2

∑
u1,v1∈V(G1)

∑
u2,v2∈V(G2)

∣∣∣∣(εG1(U)(u1) − εG1(U)(v1)
)

+
(
εG2 (u2) − εG2 (v2)

)∣∣∣∣ .
Now by triangle inequality we obtain

N(G1(U) u G2) ≤
1
2

∑
u1,v1∈V(G1)

∑
u2,v2∈V(G2)

[ ∣∣∣εG1(U)(u1) − εG1(U)(v1)
∣∣∣ +

∣∣∣εG2 (u2) − εG2 (v2)
∣∣∣ ]

=n2
2N(G1(U)) + n1

2N(G2),

and Eq. (12) holds. By triangle inequality, the equality holds in (12) if and only if for every u1, v1 ∈ V(G1),
u2, v2 ∈ V(G2), εG1(U)(u1) − εG1(U)(v1), εG2 (u2) − εG2 (v2) > 0 or εG1(U)(u1) − εG1(U)(v1), εG2 (u2) − εG2 (v2) < 0 or
εG1(U)(u1) − εG1(U)(v1) = 0 or εG2 (u2) − εG2 (v2) = 0. If the first two cases occur, then for every u2, v2 ∈ V(G2),
εG2 (u2) − εG2 (v2), εG2 (v2) − εG2 (u2) > 0 or εG2 (u2) − εG2 (v2), εG2 (v2) − εG2 (u2) < 0 , which is a contradiction. So
the equality holds in (12) if and only if for every u1, v1 ∈ V(G1), u2, v2 ∈ V(G2), εG1(U)(u1) − εG1(U)(v1) = 0 or
εG2 (u2)−εG2 (v2) = 0, which implies that for every u1, v1 ∈ V(G1), εG1(U)(u1) = εG1(U)(v1) or G2 is a self-centered
graph.

4. Applications and corollaries

In this section, we apply the results obtained in Subsection 3.6 to compute the third Zagreb eccentricity
index and NSC number of three other graph operations namely Cartesian product, rooted product, and
corona product. As stated in Section 3, the component Gi of each graph operation is considered to be a
simple connected graph with ni vertices, where i = 1, 2.

4.1. Cartesian product
The Cartesian product G1�G2 of graphs G1 and G2 is a graph with vertex set V(G1)×V(G2) and vertices

(u1,u2) and (v1, v2) are adjacent if and only if [u1 = v1 ∈ V(G1) and u2v2 ∈ E(G2)] or [u2 = v2 ∈ V(G2) and
u1v1 ∈ E(G1)]. The definition generalizes to the case of k ≥ 3 graphs in a straightforward manner. Note that
G1�G2 � G1(U) u G2, where U = V(G1) and by Theorem 3.7 we get the following corollary.
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Corollary 4.1. The third Zagreb eccentricity index and NSC number of G1�G2 are given by

E3(G1�G2) = n2E3(G1) + n1E3(G2), (13)

N(G1�G2) ≤ n2
2N(G1) + n1

2N(G2). (14)

The equality holds in (14) if and only if G1 or G2 is a self-centered graph.

Proof. If U = V(G1), then for each pair of vertices u1, v1 ∈ V(G1), dG1(U)(u1, v1) = dG1 (u1, v1). So for each vertex
u1 ∈ V(G1),

εG1(U)(u1) = max
v1∈V(G1)

dG1(U)(u1, v1) = max
v1∈V(G1)

dG1 (u1, v1) = εG1 (u1).

Hence E3(G1(U)) = E3(G1) and N(G1(U)) = N(G1). Now by Theorem 3.7,

E3(G1�G2) = E3(G1(V(G1)) u G2) = n2E3(G1) + n1E3(G2),

N(G1�G2) = N(G1(V(G1)) u G2) ≤ n2
2N(G1) + n1

2N(G2),

and Eqs. (13), (14) hold. By Theorem 3.7, the equality holds in (14) if and only if G1 or G2 is a self-centered
graph.

It is easy to see that,

E3(Pn) =

{
n − 1 i f n is odd,
n − 2 i f n is even, N(Pn) =

{
n3
−n

12 i f n is odd,
n3
−4n
12 i f n is even.

Using these results and Corollary 4.1 we get the following corollary.

