Filomat 32:14 (2018), 4865–4873 https://doi.org/10.2298/FIL1814865K

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

A New Characterization of Browder's Theorem

Mohammed Karmouni^a, Abdelaziz Tajmouati^b

^aCadi Ayyad University, Multidisciplinary Faculty, Safi, Morocco. ^bSidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar Al Mahraz, Laboratory of Mathematical Analysis and Applications Fez, Morocco.

Abstract. We give a new characterization of Browder's theorem using spectra originated from Drazin-Fredholm theory.

1. Introduction and Preliminaries

Throughout, *X* denotes a complex Banach space, $\mathcal{B}(X)$ the Banach algebra of all bounded linear operators on *X*, let *I* be the identity operator, and for $T \in \mathcal{B}(X)$ we denote by T^* , N(T), R(T), $R^{\infty}(T) = \bigcap_{n \ge 0} R(T^n)$, $\rho(T)$, $\sigma(T)$ respectively the adjoint, the null space, the range, the hyper-range, the resolvent set and the spectrum of *T*.

Let *E* be a subset of *X*. *E* is said *T*-invariant if $T(E) \subseteq E$. We say that *T* is completely reduced by the pair (E, F) and we denote $(E, F) \in Red(T)$ if *E* and *F* are two closed *T*-invariant subspaces of *X* such that $X = E \oplus F$. In this case we write $T = T_{iE} \oplus T_{iF}$ and we say that *T* is the direct sum of T_{iE} and T_{iF} . An operator $T \in \mathcal{B}(X)$ is said to be semi-regular, if R(T) is closed and $N(T) \subseteq R^{\infty}(T)$ ([1]).

In the other hand, recall that an operator $T \in \mathcal{B}(X)$ admits a generalized Kato decomposition, (GKD for short), if there exists $(X_1, X_2) \in Red(T)$ such that T_{1X_1} is semi-regular and T_{1X_2} is quasi-nilpotent, in this case T is said a pseudo Fredholm operator. If we assume in the definition above that T_{1X_2} is nilpotent, then T is said to be of Kato type. Clearly, every semi-regular operator is of Kato type and a quasi-nilpotent operator has a GKD, see [17, 20] for more information about generalized Kato decomposition.

A bounded linear operator is called an upper semi-Fredholm (resp, lower semi Fredholm) if $dimN(T) < \infty$ and R(T) is closed (resp, $codimR(T) < \infty$). *T* is semi-Fredholm if it is a lower or upper semi-Fredholm operator. The index of a semi-Fredholm operator *T* is defined by ind(T) := dimN(T) - codimR(T). Also, *T* is a Fredholm operator if it is a lower and upper semi-Fredholm operator, and *T* is called a Weyl operator if it is a Fredholm of index zero.

The essential and Weyl spectra of *T* are closed and defined by :

 $\sigma_e(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not a Fredholm operator}\};$

 $\sigma_w(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not a Weyl operator}\}.$

²⁰¹⁰ Mathematics Subject Classification. Primary 47A53; Secondary 47A10

Keywords. Generalized Kato-Riesz decomposition, generalized Drazin-Riesz invertible, Browder's theorem, Riesz operator. Received: 09 February 2018; Accepted: 25 July 2018

Communicated by Snežana Č Živković-Zlatanović

Email addresses: med89karmouni@gmail.com (Mohammed Karmouni), abdelaziz.tajmouati@usmba.ac.ma (Abdelaziz Tajmouati)

Recall that an operator $R \in \mathcal{B}(X)$ is said to be Riesz if $R - \mu I$ is Fredholm for every non-zero complex number μ ([1]). Of course compact and quasi-nilpotent operators are particular cases of Riesz operators.

In [26], Živković-Zlatanović SČ and M D. Cvetković introduced and studied a new concept of Kato decomposition to extend the Mbektha concept to "generalized Kato-Riesz decomposition". In fact, an operator $T \in \mathcal{B}(X)$ admits a generalized Kato-Riesz decomposition, (GKRD for short), if there exists $(X_1, X_2) \in Red(T)$ such that T_{1X_1} is semi-regular and T_{1X_2} is Riesz. The generalized Kato-Riesz spectrum is defined by

 $\sigma_{qKR}(T) := \{\lambda \in \mathbb{C} : T - \lambda I \text{ does not admit a generalized Kato-Riesz decomposition}\}.$

Let $T \in \mathcal{B}(X)$, the ascent of T is defined by $a(T) = min\{p \in \mathbb{N} : N(T^p) = N(T^{p+1})\}$, if such p does not exist we let $a(T) = \infty$. Analogously the descent of T is $d(T) = min\{q \in \mathbb{N} : R(T^q) = R(T^{q+1})\}$, if such q does not exist we let $d(T) = \infty$ [19]. It is well known that if both a(T) and d(T) are finite then a(T) = d(T) and we have the decomposition $X = R(T^p) \oplus N(T^p)$ where p = a(T) = d(T).

An operator $T \in \mathcal{B}(X)$ is upper semi-Browder if T is upper semi-Fredholm and $a(T) < \infty$. If $T \in \mathcal{B}(X)$ is lower semi-Fredholm and $d(T) < \infty$ then T is lower semi-Browder. T is called Browder operator if it is a lower and an upper Browder operator.

