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Abstract. We give a new characterization of Browder’s theorem using spectra originated from Drazin-
Fredholm theory.

1. Introduction and Preliminaries

Throughout, X denotes a complex Banach space,B(X) the Banach algebra of all bounded linear operators
on X, let I be the identity operator, and for T ∈ B(X) we denote by T∗, N(T), R(T), R∞(T) =

⋂
n≥0 R(Tn), ρ(T),

σ(T) respectively the adjoint, the null space, the range, the hyper-range, the resolvent set and the spectrum
of T.

Let E be a subset of X. E is said T-invariant if T(E) ⊆ E. We say that T is completely reduced by the pair
(E,F) and we denote (E,F) ∈ Red(T) if E and F are two closed T-invariant subspaces of X such that X = E⊕F.
In this case we write T = TpE ⊕ TpF and we say that T is the direct sum of TpE and TpF. An operator T ∈ B(X)
is said to be semi-regular, if R(T) is closed and N(T) ⊆ R∞(T) ([1]).

In the other hand, recall that an operator T ∈ B(X) admits a generalized Kato decomposition, ( GKD for
short ), if there exists (X1,X2) ∈ Red(T) such that TpX1 is semi-regular and TpX2 is quasi-nilpotent, in this case
T is said a pseudo Fredholm operator. If we assume in the definition above that TpX2 is nilpotent, then T is
said to be of Kato type. Clearly, every semi-regular operator is of Kato type and a quasi-nilpotent operator
has a GKD, see [17, 20] for more information about generalized Kato decomposition.

A bounded linear operator is called an upper semi-Fredholm (resp, lower semi Fredholm) if dimN(T) <
∞ and R(T) is closed (resp, codimR(T) < ∞). T is semi-Fredholm if it is a lower or upper semi-Fredholm
operator. The index of a semi-Fredholm operator T is defined by ind(T) := dimN(T) − codimR(T). Also, T is
a Fredholm operator if it is a lower and upper semi-Fredholm operator, and T is called a Weyl operator if it
is a Fredholm of index zero.
The essential and Weyl spectra of T are closed and defined by :

σe(T) = {λ ∈ C : T − λI is not a Fredholm operator};

σw(T) = {λ ∈ C : T − λI is not a Weyl operator}.
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Recall that an operator R ∈ B(X) is said to be Riesz if R − µI is Fredholm for every non-zero complex
number µ ([1]). Of course compact and quasi-nilpotent operators are particular cases of Riesz operators.

In [26], Živković-Zlatanović SČ and M D. Cvetković introduced and studied a new concept of Kato
decomposition to extend the Mbektha concept to ”generalized Kato-Riesz decomposition”. In fact, an
operator T ∈ B(X) admits a generalized Kato-Riesz decomposition, ( GKRD for short ), if there exists
(X1,X2) ∈ Red(T) such that TpX1 is semi-regular and TpX2 is Riesz. The generalized Kato-Riesz spectrum is
defined by

σ1KR(T) := {λ ∈ C : T − λI does not admit a generalized Kato-Riesz decomposition}.

Let T ∈ B(X), the ascent of T is defined by a(T) = min{p ∈ N : N(Tp) = N(Tp+1)}, if such p does not exist
we let a(T) = ∞. Analogously the descent of T is d(T) = min{q ∈ N : R(Tq) = R(Tq+1)}, if such q does not
exist we let d(T) = ∞ [19]. It is well known that if both a(T) and d(T) are finite then a(T) = d(T) and we have
the decomposition X = R(Tp) ⊕N(Tp) where p = a(T) = d(T).
An operator T ∈ B(X) is upper semi-Browder if T is upper semi-Fredholm and a(T) < ∞. If T ∈ B(X) is
lower semi-Fredholm and d(T) < ∞ then T is lower semi-Browder. T is called Browder operator if it is a
lower and an upper Browder operator.

An operator T ∈ B(X) is said to be B-Fredholm, if for some integer n ≥ 0 the range R(Tn) is closed and
Tn, the restriction of T to R(Tn) is a Fredholm operator. This class of operators, introduced and studied by
Berkani et al. in a series of papers extends the class of semi-Fredholm operators ([11], [12]). T is said to
be a B-Weyl operator if Tn is a Fredholm operator of index zero. The B-Fredholm and B-Weyl spectra are
defined by

σBF(T) = {λ ∈ C : T − λI is not B-Fredholm};

σBW(T) = {λ ∈ C : T − λI is not B-Weyl}.