Corollary 4.2. The third Zagreb eccentricity index and NSC number of the rectangular lattice Pn�Pm are given by

E3(Pn�Pm) =


m(n − 1) + n(m − 1) i f n,m are odd,
m(n − 2) + n(m − 2) i f n,m are even,
m(n − 1) + n(m − 2) i f n is odd, m is even,

(15)

N(Pn�Pm) ≤


1
12 [n2(m3

−m) + m2(n3
− n)] i f n,m are odd,

1
12 [n2(m3

− 4m) + m2(n3
− 4n)] i f n,m are even,

1
12 [n2(m3

− 4m) + m2(n3
− n)] i f n is odd, m is even.

(16)

The equality holds in (16) if and only if n = 2 or m = 2.

Now, we tackle the case when the number of components in Cartesian product is k ≥ 2.

Corollary 4.3. The third Zagreb eccentricity index and NSC number of G1�G2�...�Gk are given by

E3(G1�G2�...�Gk) = n1n2...nk

k∑
i=1

E3(Gi)
ni

, (17)

N(G1�G2�...�Gk) ≤ n1
2n2

2...nk
2

k∑
i=1

N(Gi)
ni

2 . (18)

The equality holds in (18) if and only if at most one of the graphs G1,G2, ...,Gk is non-self-centered.
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Proof. Using Corollary 4.1 we obtain

E3(G1�G2�...�Gk) =E3

(
(G1�G2�...�Gk−1)�Gk

)
= nkE3(G1�G2�...�Gk−1) + n1...nk−1E3(Gk).

Now by induction on k we obtain

E3(G1�G2�...�Gk) = n1...nk−1nk

k−1∑
i=1

E3(Gi)
ni

+ n1...nk−1E3(Gk) = n1n2...nk

k∑
i=1

E3(Gi)
ni

,

and Eq. (17) holds. Similarly, by Corollary 4.1,

N(G1�G2�...�Gk) = N
(
(G1�G2�...�Gk−1)�Gk

)
≤ nk

2N(G1�G2�...�Gk−1) + n1
2n2

2...nk−1
2N(Gk), (19)

with equality if and only if G1�G2�...�Gk−1 or Gk is a self-centered graph. By induction on k we obtain

N(G1�G2�...�Gk−1) ≤n1
2n2

2...nk−1
2

k−1∑
i=1

N(Gi)
ni

2 , (20)

with equality if and only if at most one of the graphs G1,G2, ...,Gk−1 is non-self-centered.
From Eqs. (19) and (20) we obtain

N(G1�G2�...�Gk) ≤ n1
2n2

2...nk−1
2nk

2
k−1∑
i=1

N(Gi)
ni

2 + n1
2n2

2...nk−1
2nk

2 N(Gk)
nk

2 = n1
2n2

2...nk
2

k∑
i=1

N(Gi)
ni

2 ,

and Eq. (18) holds. Equality holds in (18) if and only if the equality in (19) and (20) holds, which implies
that at most one of the graphs G1,G2, ...,Gk is non-self-centered.

4.2. Rooted product
The rooted product G1{G2} of a graph G1 and a non-trivial rooted graph G2 is the graph obtained by

taking one copy of G1 and n1 copies of G2, and by identifying the root vertex of the ith copy of G2 with the
ith vertex of G1, for i = 1, 2, . . .,n1. The rooted product is also known as the cluster product. Let w be a root
vertex of G2. Note that if U = {w} ⊂ V(G2), then G1{G2} � G2(U)uG1 � G2({w})uG1 and by Theorem 3.7 we
get the following corollary.

Corollary 4.4. Let G2 be a non-trivial rooted graph and let w denote its root vertex. The third Zagreb eccentricity
index and NSC number of G1{G2} are given by

E3(G1{G2}) = E3(G1) + n1

∑
uv∈E(G2)

∣∣∣dG2 (u,w) − dG2 (v,w)
∣∣∣ , (21)

N(G1{G2}) ≤ n2
2N(G1) +

n1
2

2

∑
u,v∈V(G2)

∣∣∣dG2 (u,w) − dG2 (v,w)
∣∣∣ . (22)

The equality holds in (22) if and only if G1 is a self-centered graph.

