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Abstract. Let X be a normed space, G a nonempty bounded subset of X and {xn} a bounded sequence
in X. In this article, we introduce and discuss the concept of asymptotic farthest points of {xn} in G,
which is a new definition in abstract approximation theory. Then, by applying the topics of functional
analysis, we investigate the relation between this new concept and the concepts of extreme points and
convexity. In particular, one of the main purposes of this paper is to study conditions under which the
existence (uniqueness) of asymptotic farthest point of {xn} in G is equivalent to the existence (uniqueness)
of asymptotic farthest point of {xn} in ext(G) or co(G).

1. Introduction

All over this section, assume that X is a normed space. First, we recall the definition of farthest point in
normed spaces from [9]. Let G be a nonempty bounded subset of X and x ∈ X. A point z ∈ G is said to be
a farthest point from x in G if ‖x − z‖ = δ(x,G), where δ(x,G) = sup

1∈G ‖x − 1‖. The set of all farthest points
from x in G is denoted by FG(x).

The concept of farthest points is an important topics in approximation theory which has relation whit
the concepts of extreme points and convexity (see [7], [9], [11], [12] and [13]). Similarly, in this section and
Section 2, we define and discuss the new concept of asymptotic farthest points and in Sections 3 and 4, we
study the relation between this new concept and the concepts of extreme points and convexity. Now we
define the concept of asymptotic farthest point as follows:

Let G be a nonempty bounded subset of X and {xn} a bounded sequence in X. Consider the function
δa(·, {xn}) : X→ R defined by

δa(x, {xn}) = lim sup
n→∞

‖x − xn‖, x ∈ X.

The number supx∈G δa(x, {xn}) is said to be the asymptotic farthest distance of {xn} from G and is denoted
by δa(G, {xn}). A point z ∈ G is said to be an asymptotic farthest point of the sequence {xn} in the set G if
δa(z, {xn}) = δa(G, {xn}). The set of all asymptotic farthest points of {xn} in G is denoted by Fa(G, {xn}).

We note that the function δa(·, {xn}) : X → R in the above definition is nonexpansive (and hence
continuous) and convex. Thus, from Theorem 2.5.16 of [8] (The Mazur Theorem) and Proposition 2.5.2 of
[1], we infer this function is weakly lower semicontinuous.

Infact, with providing the above new concept, we can expand the topics of abstract approximation
theory. In Section 2, we give some results for this new concept.
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2. Some Results for Asymptotic Farthest Points

In this section, we obtain some results for the concept of asymptotic farthest points. This new concept
is different from the concept of simultaneous farthest points (see [5]). First, we give the following example:

Example 2.1. Let X = Cwith three real norms ‖x+iy‖1 = |x|+|y|, ‖x+iy‖2 =
√

x2 + y2 and ‖x+iy‖3 = max{|x|, |y|},
zn = (1 + 21−n)in−1 for all n ∈ N and G j = {z ∈ C : ‖z‖ j ≤ 1} for j = 1, 2, 3. Then Fa(G j, {zn}) = {z ∈ C : ‖z‖ j = 1}
for j = 1, 3 and Fa(G2, {zn}) = {±1,±i}. Also, we have Fa({z ∈ C : ‖z‖ j < 1}, {zn}) = ∅ for j = 1, 2, 3.

In the following of this section, let X be a normed space, G a nonempty bounded subset of X, {xn} a
bounded sequence in X and K a nonempty convex subset of X.

If G is closed, then it follows from the continuity of the function δa(·, {xn}) : X → R that Fa(G, {xn}) is
closed. Also, if G is compact, then by the continuity of this function, we have Fa(G, {xn}) is compact and
nonempty. But Example 2.1 shows that if G is convex, then Fa(G, {xn}) need not be convex. Now we give
the following remarks and lemmas:

Remark 2.2. Let x ∈ X. If xn → x, then Fa(G, {xn}) = FG(x).

Remark 2.3. Let x ∈ X. Then, xn → x if and only if δa(x, {xn}) = 0.

Remark 2.4. If δa(G, {xn}) = 0, then δa(x, {xn}) = 0 for all x ∈ G and so from the above remark, xn → x for all x ∈ G.
This implies that G is singleton and hence we have Fa(G, {xn}) = G.