Note that T is a B-Fredholm operator if there exists (X1,X2) ∈ Red(T) such that TpX1 is Fredholm and TpX2 is
nilpotent, see [11, Theorem 2.7]. Also, T is a B-Weyl operator if and only if TpX1 is a Weyl operator and TpX2

is a nilpotent operator.
More recently, B-Fredholm and B-Weyl operators were generalized to pseudo B-Fredholm and pseudo

B-Weyl, see [13] [22][23] [25], precisely, T is a pseudo B-Fredholm operator, if there exists (X1,X2) ∈ Red(T)
such that TpX1 is a Fredholm operator and TpX2 is a quasi-nilpotent operator. T is said to be pseudo B-Weyl
operator if there exists (X1,X2) ∈ Red(T) such that TpX1 is a Weyl operator and TpX2 is a quasi-nilpotent
operator. The pseudo B-Fredholm and pseudo B-Weyl spectra are defined by:

σpBF(T) = {λ ∈ C : T − λI is not pseudo B-Fredholm};

σpBW(T) = {λ ∈ C : T − λI is not pseudo B-Weyl}.

Let T ∈ B(X), T is said to be Drazin invertible if there exist a positive integer k and an operator S ∈ B(X)
such that

ST = TS, Tk+1S = Tk and S2T = S.

Which is also equivalent to the fact that T = T1 ⊕ T2; where T1 is invertible and T2 is nilpotent. The Drazin
spectrum is defined by

σD(T) = {λ ∈ C : T − λI is not Drazin invertible }.

The concept of Drazin invertible operators has been generalized by Koliha [16]. In fact, T ∈ B(X) is
generalized Drazin invertible if and only if 0 < acc(σ(T)), where acc(σ(T)) is the set of accumulation points
of σ(T). This is also equivalent to the fact that there exists (X1,X2) ∈ Red(T) such that TpX1 is invertible and
TpX2 is quasi-nilpotent. The generalized Drazin spectrum is defined by

σ1D(T) = {λ ∈ C : T − λI is not generalized Drazin invertible }.

The concept of analytical core for an operator has been introduced by Vrbova in [24] and study by Mbekhta
[20, 21], that is the following set:
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K(T) = {x ∈ X : ∃(xn)n≥0 ⊂ X and δ > 0 such that x0 = x, Txn = xn−1 ∀n ≥ 1 and ‖xn‖ ≤ δn
‖x‖}

The quasi-nilpotent part of T, H0(T) is given by :

H0(T) := {x ∈ X; rT(x) = 0}where rT(x) = lim
n→+∞

||Tnx||
1
n .

In [14], M D. Cvetković and SČ. Živković-Zlatanović introduced and studied a new concept of gen-
eralized Drazin invertibility of bounded operators as a generalization of generalized Drazin invertible
operators. In fact, an operator T ∈ B(X) is said to be generalized Drazin bounded below if H0(T) is closed
and complemented with a subspace M in X such that (M,H0(T)) ∈ Red(T) and T(M) is closed which is
equivalent to there exists (M,N) ∈ Red(T) such that TpM is bounded below and TpN is quasi-nilpotent, see
[14, Theorem 3.6]. An operator T ∈ B(X) is said to be generalized Drazin surjective if K(T) is closed and
complemented with a subspace N in X such that N ⊆ H0(T) and (K(T),N) ∈ Red(T) which is equivalent to
there exists (M,N) ∈ Red(T) such that TpM is surjective and TpN is quasi-nilpotent, see [14, Theorem 3.7].
The generalized Drazin bounded below and surjective spectra of T ∈ B(X) are defined respectively by:

σ1DM(T) = {λ ∈ C, T − λI is not generalized Drazin bounded below};

σ1DQ(T) = {λ ∈ C, T − λI is not generalized Drazin surjective}.

From [14], we have:
σ1D(T) = σ1DM(T) ∪ σ1DQ(T).