An operator $T \in \mathcal{B}(X)$ is said to be B-Fredholm, if for some integer $n \ge 0$ the range $R(T^n)$ is closed and T_n , the restriction of T to $R(T^n)$ is a Fredholm operator. This class of operators, introduced and studied by Berkani et al. in a series of papers extends the class of semi-Fredholm operators ([11], [12]). T is said to be a B-Weyl operator if T_n is a Fredholm operator of index zero. The B-Fredholm and B-Weyl spectra are defined by

$$\sigma_{BF}(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not B-Fredholm}\};\$$

$$\sigma_{BW}(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not B-Weyl}\}.$$

Note that *T* is a B-Fredholm operator if there exists $(X_1, X_2) \in Red(T)$ such that T_{iX_1} is Fredholm and T_{iX_2} is nilpotent, see [11, Theorem 2.7]. Also, *T* is a B-Weyl operator if and only if T_{iX_1} is a Weyl operator and T_{iX_2} is a nilpotent operator.

More recently, B-Fredholm and B-Weyl operators were generalized to pseudo B-Fredholm and pseudo B-Weyl, see [13] [22][23] [25], precisely, *T* is a pseudo B-Fredholm operator, if there exists $(X_1, X_2) \in Red(T)$ such that T_{iX_1} is a Fredholm operator and T_{iX_2} is a quasi-nilpotent operator. *T* is said to be pseudo B-Weyl operator if there exists $(X_1, X_2) \in Red(T)$ such that T_{iX_1} is a Weyl operator and T_{iX_2} is a quasi-nilpotent operator. *T* is a quasi-nilpotent operator. The pseudo B-Fredholm and pseudo B-Weyl spectra are defined by:

$$\sigma_{pBF}(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not pseudo B-Fredholm}\};$$

$$\sigma_{nBW}(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not pseudo B-Weyl}\}.$$

Let $T \in \mathcal{B}(X)$, *T* is said to be Drazin invertible if there exist a positive integer *k* and an operator $S \in \mathcal{B}(X)$ such that

$$ST = TS$$
, $T^{k+1}S = T^k$ and $S^2T = S$.

Which is also equivalent to the fact that $T = T_1 \oplus T_2$; where T_1 is invertible and T_2 is nilpotent. The Drazin spectrum is defined by

$$\sigma_D(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not Drazin invertible } \}.$$

The concept of Drazin invertible operators has been generalized by Koliha [16]. In fact, $T \in \mathcal{B}(X)$ is generalized Drazin invertible if and only if $0 \notin acc(\sigma(T))$, where $acc(\sigma(T))$ is the set of accumulation points of $\sigma(T)$. This is also equivalent to the fact that there exists $(X_1, X_2) \in Red(T)$ such that T_{iX_1} is invertible and T_{iX_2} is quasi-nilpotent. The generalized Drazin spectrum is defined by

$$\sigma_{aD}(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not generalized Drazin invertible } \}.$$

The concept of analytical core for an operator has been introduced by Vrbova in [24] and study by Mbekhta [20, 21], that is the following set:

$$K(T) = \{x \in X : \exists (x_n)_{n \ge 0} \subset X \text{ and } \delta > 0 \text{ such that } x_0 = x, Tx_n = x_{n-1} \forall n \ge 1 \text{ and } ||x_n|| \le \delta^n ||x||\}$$

The quasi-nilpotent part of T, $H_0(T)$ is given by :

$$H_0(T) := \{x \in X; r_T(x) = 0\}$$
 where $r_T(x) = \lim_{n \to +\infty} ||T^n x||^{\frac{1}{n}}$.

In [14], M D. Cvetković and SČ. Živković-Zlatanović introduced and studied a new concept of generalized Drazin invertibility of bounded operators as a generalization of generalized Drazin invertible operators. In fact, an operator $T \in \mathcal{B}(X)$ is said to be generalized Drazin bounded below if $H_0(T)$ is closed and complemented with a subspace M in X such that $(M, H_0(T)) \in Red(T)$ and T(M) is closed which is equivalent to there exists $(M, N) \in Red(T)$ such that T_{iM} is bounded below and T_{iN} is quasi-nilpotent, see [14, Theorem 3.6]. An operator $T \in \mathcal{B}(X)$ is said to be generalized Drazin surjective if K(T) is closed and complemented with a subspace N in X such that $N \subseteq H_0(T)$ and $(K(T), N) \in Red(T)$ which is equivalent to there exists $(M, N) \in Red(T)$ such that T_{iM} is surjective and T_{iN} is quasi-nilpotent, see [14, Theorem 3.6]. The generalized Drazin bounded below and surjective spectra of $T \in \mathcal{B}(X)$ are defined respectively by:

 $\sigma_{aDM}(T) = \{\lambda \in \mathbb{C}, T - \lambda I \text{ is not generalized Drazin bounded below}\};$

 $\sigma_{aDQ}(T) = \{\lambda \in \mathbb{C}, T - \lambda I \text{ is not generalized Drazin surjective}\}.$

From [14], we have:

$$\sigma_{qD}(T) = \sigma_{qD\mathcal{M}}(T) \cup \sigma_{qDQ}(T)$$

Recently, Živković-Zlatanović SČ and M D. Cvetković [26] introduced and studied a new concept of pseudo-inverse to extend the Koliha concept, generalized Drazin bounded below, and generalized Drazin surjective to "generalized Drazin-Riesz invertible", "generalized Drazin-Riesz bounded below" and "generalized Drazin-Riesz surjective" respectively. In fact, an operator $T \in \mathcal{B}(X)$ is said to be generalized Drazin-Riesz invertible, if there exists $S \in \mathcal{B}(X)$ such that

$$TS = ST$$
, $STS = S$ and $TST - T$ is Riesz

Živković-Zlatanović SČ and M D. Cvetković also showed that *T* is generalized Drazin-Riesz invertible iff it has a direct sum decomposition $T = T_1 \oplus T_0$ with T_1 is invertible and T_0 is Riesz. If we assume in the characterization above that T_1 is bounded below (surjective), then *T* is said to be generalized Drazin-Riesz bounded below(generalized Drazin-Riesz surjective). The generalized Drazin-Riesz, generalized Drazin-Riesz bounded below and generalized Drazin-Riesz surjective spectra of $T \in \mathcal{B}(X)$ are defined respectively by:

 $\sigma_{qDR}(T) = \{\lambda \in \mathbb{C}, T - \lambda I \text{ is not generalized Drazin-Riesz invertible}\}$

 $\sigma_{qDRM}(T) = \{\lambda \in \mathbb{C}, T - \lambda I \text{ is not generalized Drazin-Riesz bounded below }\}$

 $\sigma_{qDRQ}(T) = \{\lambda \in \mathbb{C}, T - \lambda I \text{ is not generalized Drazin-Riesz surjective}\}$

Also , they introduced the definition of operators which are a direct sum of a Riesz operator and a Fredholm (Weyl, upper (lower) semi-Fredholm, upper (lower) semi-Weyl) operator([26]). These operators generalize the class of generalized Drazin invertible operators and also the class of generalized Drazin-Riesz invertible operators and hence, we shall call them generalized Drazin-Riesz Fredholm (generalized Drazin-Riesz Weyl, generalized Drazin-Riesz upper (lower) semi-Fredholm, generalized Drazin-Riesz (lower) semi-Weyl, ...) operators, and we shall use the following notations:

$$gDRR_*(X) = \{T \in \mathcal{B}(X) : T = T_1 \oplus T_2, T_1 \in R_*, T_2 \text{ is Riesz} \}$$

where $R_*(X)$ run the Fredholm class $\Phi(X)$, upper (lower) semi-Fredholm class $\Phi_+(X)$ ($\Phi_-(X)$), Weyl class W(X), upper (lower) semi-Weyl class $W_+(X)$ ($W_-(X)$).

4867

These classes of operators motivate the definition of several spectra. The generalized Drazin-Riesz lower(upper) semi-Weyl and generalized Drazin-Riesz Weyl spectra of $T \in \mathcal{B}(X)$ are defined respectively by:

 $\sigma_{qDRW-}(T) = \{\lambda \in \mathbb{C}, T - \lambda I \text{ is not generalized Drazin-Riesz lower semi-Weyl}\};$

 $\sigma_{gDRW+}(T) = \{\lambda \in \mathbb{C}, T - \lambda I \text{ is not generalized Drazin-Riesz upper semi-Weyl}\}.$

 $\sigma_{aDRW}(T) = \{\lambda \in \mathbb{C}, T - \lambda I \text{ is not generalized Drazin-Riesz Weyl}\}.$

From [26], we have:

 $\sigma_{qDRW}(T) = \sigma_{qDRW+}(T) \cup \sigma_{qDRW-}(T);$

The generalized Drazin-Riesz upper (lower) semi-Fredholm and generalized Drazin-Riesz Fredholm spectra of $T \in \mathcal{B}(X)$ are defined respectively by:

 $\sigma_{qDR\Phi_{+}}(T) = \{\lambda \in \mathbb{C}, T - \lambda I \text{ is not generalized Drazin-Riesz upper semi-Fredholm }\};$

 $\sigma_{qDR\Phi_{-}}(T) = \{\lambda \in \mathbb{C}, T - \lambda I \text{ is not generalized Drazin-Riesz lower semi-Fredholm}\}.$

 $\sigma_{qDR\Phi}(T) = \{\lambda \in \mathbb{C}, T - \lambda I \text{ is not generalized Drazin-Riesz Fredholm}\}.$

Also, from [26], we have:

$$\sigma_{qDR\Phi}(T) = \sigma_{qDR\Phi_+}(T) \cup \sigma_{qDR\Phi_-}(T)$$

$$\sigma_{gKR}(T) \subset \sigma_{gDR\Phi+}(T) \subset \sigma_{gDRW+}(T) \subset \sigma_{gDRM}(T)$$

$$\sigma_{gKR}(T) \subset \sigma_{gDR\Phi-}(T) \subset \sigma_{gDRW-}(T) \subset \sigma_{gDRQ}(T)$$

$$\sigma_{gKR}(T) \subset \sigma_{gDR\Phi}(T) \subset \sigma_{gDRW}(T) \subset \sigma_{gDR}(T)$$

A Banach space operator satisfies "Browder's theorem" if the Browder spectrum coincides with the Weyl spectrum. Browder's theorem has been studied by several authors (see [4], [3], [5], [6]). In this paper we shall give some characterizations of operators satisfying Browder's theorem. In particular, we shall see that Browder's theorem for a bounded linear operator is equivalent to the equality between the generalized Drazin-Riesz Weyl spectrum and generalized Drazin-Riesz spectrum. Also, we will give serval necessary and sufficient conditions for T to have equality between the spectra originated from Drazin-Fredholm theory.

2. Main Results

Recall that $T \in \mathcal{B}(X)$ is said to have the single valued extension property at $\lambda_0 \in \mathbb{C}$ (SVEP for short) if for every open neighbourhood $U \subseteq \mathbb{C}$ of λ_0 , the only analytic function $f : U \longrightarrow X$ which satisfies the equation (T - zI)f(z) = 0 for all $z \in U$ is the function $f \equiv 0$. An operator T is said to have the SVEP if T has the SVEP for every $\lambda \in \mathbb{C}$. Obviously, every operator $T \in \mathcal{B}(X)$ has the SVEP at every $\lambda \in \rho(T) = \mathbb{C} \setminus \sigma(T)$, hence T and T^* have the SVEP at every point of the boundary $\partial(\sigma(T))$ of the spectrum. Also, we have the implication

$$a(T) < \infty \Longrightarrow T$$
 has SVEP at 0.

$$d(T) < \infty \implies T^*$$
 has SVEP at 0.