Lemma 2.5. We have δa(G, {xn}) = δa(G, {xn}).

Proof. Because G ⊆ G, it follows that δa(G, {xn}) ≤ δa(G, {xn}). To prove the reversed inequality, let z ∈ G.
Then there exists a sequence {zi} in G such that zi → z. Since the function δa(·, {xn}) : X → R is continuous,
we have δa(z, {xn}) = limi→∞ δa(zi, {xn}) ≤ δa(G, {xn}). Now by taking the supremum over z ∈ G, we obtain
δa(G, {xn}) ≤ δa(G, {xn}) and so we are done.

Lemma 2.6. We have δa(G, {xn}) = δa(Gw, {xn}).

Proof. Because G ⊆ Gw, it follows that δa(G, {xn}) ≤ δa(Gw, {xn}). To prove the reversed inequality, let z ∈ Gw.
Then there exists a net {zα} in G such that zα

w
→ z. Since the function δa(·, {xn}) : X → R is weakly lower

semicontinuous, we have δa(z, {xn}) ≤ lim infα δa(zα, {xn}) ≤ δa(G, {xn}) ([8], Page 217). Now by taking the
supremum over z ∈ Gw, we obtain δa(Gw, {xn}) ≤ δa(G, {xn}) and so we are done.

In the following, we want to establish a characterization of the set Fa(G, {xn}) by balls. For this purpose,
we need to the following definition:

Definition 2.7. For any λ ≥ 0, define a far level set of {xn} in G, denoted by Fλa (G, {xn}), as follows:

Fλa (G, {xn}) = {x ∈ G : δa(G, {xn}) − λ ≤ δa(x, {xn})}.

Obviously, from the above definition, we have the following remarks:

Remark 2.8. For each λ > 0, the property of limit superior implies Fλa (G, {xn}) , ∅.

Remark 2.9. If 0 ≤ λ1 ≤ λ2, then Fλ1
a (G, {xn}) ⊆ Fλ2

a (G, {xn}).

Remark 2.10. If λ ≥ δa(G, {xn}), then Fλa (G, {xn}) = G.

Remark 2.11. For each ε > 0, we have

Fa(G, {xn}) = F0
a(G, {xn}) =

⋂
λ>0

Fλa (G, {xn}) =
⋂

0<λ<ε

Fλa (G, {xn}).
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The following theorem give us a characterization of the set of all asymptotic farthest points:

Theorem 2.12. Let δa(G, {xn}) > 0. Then

Fa(G, {xn}) =

 ⋂
0<λ<δa(G,{xn})

( ∞⋂
n=1

( ∞⋃
i=n

(
B(xi, δa(G, {xn}) − λ)

)c))⋂ G.

Proof. First, we show that for all 0 < λ < δa(G, {xn}), we have

( ∞⋂
n=1

( ∞⋃
i=n

(
B(xi, δa(G, {xn}) − λ)

)c))⋂
G ⊆ Fλa (G, {xn}). (1)

Let 0 < λ < δa(G, {xn}) and z ∈ (
⋂
∞

n=1(
⋃
∞

i=n(B(xi, δa(G, {xn}) − λ))c))
⋂

G. Then z ∈ G and there exists a
sequence {zn} in

⋂
∞

n=1(
⋃
∞

i=n(B(xi, δa(G, {xn}) − λ))c) such that zn → z. Let ε > 0 be given. Thus, there exists
N ∈N such that

‖zN − z‖ < ε. (2)

Because zN ∈
⋂
∞

n=1(
⋃
∞

i=n(B(xi, δa(G, {xn}) − λ))c), there exists a subsequence {xni } of {xn} such that

‖zN − xni‖ ≥ δa(G, {xn}) − λ for all i ∈N. (3)

On the other hand, by the triangle inequality, we have ‖zN − xni‖ ≤ ‖zN − z‖ + ‖z − xni‖ for all i ∈ N. Thus,
from (2) and (3), we obtain ‖z − xni‖ > δa(G, {xn}) − λ − ε for all i ∈N. Therefore,

lim sup
i→∞

‖z − xni‖ ≥ δa(G, {xn}) − λ − ε. (4)