Recently, Živković-Zlatanović SČ and M D. Cvetković [26] introduced and studied a new concept
of pseudo-inverse to extend the Koliha concept, generalized Drazin bounded below, and generalized
Drazin surjective to ”generalized Drazin-Riesz invertible”, ”generalized Drazin-Riesz bounded below” and
”generalized Drazin-Riesz surjective” respectively. In fact, an operator T ∈ B(X) is said to be generalized
Drazin-Riesz invertible, if there exists S ∈ B(X) such that

TS = ST, STS = S and TST − T is Riesz

Živković-Zlatanović SČ and M D. Cvetković also showed that T is generalized Drazin-Riesz invertible iff
it has a direct sum decomposition T = T1 ⊕ T0 with T1 is invertible and T0 is Riesz. If we assume in the
characterization above that T1 is bounded below (surjective), then T is said to be generalized Drazin-Riesz
bounded below(generalized Drazin-Riesz surjective). The generalized Drazin-Riesz, generalized Drazin-
Riesz bounded below and generalized Drazin-Riesz surjective spectra of T ∈ B(X) are defined respectively
by:

σ1DR(T) = {λ ∈ C, T − λI is not generalized Drazin-Riesz invertible}

σ1DRM(T) = {λ ∈ C, T − λI is not generalized Drazin-Riesz bounded below }

σ1DRQ(T) = {λ ∈ C, T − λI is not generalized Drazin-Riesz surjective}

Also , they introduced the definition of operators which are a direct sum of a Riesz operator and a
Fredholm ( Weyl, upper (lower) semi-Fredholm, upper (lower) semi-Weyl ) operator([26]). These operators
generalize the class of generalized Drazin invertible operators and also the class of generalized Drazin-Riesz
invertible operators and hence, we shall call them generalized Drazin-Riesz Fredholm ( generalized Drazin-
Riesz Weyl, generalized Drazin-Riesz upper (lower) semi-Fredholm, generalized Drazin-Riesz (lower)
semi-Weyl, ..) operators, and we shall use the following notations:

1DRR∗(X) = {T ∈ B(X) : T = T1 ⊕ T2, T1 ∈ R∗, T2 is Riesz }

where R∗(X) run the Fredholm class Φ(X), upper (lower) semi-Fredholm class Φ+(X) (Φ−(X)), Weyl class
W(X), upper (lower) semi-Weyl classW+(X) (W−(X)).
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These classes of operators motivate the definition of several spectra. The generalized Drazin-Riesz
lower(upper) semi-Weyl and generalized Drazin-Riesz Weyl spectra of T ∈ B(X) are defined respectively
by:

σ1DRW−(T) = {λ ∈ C, T − λI is not generalized Drazin-Riesz lower semi-Weyl};

σ1DRW+(T) = {λ ∈ C, T − λI is not generalized Drazin-Riesz upper semi-Weyl}.

σ1DRW(T) = {λ ∈ C, T − λI is not generalized Drazin-Riesz Weyl}.

From [26], we have:
σ1DRW(T) = σ1DRW+(T) ∪ σ1DRW−(T);

The generalized Drazin-Riesz upper (lower) semi-Fredholm and generalized Drazin-Riesz Fredholm spectra
of T ∈ B(X) are defined respectively by:

σ1DRΦ+
(T) = {λ ∈ C, T − λI is not generalized Drazin-Riesz upper semi-Fredholm };

σ1DRΦ− (T) = {λ ∈ C, T − λI is not generalized Drazin-Riesz lower semi-Fredholm}.

σ1DRΦ(T) = {λ ∈ C, T − λI is not generalized Drazin-Riesz Fredholm}.

Also, from [26], we have:
σ1DRΦ(T) = σ1DRΦ+

(T) ∪ σ1DRΦ− (T).

σ1KR(T) ⊂ σ1DRΦ+(T) ⊂ σ1DRW+(T) ⊂ σ1DRM(T)

σ1KR(T) ⊂ σ1DRΦ−(T) ⊂ σ1DRW−(T) ⊂ σ1DRQ(T)

σ1KR(T) ⊂ σ1DRΦ(T) ⊂ σ1DRW(T) ⊂ σ1DR(T)

A Banach space operator satisfies ”Browder’s theorem” if the Browder spectrum coincides with the
Weyl spectrum. Browder’s theorem has been studied by several authors (see [4], [3], [5], [6]). In this paper
we shall give some characterizations of operators satisfying Browder’s theorem. In particular, we shall see
that Browder’s theorem for a bounded linear operator is equivalent to the equality between the generalized
Drazin-Riesz Weyl spectrum and generalized Drazin-Riesz spectrum. Also, we will give serval necessary
and sufficient conditions for T to have equality between the spectra originated from Drazin-Fredholm
theory.