In [26], the authors gave some examples showing that $\sigma_{gDRW+}(T) \subset \sigma_{gDRM}(T)$, $\sigma_{gDRW-}(T) \subset \sigma_{gDRQ}(T)$ and $\sigma_{gDRW}(T) \subset \sigma_{gDR}(T)$ can be proper. In the following results we give serval necessary and sufficient conditions for *T* to have equality.

Proposition 2.1. Let $T \in \mathcal{B}(X)$, then $\sigma_{qDRM}(T) = \sigma_{qDRW+}(T)$ if and only if T has SVEP at every $\lambda \notin \sigma_{qDRW+}(T)$

Proof. Assume that *T* has SVEP at every $\lambda \notin \sigma_{gDRW+}(T)$. If $\lambda \notin \sigma_{gDRW+}(T)$, then $T - \lambda I$ is generalized Drazin Riesz upper semi-Weyl, then there exists $(M, N) \in Red(T - \lambda I)$ such that $(T - \lambda I)_{|M}$ is semi-regular and $(T - \lambda I)_{|N}$ is Riesz. *T* has SVEP at every $\lambda \notin \sigma_{gDRW+}(T)$, it follows that $(T - \lambda I)_{|M}$ has the SVEP at 0, then $(T - \lambda I)_{|M}$ is bounded below, see [18, Corollary 3.1.7]. Hence $T - \lambda I$ is generalized Drazin Riesz bounded below, $\lambda \notin \sigma_{gDRM}(T)$, and since the reverse implication holds for every operator we conclude that $\sigma_{gDRM}(T) = \sigma_{gDRW+}(T)$. Conversely, suppose that $\sigma_{gDRM}(T) = \sigma_{gDRW+}(T)$. If $\lambda \notin \sigma_{gDRW+}(T)$ then $T - \lambda I$ is generalized Drazin Riesz bounded below so, *T* has SVEP at λ , by [26, Theorem 2.4].

We denote by $\sigma_{lb}(T)$ and $\sigma_{lw}(T)$ respectively the lower Browder and lower Weyl spectra. In the same way we have the following result.

Proposition 2.2. Let $T \in \mathcal{B}(X)$, then $\sigma_{aDRQ}(T) = \sigma_{aDRW-}(T)$ if and only if T^* has SVEP at every $\lambda \notin \sigma_{aDRW-}(T)$

Proof. Suppose that T^* has SVEP at every $\lambda \notin \sigma_{gDRW-}(T)$. If $\lambda \notin \sigma_{gDRW-}(T)$, then by [26, Theorem 2.6], $T - \lambda I$ admits GKRD and $\lambda \notin acc\sigma_{lw}(T)$. T^* has SVEP at every $\lambda \notin \sigma_{gDRW-}(T)$, then T^* has SVEP at every $\lambda \notin \sigma_{lw}(T)$, and so $\sigma_{lb}(T) = \sigma_{lw}(T)$. Then $\lambda \notin acc\sigma_{lb}(T)$. Therefore, $T - \lambda I$ is generalized Drazin Riesz surjective according to [26, Theorem 2.5], $\lambda \notin \sigma_{gDRQ}(T)$ and since the reverse implication holds for every operator we conclude that $\sigma_{gDRQ}(T) = \sigma_{gDRW-}(T)$. Conversely, suppose that $\sigma_{gDRQ}(T) = \sigma_{gDRW-}(T)$. If $\lambda \notin \sigma_{gDRW-}(T)$, then $T - \lambda I$ is generalized Riesz Drazin surjective so, T has SVEP at λ , by [26, Theorem 2.5].

As a consequence of the two previous results we have the following corollary.

Corollary 2.3. Let $T \in \mathcal{B}(X)$, then $\sigma_{qDR}(T) = \sigma_{qDRW}(T)$ if and only if T and T^* have the SVEP at every $\lambda \notin \sigma_{qDRW}(T)$

Proof. Suppose that $\sigma_{gDR}(T) = \sigma_{gDRW}(T)$. If $\lambda \notin \sigma_{gDRW}(T)$, then $T - \lambda I$ is generalized Riesz Drazin invertible so, T and T^* have SVEP at λ , by [26, Theorem 2.3]. The "if" is an immediate consequence of Proposition 2.1 and Proposition 2.2.

Moreover, we have the following result.

Proposition 2.4. Let $T \in \mathcal{B}(X)$, the following statements are equivalent : 1) $\sigma_{gDR}(T) = \sigma_{gDRW}(T)$; 2) *T* or *T*^{*} has SVEP at every $\lambda \notin \sigma_{gDRW}(T)$.

Proof. -If *T* has SVEP at every $\lambda \notin \sigma_{gDRW}(T)$. If $\lambda \notin \sigma_{gDRW}(T)$, then by [26, Theorem 2.6], $T - \lambda I$ admits GKRD and $\lambda \notin acc\sigma_w(T)$. *T* has SVEP at every $\lambda \notin \sigma_{gDRW}(T)$, then *T* has SVEP at every $\lambda \notin \sigma_w(T)$, and so $\sigma_b(T) = \sigma_w(T)$ [1, Theorem 4.23]. Thus $\lambda \notin acc\sigma_b(T)$. Therefore, $T - \lambda I$ is generalized Drazin Riesz invertible by [26, Theorem 2.3], $\lambda \notin \sigma_{gDR}(T)$ and since the reverse implication holds for every operator we conclude that $\sigma_{gDR}(T) = \sigma_{gDRW}(T)$.