Because {‖z − xni‖} is a subsequence of {‖z − xn‖}, this implies that δa(z, {xn}) = lim supn→∞ ‖z − xn‖ ≥

lim supi→∞ ‖z− xni‖ and hence it follows from (4) that δa(z, {xn}) + ε ≥ δa(G, {xn})− λ. Since ε > 0 is arbitrary,
we conclude δa(z, {xn}) ≥ δa(G, {xn}) − λ, i.e., z ∈ Fλa (G, {xn}) and so (1) is valid. Now from (1) and Remark
2.11, we have  ⋂

0<λ<δa(G,{xn})

( ∞⋂
n=1

( ∞⋃
i=n

(
B(xi, δa(G, {xn}) − λ)

)c))⋂ G ⊆ Fa(G, {xn}).

Conversely, assume that z ∈ Fa(G, {xn}). Then z ∈ G. Suppose, for contradiction,

z <
⋂

0<λ<δa(G,{xn})

( ∞⋂
n=1

( ∞⋃
i=n

(
B(xi, δa(G, {xn}) − λ)

)c))
.

Thus, there exists a 0 < λ < δa(G, {xn}) such that z < (
⋂
∞

n=1(
⋃
∞

i=n(B(xi, δa(G, {xn}) − λ))c)). Therefore, z <⋂
∞

n=1(
⋃
∞

i=n(B(xi, δa(G, {xn}) − λ))c) and so by De Morgan law, z ∈
⋃
∞

n=1(
⋂
∞

i=n B(xi, δa(G, {xn}) − λ)). Thus,
there exists n0 ∈ N such that ‖z − xi‖ < δa(G, {xn}) − λ for all i ≥ n0. Then δa(z, {xn}) = lim supn→∞ ‖z −
xn‖ ≤ δa(G, {xn}) − λ. Moreover, because z ∈ Fa(G, {xn}), it follows that δa(z, {xn}) = δa(G, {xn}) and hence
δa(G, {xn}) ≤ δa(G, {xn}) − λ, which is a contradiction. Therefore,

z ∈

 ⋂
0<λ<δa(G,{xn})

( ∞⋂
n=1

( ∞⋃
i=n

(
B(xi, δa(G, {xn}) − λ)

)c))⋂ G

and so we are done.
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At the end of this section, we discuss conditions under which Fa(G, {xn}) ⊆ ∂G (∂G is the set of all frontier
points of G). We remind that K is a nonempty convex subset of X. According to Theorem 3.4.6 of [10] (The
Maximum Principle), we have if f : K→ R is a convex function and attains a global maximum at an interior
point of K, then f is constant. Therefore, from the fact that K ⊆ K = K◦ ∪ ∂K, we conclude the following
proposition:

Proposition 2.13. If f : K → R is a nonconstant convex function, then the set of all points that f attains a global
maximum at them is a subset of ∂K.

Now we infer the following theorem:

Theorem 2.14. If X is uniformly convex and G convex, then Fa(G, {xn}) ⊆ ∂G.

Proof. Consider the convex function δa(·, {xn}) : G→ R. If this function is nonconstant, then from Proposition
2.13, we have Fa(G, {xn}) ⊆ ∂G. But otherwise, if this function is constant, then Fa(G, {xn}) = G and so
Fa(G, {xn}) is nonempty and convex. Thus, from uniformly convexity of X and Theorem 2.3.13 of [1], we
conclude Fa(G, {xn}) is singleton. Therefore, G is singleton and hence Fa(G, {xn}) ⊆ ∂G.

In the above theorem, if in addition, G is open, then Fa(G, {xn}) = ∅. Also, if X is finite-dimensional, then
the uniform convexity of X and convexity of G can be deleted in the above theorem. To prove this, we need
to the following two propositions:

Proposition 2.15. If X is finite-dimensional, then Fa(G, {xn}) ⊆
⋃

x∈A FG(x), where A is the set of all limits of the
convergent subsequences of {xn}.