2. Main Results

Recall that T ∈ B(X) is said to have the single valued extension property at λ0 ∈ C (SVEP for short) if for
every open neighbourhood U ⊆ C of λ0, the only analytic function f : U −→ X which satisfies the equation
(T − zI) f (z) = 0 for all z ∈ U is the function f ≡ 0. An operator T is said to have the SVEP if T has the SVEP
for every λ ∈ C. Obviously, every operator T ∈ B(X) has the SVEP at every λ ∈ ρ(T) = C \σ(T), hence T and
T∗ have the SVEP at every point of the boundary ∂(σ(T)) of the spectrum. Also, we have the implication

a(T) < ∞ =⇒ T has SVEP at 0.

d(T) < ∞ =⇒ T∗ has SVEP at 0.

In [26], the authors gave some examples showing that σ1DRW+(T) ⊂ σ1DRM(T), σ1DRW−(T) ⊂ σ1DRQ(T)
and σ1DRW(T) ⊂ σ1DR(T) can be proper. In the following results we give serval necessary and sufficient
conditions for T to have equality.

Proposition 2.1. Let T ∈ B(X), then σ1DRM(T) = σ1DRW+(T) if and only if T has SVEP at every λ < σ1DRW+(T)



M. Karmouni, A. Tajmouati / Filomat 32:14 (2018), 4865–4873 4869

Proof. Assume that T has SVEP at every λ < σ1DRW+(T). If λ < σ1DRW+(T), then T − λI is generalized
Drazin Riesz upper semi-Weyl, then there exists (M,N) ∈ Red(T − λI) such that (T − λI)|M is semi-regular
and (T − λI)|N is Riesz. T has SVEP at every λ < σ1DRW+(T), it follows that (T − λI)|M has the SVEP at
0, then (T − λI)|M is bounded below, see [18, Corollary 3.1.7]. Hence T − λI is generalized Drazin Riesz
bounded below, λ < σ1DRM(T), and since the reverse implication holds for every operator we conclude that
σ1DRM(T) = σ1DRW+(T). Conversely, suppose that σ1DRM(T) = σ1DRW+(T). If λ < σ1DRW+(T) then T − λI is
generalized Drazin Riesz bounded below so, T has SVEP at λ, by [26, Theorem 2.4].

We denote by σlb(T) and σlw(T) respectively the lower Browder and lower Weyl spectra. In the same
way we have the following result.

Proposition 2.2. Let T ∈ B(X), then σ1DRQ(T) = σ1DRW−(T) if and only if T∗ has SVEP at every λ < σ1DRW−(T)

Proof. Suppose that T∗ has SVEP at every λ < σ1DRW−(T). If λ < σ1DRW−(T), then by [26, Theorem 2.6], T−λI
admits GKRD and λ < accσlw(T). T∗ has SVEP at every λ < σ1DRW−(T), then T∗ has SVEP at every λ < σlw(T),
and so σlb(T) = σlw(T). Then λ < accσlb(T). Therefore, T−λI is generalized Drazin Riesz surjective according
to [26, Theorem 2.5], λ < σ1DRQ(T) and since the reverse implication holds for every operator we conclude
that σ1DRQ(T) = σ1DRW−(T). Conversely, suppose that σ1DRQ(T) = σ1DRW−(T). If λ < σ1DRW−(T), then T − λI
is generalized Riesz Drazin surjective so, T has SVEP at λ, by [26, Theorem 2.5].

As a consequence of the two previous results we have the following corollary.

Corollary 2.3. Let T ∈ B(X), thenσ1DR(T) = σ1DRW(T) if and only if T and T∗ have the SVEP at everyλ < σ1DRW(T)

Proof. Suppose that σ1DR(T) = σ1DRW(T). If λ < σ1DRW(T), then T−λI is generalized Riesz Drazin invertible
so, T and T∗ have SVEP at λ, by [26, Theorem 2.3]. The ”if” is an immediate consequence of Proposition 2.1
and Proposition 2.2.

Moreover, we have the following result.