-If T^* has SVEP at every $\lambda \notin \sigma_{gDRW}(T)$. Since $\sigma_b(T) = \sigma_b(T^*)$ and $\sigma_w(T) = \sigma_w(T^*)$, we have $\sigma_{gDR}(T) = \sigma_{gDRW}(T)$.

Conversely, suppose that $\sigma_{gDR}(T) = \sigma_{gDRW}(T)$. If $\lambda \notin \sigma_{gDRW}(T)$, then $T - \lambda I$ is generalized Riesz Drazin invertible so, T and T^* have SVEP at λ , by [26, Theorem 2.3]. \Box

We shall say that *T* satisfies Browder's theorem if $\sigma_w(T) = \sigma_b(T)$, or equivalently $acc\sigma(T) \subseteq \sigma_w(T)$, where $\sigma_b(T)$ is the Browder spectrum of *T* ([15]).

It is known from [2] that a-Browder's theorem holds for *T* if $\sigma_{uw}(T) = \sigma_{ub}(T)$, or equivalently $acc\sigma_{ap}(T) \subseteq \sigma_{uw}(T)$, where $\sigma_{ub}(T)$ and $\sigma_{uw}(T)$ are the upper semi-Browder and upper semi-Weyl spectra of *T*.

In the sequel, we characterize the equality between the generalized Drazin-Riesz invertible(surjective, bounded below) spectrum and generalized Drazin-Riesz Weyl(upper-lower Weyl) spectrum by means of the Browder's theorem(a-Browder's theorems), which give new characterizations for Browder's and a-Browder's theorems.

Theorem 2.5. Let $T \in \mathcal{B}(X)$, then

1) a-Browder's theorem holds for T if and only if $\sigma_{gDRM}(T) = \sigma_{gDRW+}(T)$. 2) a-Browder's theorem holds for T^{*} if and only if $\sigma_{gDRQ}(T) = \sigma_{gDRW-}(T)$. 3) Browder's theorem holds for T if and only if $\sigma_{gDR}(T) = \sigma_{gDRW}(T)$.

Proof. 1) Suppose that a-Browder's theorem holds for *T* implies $\sigma_{ub}(T) = \sigma_{uw}(T)$. Using [26, Theorems 2.4 and 2.6], we conclude that

 $\begin{array}{ll} \lambda \notin \sigma_{gDR\mathcal{M}}(T) & \Longleftrightarrow & T - \lambda I \text{ is generalized Drazin Riesz bounded below} \\ & \Leftrightarrow & T - \lambda I \text{ admits a GKRD and } \lambda \notin acc\sigma_{ub}(T) \\ & \Leftrightarrow & T - \lambda I \text{ admits a GKRD and } \lambda \notin acc\sigma_{uw}(T) \\ & \Leftrightarrow & T - \lambda I \text{ is generalized Drazin Riesz upper semi-Weyl} \\ & \Leftrightarrow & \lambda \notin \sigma_{gDR\mathcal{W}+}(T). \end{array}$

Hence $\sigma_{gDRM}(T) = \sigma_{gDRW+}(T)$. Conversely, if $\sigma_{gDRM}(T) = \sigma_{gDRW+}(T)$, from Proposition 2.1, *T* has SVEP at every $\lambda \notin \sigma_{gDRW+}(T)$. Since $\sigma_{gDRW+}(T) \subseteq \sigma_{uw}(T)$, *T* has SVEP at every $\lambda \notin \sigma_{uw}(T)$, so a-Browder's theorem holds for *T*, see [2, Theorem 4.34].

2) Suppose that a-Browder's theorem holds for T^* then $\sigma_{lb}(T) = \sigma_{lw}(T)$. Using [26, Theorems 2.5 and 2.6] we have

 $\begin{array}{ll} \lambda \notin \sigma_{gDRQ}(T) & \Longleftrightarrow & T - \lambda I \text{ is generalized Drazin Riesz surjective} \\ & \Leftrightarrow & T - \lambda I \text{ admits a GKRD and } \lambda \notin acc\sigma_{lb}(T) \\ & \Leftrightarrow & T - \lambda I \text{ admits a GKRD and } \lambda \notin acc\sigma_{lw}(T) \\ & \Leftrightarrow & T - \lambda I \text{ is generalized Drazin Riesz lower semi-Weyl} \\ & \Leftrightarrow & \lambda \notin \sigma_{gDRW-}(T). \end{array}$

Hence $\sigma_{gDRQ}(T) = \sigma_{gDRW^-}(T)$. Conversely, if $\sigma_{gDRQ}(T) = \sigma_{gDRW^-}(T)$, from Proposition 2.2, T^* has SVEP at every $\lambda \notin \sigma_{gDRW^-}(T)$. Since $\sigma_{gDRW^-}(T) \subseteq \sigma_{lw}(T)$, T^* has SVEP at every $\lambda \notin \sigma_{lw}(T)$, so a-Browder's theorem holds for T^* , see [2, Theorem 4.34].