Proof. For each vertex u ∈ V(G2),

εG2({w})(u) = max
v∈V(G2)

dG2({w})(u, v) = max
v∈V(G2)

(
dG2 (u,w) + dG2 (w, v)

)
= dG2 (u,w) + εG2 (w). (23)

Hence,

E3(G2({w})) =
∑

uv∈E(G2)

∣∣∣εG2({w})(u) − εG2({w})(v)
∣∣∣ =

∑
uv∈E(G2)

∣∣∣∣(dG2 (u,w) + εG2 (w)
)
−

(
dG2 (v,w) + εG2 (w)

)∣∣∣∣
=

∑
uv∈E(G2)

∣∣∣dG2 (u,w) − dG2 (v,w)
∣∣∣ .
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Similarly,

N(G2({w})) =
1
2

∑
u,v∈V(G2)

∣∣∣dG2 (u,w) − dG2 (v,w)
∣∣∣ .

Now by Theorem 3.7,

E3(G1{G2}) = E3(G2({w}) u G1) = E3(G1) + n1E3(G2({w})) = E3(G1) + n1

∑
uv∈E(G2)

∣∣∣dG2 (u,w) − dG2 (v,w)
∣∣∣ ,

and Eq. (21) holds. Similarly,

N(G1{G2}) =N(G2({w}) u G1) ≤ n2
2N(G1) + n1

2N(G2({w}))

=n2
2N(G1) +

n1
2

2

∑
u,v∈V(G2)

∣∣∣dG2 (u,w) − dG2 (v,w)
∣∣∣ ,

and Eq. (22) holds. By Theorem 3.7, the equality holds in (22) if and only if for every u, v ∈ V(G2),
εG2({w})(u) = εG2({w})(v) or G1 is a self-centered graph. By Eq. (23), the first case occurs if and only if for
every u, v ∈ V(G2), dG2 (u,w) = dG2 (v,w). This implies that, for every u ∈ V(G2), dG2 (u,w) = dG2 (w,w) = 0,
which is in contradiction to the fact that G2 is non-trivial. Hence, equality holds in (22) if and only if G1 is a
self-centered graph.

4.3. Corona product
The corona product G1 ◦ G2 is the graph obtained by taking one copy of G1 and n1 copies of G2,

and by joining each vertex of the ith copy of G2 to the ith vertex of G1, for i = 1, 2, . . .,n1. Note that
G1 ◦ G2 � G1{K1 + G2}, where the root vertex of K1 + G2 is at the single vertex of K1. Now by Corollary 4.4
we get the following corollary.

Corollary 4.5. The third Zagreb eccentricity index and NSC number of G1 ◦ G2 are given by

E3(G1 ◦ G2) = E3(G1) + n1n2, (24)

N(G1 ◦ G2) ≤ (n2 + 1)2N(G1) + n1
2n2. (25)

The equality holds in (25) if and only if G1 is a self-centered graph.

Proof. Let us denote the single vertex of K1 by w. By Corollary 4.4,

E3(G1 ◦ G2) =E3(G1{K1 + G2}) = E3(G1) + n1

∑
uv∈E(K1+G2)

∣∣∣dK1+G2 (u,w) − dK1+G2 (v,w)
∣∣∣

=E3(G1) + n1

[ ∑
uv∈E(G2)

|1 − 1| +
∑

u∈V(G2)

|1 − 0|
]

=E3(G1) + n1n2,

and Eq. (24) holds. Similarly,

N(G1 ◦ G2) =N(G1{K1 + G2}) ≤ (n2 + 1)2N(G1) +
n2

1

2

∑
u,v∈V(K1+G2)

∣∣∣dK1+G2 (u,w) − dK1+G2 (v,w)
∣∣∣

=(n2 + 1)2N(G1) +
n2

1

2

[ ∑
u,v∈V(G2)

|1 − 1| +
∑

u=w,v∈V(G2)

|0 − 1| +
∑

u∈V(G2),v=w

|1 − 0|
]

=(n2 + 1)2N(G1) + n1
2n2,

and Eq. (25) holds. By Corollary 4.4, the equality holds in (25) if and only if G1 is a self-centered graph.
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[12] L. Barrière, C. Dalfó, M. A. Fiol, M. Mitjana, The generalized hierarchical product of graphs, Discrete Math. 309(12) (2009)
3871–3881.
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[16] T. Došlić, A. Graovac, O. Ori, Eccentric connectivity index of hexagonal belts and chains, MATCH Commun. Math. Comput.

Chem. 65(3) (2011) 745-752.
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