Proposition 2.4. Let T ∈ B(X), the following statements are equivalent :
1) σ1DR(T) = σ1DRW(T);
2) T or T∗ has SVEP at every λ < σ1DRW(T).

Proof. -If T has SVEP at every λ < σ1DRW(T). If λ < σ1DRW(T), then by [26, Theorem 2.6], T − λI admits
GKRD and λ < accσw(T). T has SVEP at every λ < σ1DRW(T), then T has SVEP at every λ < σw(T), and so
σb(T) = σw(T) [1, Theorem 4.23]. Thus λ < accσb(T). Therefore, T − λI is generalized Drazin Riesz invertible
by [26, Theorem 2.3], λ < σ1DR(T) and since the reverse implication holds for every operator we conclude
that σ1DR(T) = σ1DRW(T).

-If T∗ has SVEP at every λ < σ1DRW(T). Since σb(T) = σb(T∗) and σw(T) = σw(T∗), we have σ1DR(T) =
σ1DRW(T).

Conversely, suppose that σ1DR(T) = σ1DRW(T). If λ < σ1DRW(T), then T − λI is generalized Riesz Drazin
invertible so, T and T∗ have SVEP at λ, by [26, Theorem 2.3].

We shall say that T satisfies Browder’s theorem if σw(T) = σb(T), or equivalently accσ(T) ⊆ σw(T), where
σb(T) is the Browder spectrum of T ([15]).
It is known from [2] that a-Browder’s theorem holds for T if σuw(T) = σub(T), or equivalently accσap(T) ⊆
σuw(T), where σub(T) and σuw(T) are the upper semi-Browder and upper semi-Weyl spectra of T.

In the sequel, we characterize the equality between the generalized Drazin-Riesz invertible(surjective,
bounded below) spectrum and generalized Drazin-Riesz Weyl(upper-lower Weyl) spectrum by means
of the Browder’s theorem(a-Browder’s theorems), which give new characterizations for Browder’s and
a-Browder’s theorems.
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Theorem 2.5. Let T ∈ B(X), then
1) a-Browder’s theorem holds for T if and only if σ1DRM(T) = σ1DRW+(T).
2) a-Browder’s theorem holds for T∗ if and only if σ1DRQ(T) = σ1DRW−(T).
3) Browder’s theorem holds for T if and only if σ1DR(T) = σ1DRW(T).

Proof. 1) Suppose that a-Browder’s theorem holds for T implies σub(T) = σuw(T).
Using [26, Theorems 2.4 and 2.6], we conclude that

λ < σ1DRM(T) ⇐⇒ T − λI is generalized Drazin Riesz bounded below
⇐⇒ T − λI admits a GKRD and λ < accσub(T)
⇐⇒ T − λI admits a GKRD and λ < accσuw(T)
⇐⇒ T − λI is generalized Drazin Riesz upper semi-Weyl
⇐⇒ λ < σ1DRW+(T).

Hence σ1DRM(T) = σ1DRW+(T). Conversely, if σ1DRM(T) = σ1DRW+(T), from Proposition 2.1, T has SVEP at
every λ < σ1DRW+(T). Since σ1DRW+(T) ⊆ σuw(T), T has SVEP at every λ < σuw(T), so a-Browder’s theorem
holds for T, see [2, Theorem 4.34].

2) Suppose that a-Browder’s theorem holds for T∗ then σlb(T) = σlw(T).
Using [26, Theorems 2.5 and 2.6] we have

λ < σ1DRQ(T) ⇐⇒ T − λI is generalized Drazin Riesz surjective
⇐⇒ T − λI admits a GKRD and λ < accσlb(T)
⇐⇒ T − λI admits a GKRD and λ < accσlw(T)
⇐⇒ T − λI is generalized Drazin Riesz lower semi-Weyl
⇐⇒ λ < σ1DRW−(T).

Hence σ1DRQ(T) = σ1DRW−(T). Conversely, if σ1DRQ(T) = σ1DRW−(T), from Proposition 2.2, T∗ has SVEP at
every λ < σ1DRW−(T). Since σ1DRW−(T) ⊆ σlw(T), T∗ has SVEP at every λ < σlw(T), so a-Browder’s theorem
holds for T∗, see [2, Theorem 4.34].