3) Suppose that Browder's theorem holds for *T* then $\sigma_b(T) = \sigma_w(T)$. Using [26, Theorems 2.6 and 2.3] we have

 $\begin{array}{ll} \lambda \notin \sigma_{gDR}(T) & \Longleftrightarrow & T - \lambda I \text{ is generalized Drazin Riesz invertible} \\ & \Leftrightarrow & T - \lambda I \text{ admits a GKRD and } \lambda \notin acc\sigma_b(T) \\ & \Leftrightarrow & T - \lambda I \text{ admits a GKRD and } \lambda \notin acc\sigma_w(T) \\ & \Leftrightarrow & T - \lambda I \text{ is generalized Drazin Riesz Weyl} \\ & \Leftrightarrow & \lambda \notin \sigma_{gDRW}(T). \end{array}$

Hence $\sigma_{gDR}(T) = \sigma_{gDRW}(T)$. Conversely, if $\sigma_{gDR}(T) = \sigma_{gDRW}(T)$, from Corollary 2.3, *T* and *T*^{*} has SVEP at every $\lambda \notin \sigma_{gDRW}(T)$. Since $\sigma_{gDRW}(T) \subseteq \sigma_w(T)$, *T* has SVEP at every $\lambda \notin \sigma_w(T)$, so Browder's theorem holds for *T*, see [2, Theorem 4.23].

It will be said that generalized Browder's theorem holds for $T \in \mathcal{B}(X)$ if $\sigma_{BW}(T) = \sigma(T) \setminus \Pi(T)$, equivalently, $\sigma_{BW}(T) = \sigma_D(T)$, where $\Pi(T)$ is the set of all poles of the resolvent of T ([4]). A classical result of M. Amouch and H. Zguitti [9, Theorem 2.1] shows that Browder's theorem and generalized Browder's theorem are equivalent. According to the previous results, [6, Theorem 2.2], [3, Theorem 2.3] an the equivalent between Browder's theorem and generalized Browder's theorem [9, Theorem 2.1] [10][Proposition 2.2] we have the following theorem. **Theorem 2.6.** Let $T \in \mathcal{B}(X)$. The statements are equivalent: 1) Browder's theorem holds for T; 2) Browder's theorem holds for T^* ; 3) T has SVEP at every $\lambda \notin \sigma_w(T)$; 4) T^* has SVEP at every $\lambda \notin \sigma_w(T)$; 5) T has SVEP at every $\lambda \notin \sigma_{BW}(T)$; 6) generalized Browder's theorem holds for T; 7) T or T^* has SVEP at every $\lambda \notin \sigma_{gDRW}(T)$; 8) $\sigma_{gDR}(T) = \sigma_{gDRW}(T)$; 9) T or T^* has SVEP at every $\lambda \notin \sigma_{gDW}(T)$; 10) $\sigma_{aD}(T) = \sigma_{pBW}(T)$.

In the same way we have the following result.

Theorem 2.7. Let $T \in \mathcal{B}(X)$. The statements are equivalent: 1) a-Browder's theorem holds for T; 2) generalized a-Browder's theorem holds for T; 3) T has SVEP at every $\lambda \notin \sigma_{gDRW+}(T)$; 4) $\sigma_{gDRM}(T) = \sigma_{gDRW+}(T)$. 5) T has SVEP at every $\lambda \notin \sigma_{gDW+}(T)$; 6) $\sigma_{gDM}(T) = \sigma_{gDW+}(T)$.

We denote by $\sigma_{lf}(T)$ and $\sigma_{uf}(T)$, $T \in \mathcal{B}(X)$, respectively the lower and upper semi-Fredholm spectra. Note that $\sigma_{gDR\Phi+}(T) \subset \sigma_{gDRM}(T)$, $\sigma_{gDR\Phi-}(T) \subset \sigma_{gDRQ}(T)$ and $\sigma_{gDR\Phi}(T) \subset \sigma_{gDR}(T)$ are strict [26]. In this case we have the following theorems:

Theorem 2.8. Let $T \in \mathcal{B}(X)$. The statements are equivalent: 1) $\sigma_{uf}(T) = \sigma_{ub}(T)$; 2) T has SVEP at every $\lambda \notin \sigma_{uf}(T)$;

3) *T* has SVEP at every $\lambda \notin \sigma_{gDR\Phi+}(T)$; 4) $\sigma_{qDRM}(T) = \sigma_{qDR\Phi+}(T)$.

Proof. 1) \iff 2): Suppose that *T* has SVEP at every $\lambda \notin \sigma_{uf}(T)$. $\lambda \notin \sigma_{uf}(T)$, $T - \lambda I$ is upper semi-Fredholm. *T* has SVEP at λ , then $a(T - \lambda I) < \infty$, see [1, Theorem 3.16]. So $\lambda \notin \sigma_{ub}(T)$. Now, Suppose that $\sigma_{uf}(T) = \sigma_{ub}(T)$. Let $\lambda \notin \sigma_{uf}(T)$, $\lambda \notin \sigma_{ub}(T)$ then $a(T - \lambda I) < \infty$, hence *T* has SVEP at λ by [1].

3) \iff 4): Suppose that *T* has SVEP at every $\lambda \notin \sigma_{gDR\Phi+}(T)$. If $\lambda \notin \sigma_{gDR\Phi+}(T)$, $T - \lambda I$ is generalized Drazin Riesz upper Fredholm, then there exists $(M, N) \in Red(T)$ such that $(T - \lambda I)_{|M}$ is semi-regular and $(T - \lambda I)_{|N}$ is Riesz. *T* has SVEP at every $\lambda \notin \sigma_{gDR\Phi+}(T)$ implies $(T - \lambda I)_{|M}$ has the SVEP at 0, it follows that $(T - \lambda I)_{|M}$ is bounded below, see [18, Corollary 3.1.7]. Hence $T - \lambda I$ is generalized Drazin Riesz bounded below, $\lambda \notin \sigma_{gDR\Phi}(T)$, and since the reverse implication holds for every operator we conclude that $\sigma_{gDRM}(T) = \sigma_{gDR\Phi+}(T)$. Conversely, assume that $\sigma_{gDRM}(T) = \sigma_{gDR\Phi+}(T)$. If $\lambda \notin \sigma_{gDR\Phi+}(T)$ then $T - \lambda I$ is generalized Drazin Riesz bounded below so *T* has the SVEP at λ , by [26, Theorem 2.4].

1) \iff 4): Suppose that $\sigma_{uf}(T) = \sigma_{ub}(T)$.

According to [26, Theorems 2.4 and 2.6] we have

 $\lambda \notin \sigma_{qDM}(T) \iff T - \lambda I$ is generalized Drazin Riesz bounded below

 \iff $T - \lambda I$ admits a GKRD and $\lambda \notin acc\sigma_{ub}(T)$

- \iff $T \lambda I$ admits a GKRD and $\lambda \notin acc\sigma_{uf}(T)$
- \iff $T \lambda I$ is generalized Drazin Riesz Fredholm
- $\iff \lambda \notin \sigma_{gDR\Phi+}(T).$

Hence $\sigma_{gDR\Phi}(T) = \sigma_{gDR\Phi+}(T)$. Conversely, if $\sigma_{gDR\Phi}(T) = \sigma_{gDR\Phi+}(T)$, then by 3) \iff 4), *T* has SVEP at every $\lambda \notin \sigma_{gDR\Phi+}(T)$. Since $\sigma_{gDR\Phi+}(T) \subseteq \sigma_{uf}(T)$, *T* has SVEP at every $\lambda \notin \sigma_{uf}(T)$, 1) \iff 2) gives the result.

Theorem 2.9. Let $T \in \mathcal{B}(X)$. The statements are equivalent: 1) $\sigma_{lf}(T) = \sigma_{lb}(T)$; 2) T^* has SVEP at every $\lambda \notin \sigma_{lf}(T)$; 3) T^* has SVEP at every $\lambda \notin \sigma_{gDR\Phi-}(T)$; 4) $\sigma_{gDRQ}(T) = \sigma_{gDR\Phi-}(T)$.

Proof. 1) \iff 2): Suppose that T^* has SVEP at every $\lambda \notin \sigma_{lf}(T)$. $\lambda \notin \sigma_{lf}(T)$ implies that $T - \lambda I$ is lower semi-Fredholm. T^* has SVEP at λ , then $d(T - \lambda I) < \infty$, see [1, Theorem 3.17]. So $\lambda \notin \sigma_{lb}(T)$. Now, Suppose that $\sigma_{lf}(T) = \sigma_{lb}(T)$. Let $\lambda \notin \sigma_{lf}(T)$, $\lambda \notin \sigma_{lb}(T)$ then $d(T - \lambda I) < \infty$, hence T^* has SVEP at λ by [1].

3) \iff 4): Suppose that T^* has SVEP at every $\lambda \notin \sigma_{gDR\Phi-}(T)$. If $\lambda \notin \sigma_{gDR\Phi-}(T)$, $T - \lambda I$ admits GKRD and $\lambda \notin acc\sigma_{lf}(T)$ by [26, Theorem 2.6]. T^* has SVEP at every $\lambda \notin \sigma_{gDR\Phi-}(T)$, it follows that T^* has SVEP at every $\lambda \notin \sigma_{lf}(T)$, then $\sigma_{lb}(T) = \sigma_{lf}(T)$ so $\lambda \notin acc\sigma_{lb}(T)$. Therefore, $T - \lambda I$ is generalized Drazin Riesz surjective [26, Theorem 2.5], $\lambda \notin \sigma_{gDRQ}(T)$ and since the reverse implication holds for every operator we conclude that $\sigma_{gDRQ}(T) = \sigma_{gDR\Phi-}(T)$. Conversely, suppose that $\sigma_{gDRQ}(T) = \sigma_{gDR\Phi-}(T)$, if $\lambda \notin \sigma_{gDR\Phi-}(T)$ then $T - \lambda I$ is generalized Drazin surjective, so T^* has SVEP at λ , by [26, Theorem 2.5].

1) \iff 4): Suppose that $\sigma_{lf}(T) = \sigma_{lb}(T)$.

According to [14, Theorems 2.5 and 2.6] we have

 $\begin{array}{lll} \lambda \notin \sigma_{gDQ}(T) & \Longleftrightarrow & T - \lambda I \text{ is generalized Drazin Riesz surjective} \\ & \Leftrightarrow & T - \lambda I \text{ admits a GKRD and } \lambda \notin acc\sigma_{lb}(T) \\ & \Leftrightarrow & T - \lambda I \text{ admits a GKRD and } \lambda \notin acc\sigma_{lf}(T) \\ & \Leftrightarrow & T - \lambda I \text{ is generalized Drazin Riesz lower Fredholm} \\ & \Leftrightarrow & \lambda \notin \sigma_{gDR\Phi^-}(T). \end{array}$

Hence $\sigma_{gDRQ}(T) = \sigma_{gDR\Phi^-}(T)$. Conversely, if $\sigma_{gDRQ}(T) = \sigma_{gDR\Phi^-}(T)$, by 3) \iff 4), T^* has SVEP at every $\lambda \notin \sigma_{gDR\Phi^-}(T)$. Since $\sigma_{gDR\Phi^-}(T) \subseteq \sigma_{lf}(T)$, T has SVEP at every $\lambda \notin \sigma_{lf}(T)$, according to 1) \iff 2) we obtain the result. \Box

As a direct consequence of the Theorems 2.8, 2.9 and [6, Corollary 2.1] we have the following corollary.