3) Suppose that Browder’s theorem holds for T then σb(T) = σw(T).
Using [26, Theorems 2.6 and 2.3] we have

λ < σ1DR(T) ⇐⇒ T − λI is generalized Drazin Riesz invertible
⇐⇒ T − λI admits a GKRD and λ < accσb(T)
⇐⇒ T − λI admits a GKRD and λ < accσw(T)
⇐⇒ T − λI is generalized Drazin Riesz Weyl
⇐⇒ λ < σ1DRW(T).

Hence σ1DR(T) = σ1DRW(T). Conversely, if σ1DR(T) = σ1DRW(T), from Corollary 2.3, T and T∗ has SVEP at
every λ < σ1DRW(T). Since σ1DRW(T) ⊆ σw(T), T has SVEP at every λ < σw(T), so Browder’s theorem holds
for T, see [2, Theorem 4.23].

It will be said that generalized Browder’s theorem holds for T ∈ B(X) if σBW(T) = σ(T)\Π(T), equivalently,
σBW(T) = σD(T), where Π(T) is the set of all poles of the resolvent of T ([4]). A classical result of M. Amouch
and H. Zguitti [9, Theorem 2.1] shows that Browder’s theorem and generalized Browder’s theorem are
equivalent. According to the previous results, [6, Theorem 2.2], [3, Theorem 2.3] an the equivalent between
Browder’s theorem and generalized Browder’s theorem [9, Theorem 2.1] [10][Proposition 2.2] we have the
following theorem.
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Theorem 2.6. Let T ∈ B(X). The statements are equivalent:
1) Browder’s theorem holds for T;
2) Browder’s theorem holds for T∗;
3) T has SVEP at every λ < σw(T);
4) T∗ has SVEP at every λ < σw(T);
5) T has SVEP at every λ < σBW(T);
6) generalized Browder’s theorem holds for T;
7) T or T∗ has SVEP at every λ < σ1DRW(T);
8) σ1DR(T) = σ1DRW(T);
9) T or T∗ has SVEP at every λ < σ1DW(T);
10) σ1D(T) = σpBW(T).

In the same way we have the following result.

Theorem 2.7. Let T ∈ B(X). The statements are equivalent:
1) a-Browder’s theorem holds for T;
2) generalized a-Browder’s theorem holds for T;
3) T has SVEP at every λ < σ1DRW+(T);
4) σ1DRM(T) = σ1DRW+(T).
5) T has SVEP at every λ < σ1DW+(T);
6) σ1DM(T) = σ1DW+(T).

We denote by σl f (T) and σu f (T), T ∈ B(X), respectively the lower and upper semi-Fredholm spectra.
Note that σ1DRΦ+(T) ⊂ σ1DRM(T), σ1DRΦ−(T) ⊂ σ1DRQ(T) and σ1DRΦ(T) ⊂ σ1DR(T) are strict [26]. In this case
we have the following theorems:

Theorem 2.8. Let T ∈ B(X). The statements are equivalent:
1) σu f (T) = σub(T);
2) T has SVEP at every λ < σu f (T);
3) T has SVEP at every λ < σ1DRΦ+(T);
4) σ1DRM(T) = σ1DRΦ+(T).

Proof. 1)⇐⇒ 2): Suppose that T has SVEP at every λ < σu f (T). λ < σu f (T), T−λI is upper semi-Fredholm. T
has SVEP at λ, then a(T − λI) < ∞, see [1, Theorem 3.16]. So λ < σub(T). Now, Suppose that σu f (T) = σub(T).
Let λ < σu f (T), λ < σub(T) then a(T − λI) < ∞, hence T has SVEP at λ by [1].

3) ⇐⇒ 4): Suppose that T has SVEP at every λ < σ1DRΦ+(T). If λ < σ1DRΦ+(T), T − λI is generalized
Drazin Riesz upper Fredholm, then there exists (M,N) ∈ Red(T) such that (T − λI)|M is semi-regular and
(T − λI)|N is Riesz. T has SVEP at every λ < σ1DRΦ+(T) implies (T − λI)|M has the SVEP at 0, it follows
that (T − λI)|M is bounded below, see [18, Corollary 3.1.7]. Hence T − λI is generalized Drazin Riesz
bounded below, λ < σ1DRM(T), and since the reverse implication holds for every operator we conclude that
σ1DRM(T) = σ1DRΦ+(T). Conversely, assume that σ1DRM(T) = σ1DRΦ+(T). If λ < σ1DRΦ+(T) then T − λI is
generalized Drazin Riesz bounded below so T has the SVEP at λ, by [26, Theorem 2.4].

1)⇐⇒ 4): Suppose that σu f (T) = σub(T).
According to [26, Theorems 2.4 and 2.6] we have

λ < σ1DM(T) ⇐⇒ T − λI is generalized Drazin Riesz bounded below
⇐⇒ T − λI admits a GKRD and λ < accσub(T)
⇐⇒ T − λI admits a GKRD and λ < accσu f (T)
⇐⇒ T − λI is generalized Drazin Riesz Fredholm
⇐⇒ λ < σ1DRΦ+(T).

Hence σ1DRM(T) = σ1DRΦ+(T). Conversely, if σ1DRM(T) = σ1DRΦ+(T), then by 3)⇐⇒ 4), T has SVEP at every
λ < σ1DRΦ+(T). Since σ1DRΦ+(T) ⊆ σu f (T), T has SVEP at every λ < σu f (T), 1)⇐⇒ 2) gives the result.
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Theorem 2.9. Let T ∈ B(X). The statements are equivalent:
1) σl f (T) = σlb(T);
2) T∗ has SVEP at every λ < σl f (T);
3) T∗ has SVEP at every λ < σ1DRΦ−(T);
4) σ1DRQ(T) = σ1DRΦ−(T).

Proof. 1) ⇐⇒ 2): Suppose that T∗ has SVEP at every λ < σl f (T). λ < σl f (T) implies that T − λI is lower
semi-Fredholm. T∗ has SVEP at λ, then d(T − λI) < ∞, see [1, Theorem 3.17]. So λ < σlb(T). Now, Suppose
that σl f (T) = σlb(T). Let λ < σl f (T), λ < σlb(T) then d(T − λI) < ∞, hence T∗ has SVEP at λ by [1].

3)⇐⇒ 4): Suppose that T∗ has SVEP at every λ < σ1DRΦ−(T). If λ < σ1DRΦ−(T), T − λI admits GKRD and
λ < accσl f (T) by [26, Theorem 2.6]. T∗ has SVEP at every λ < σ1DRΦ−(T), it follows that T∗ has SVEP at every
λ < σl f (T), then σlb(T) = σl f (T) so λ < accσlb(T). Therefore, T − λI is generalized Drazin Riesz surjective
[26, Theorem 2.5], λ < σ1DRQ(T) and since the reverse implication holds for every operator we conclude
that σ1DRQ(T) = σ1DRΦ−(T). Conversely, suppose that σ1DRQ(T) = σ1DRΦ−(T), if λ < σ1DRΦ−(T) then T − λI is
generalized Drazin surjective, so T∗ has SVEP at λ, by [26, Theorem 2.5].

1)⇐⇒ 4): Suppose that σl f (T) = σlb(T).
According to [14, Theorems 2.5 and 2.6] we have

λ < σ1DQ(T) ⇐⇒ T − λI is generalized Drazin Riesz surjective
⇐⇒ T − λI admits a GKRD and λ < accσlb(T)
⇐⇒ T − λI admits a GKRD and λ < accσl f (T)
⇐⇒ T − λI is generalized Drazin Riesz lower Fredholm
⇐⇒ λ < σ1DRΦ−(T).

Hence σ1DRQ(T) = σ1DRΦ−(T). Conversely, if σ1DRQ(T) = σ1DRΦ−(T), by 3) ⇐⇒ 4), T∗ has SVEP at every
λ < σ1DRΦ−(T). Since σ1DRΦ−(T) ⊆ σl f (T), T has SVEP at every λ < σl f (T), according to 1) ⇐⇒ 2) we obtain
the result.

As a direct consequence of the Theorems 2.8, 2.9 and [6, Corollary 2.1] we have the following corollary.

Corollary 2.10. Let T ∈ B(X). The statements are equivalent:
1) σe(T) = σb(T);
2) T and T∗ have SVEP at every λ < σe(T);
3) σBF(T) = σD(T);
4) T and T∗ have SVEP at every λ < σBF(T);
5) σ1D(T) = σpBF(T).
6) T and T∗ have SVEP at every λ < σpBF(T);
7) σ1DR(T) = σ1DRΦ(T).
8) T and T∗ have SVEP at every λ < σ1DRΦ(T);
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