Corollary 2.10. Let $T \in \mathcal{B}(X)$. The statements are equivalent: 1) $\sigma_e(T) = \sigma_b(T)$; 2) T and T^* have SVEP at every $\lambda \notin \sigma_e(T)$; 3) $\sigma_{BF}(T) = \sigma_D(T)$; 4) T and T^* have SVEP at every $\lambda \notin \sigma_{BF}(T)$; 5) $\sigma_{gD}(T) = \sigma_{pBF}(T)$. 6) T and T^* have SVEP at every $\lambda \notin \sigma_{pBF}(T)$; 7) $\sigma_{gDR}(T) = \sigma_{gDR\Phi}(T)$. 8) T and T^* have SVEP at every $\lambda \notin \sigma_{aDR\Phi}(T)$;

Acknowledgement: The authors thank the referee for his suggestions, remarks and comments thorough reading of the manuscript.

References

- [1] P.AIENA, Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer.Acad.Press, 2004.
- [2] P.AIENA, Semi-Fredholm operator, perturbation theory and localized SVEP, Merida. Venezuela, 2007.
- [3] P. AIENA, M T. BIONDI, Browder's Theorems through Localized SVEP, Mediterr. j. math. 2 (2005), 137-151.
- [4] P. AIENA, M T. BIONDI, C. CARPINTERO, On Drazin invertibility, Proc. Amer. Math. Soc, 136(8)(2008), 2839-2848.
- [5] P. AIENA, C. CARPINTERO, E. ROSAS, Some characterization of operators satisfying a-Browder theorem, J. Math. Anal. Appl. 311 (2005), 530-544.
- [6] M. AMOUCH, M. KARMOUNI, A. TAJMOUATI, Spectra originated from Fredholm theory and Browder's theorem, Commun. Korean Math. Soc. 33(3) (2018), 853-869.
- [7] M. AMOUCH, M. BERKANI, On the property (gw), Mediterr. J. Math. 5 (2008), 371-378.

- [8] M. AMOUCH, H. ZGUITTI, B-Fredholm and Drazin invertible operators through localized SVEP, Mathematica Bohemica.136(1)(2011), 39-49.
- [9] M. AMOUCH, H. ZGUITTI, On the equivalence of Browder's and generalized Browder's theorem, Glasgow Math J, 48(2006), 179-185.
- [10] M. AMOUCH, H. ZGUITTI, A note on the Browder's and Weyl's theorem, Acta Math. Sin. (Engl. Ser.) 24 (12) (2008), 2015-2020.
- [11] M. BERKANI, On a class of quasi-Fredholm operators, Integral Equations Operator Theory 34 (1999), 244-249.
- [12] M. BERKANI, Index of B-Fredholm operators and generalization of a Weyl theorem, Proc. Amer. Math. Soc. 130 (2002), 1717-1723.
- [13] E. Boasso, Isolated spectral points and Koliha-Drazin invertible elements in quotient Banach algebras and homomorphism ranges, Math. Proc. Roy. Irish Acad, 115A(2)(2015), 1-15.
- [14] M D. CVETKOVIĆ, SČ. ŽIVKOVIĆ-ZLATANOVIĆ, Generalized Kato decomposition and essential spectra, Complex Anal Oper Theory, 11 (6)(2017), 1425-1449.
- [15] R. E. HARTE, WOO YOUNG LEE, Another note on Weyl's theorem, Trans. Amer. math. Soc. 349 (1997), 2115-2124.
- [16] J. J. KOLIHA, Isolated spectral points, Proc. Amer. Math. Soc. 124(1996), 3417-3424.
- [17] J.P LABROUSSE, Les opérateurs quasi-Fredholm: une généralisation des opérateurs semi-Fredholm, Rend. Circ. Math. Palermo, 29(2)(1980), 161-258.
- [18] K.B.LAURSEN, M.M.NEUMANN, An introduction to Local Spectral Theory, Clarendon Press, Oxford, 2000.
- [19] D. LAY, A. TAYLOR, Introduction to functional analysis, J. Wiley and Sons, N. York. 1980.
- [20] M. MBEKHTA, Généralisation de la décomposition de Kato aux opérateurs paranormaux et spectraux, Glasgow Math J, 29 (1987) 159-175.
- [21] M. MBEKHTA, Sur la théorie spectrale locale et limite des nilpotents, Proc. Amer. Math. Soc. 110 (1990), 621-631.
- [22] A. TAJMOUATI, M. AMOUCH AND M. KARMOUNI, Symmetric difference between pseudo B-Fredholm spectrum and spectra originated from Fredholm theory, Filomat 31(16)(2017), 5057-5064.
- [23] A. TAJMOUATI, M. KARMOUNI On pseudo B-Fredholm and pseudo B-Weyl operators, Int. J. Pure Appl. Math. 108 (2016), 513-522.
- [24] P. VRBOVÁ, On local spectral properties of operators in Banach spaces, Czechoslovak Math. J. 23(98)(1973), 483-492.
- [25] H.ZARIOUH, H. ZGUITTI, On pseudo B-Weyl operators and generalized drazin invertible for operator matrices, Linear and Multilinear Algebra, 64, issue 7, (2016), 1245-1257.
- [26] SČ. ŽIVKOVIĆ-ZLATANOVIĆ, M D. CVETKOVIĆ Generalized Kato-Riesz decomposition and generalized Drazin-Riesz invertible operators, Linear Multilinear Algebra, 65(6)(2017), 1171-1193.