Proof. Assume that z ∈ Fa(G, {xn}). Then z ∈ G and lim supn→∞ ‖z − xn‖ = supx∈G lim supn→∞ ‖x − xn‖. The
property of limit superior implies the existence of a subsequence {xni } of {xn} such that lim supn→∞ ‖z−xn‖ =
limi→∞ ‖z − xni‖. Thus, we obtain

lim
i→∞
‖z − xni‖ ≥ lim sup

n→∞
‖x − xn‖ for all x ∈ G. (5)

Because X is finite-dimensional and {xni } is bounded, by Theorem 1.7.5 of [1] (The Heine-Borel Theorem),
there exists a subsequence {xni j

} of {xni } such that xni j
→ x0 ∈ A as j→∞. Therefore, from (5), we conclude

‖z − x0‖ = lim
j→∞
‖z − xni j

‖ = lim
i→∞
‖z − xni‖ ≥ lim sup

n→∞
‖x − xn‖ ≥ lim

j→∞
‖x − xni j

‖ = ‖x − x0‖ for all x ∈ G.

Then ‖x0− z‖ ≥ δ(x0,G). On the other hand, since z ∈ G, we have δ(x0,G) ≥ ‖x0− z‖ and so δ(x0,G) = ‖x0− z‖,
i.e., z ∈ FG(x0). Hence z ∈

⋃
x∈A FG(x).

Proposition 2.16. Let x ∈ X. Then FG(x) ⊆ ∂G.

Proof. Obviously, if G is singleton, then FG(x) ⊆ ∂G. Assume that G is not singleton and z ∈ FG(x). Because
z ∈ G, we have z ∈ G. Suppose, for contradiction, z < Gc. Then there exists r > 0 such that B(z, r) ⊆ G. For
each n ∈ N, let zn = −1

n x + (1 + 1
n )z. Therefore, ‖zn − z‖ = 1

n‖x − z‖ for all n ∈ N. Then for sufficiently large
N ∈N, ‖zN − z‖ < r, i.e., zN ∈ B(z, r) ⊆ G. Since G is not singleton, we have x , z and so ‖x − z‖ > 0. Thus,

‖x − zN‖ = (1 +
1
N

)‖x − z‖ > ‖x − z‖ = δ(x,G),

which is a contradiction. Therefore, z ∈ Gc and so z ∈ G ∩ Gc = ∂G.

Now from Propositions 2.15 and 2.16, we obtain the following theorem:

Theorem 2.17. If X is finite-dimensional, then Fa(G, {xn}) ⊆ ∂G.

In the above theorem, if in addition, G is open, then Fa(G, {xn}) = ∅.
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3. The Relation between Asymptotic Farthest Points and Extreme Points

In this section and next section, the space X is described in any position, but always G is a nonempty
bounded subset of X and {xn} a bounded sequence in X. Also, for a subset A ⊆ X, ext(A) is the set of all
extreme points of A ([2], Definition 7.61) and co(A) (co(A)) is the convex (closed convex) hull of A.

One of the main purposes of this section is to discuss conditions under which ext(Fa(G, {xn})) , ∅. Also,
we investigate the relation between the existence (uniqueness) of asymptotic farthest point of {xn} in G and
the existence (uniqueness) of asymptotic farthest point of {xn} in ext(G).

Let X be a normed space. According to Lemma 7.64 of [2], if K is a nonempty convex subset of X and
f : K → R a convex function, then the set of all maximizers of f is either an extreme subset of K ([2],
Definition 7.61) or is empty. In a similar way, because the function δa(·, {xn}) : X→ R is convex, we conclude
that Fa(G, {xn}) is either an extreme subset of G (G is not necessarily convex) or is empty. In particular, if
Fa(G, {xn}) = {z}, then z ∈ ext(G). Now we infer the following proposition:

Proposition 3.1. Let X be a normed space. Then ext(Fa(G, {xn})) = Fa(G, {xn}) ∩ ext(G).

Proof. If Fa(G, {xn}) = ∅, we are done, so assume Fa(G, {xn}) , ∅. Since Fa(G, {xn}) ⊆ G, we have Fa(G, {xn}) ∩
ext(G) ⊆ ext(Fa(G, {xn})). Conversely, suppose z ∈ ext(Fa(G, {xn})). Then z ∈ Fa(G, {xn}) ⊆ G. Assume t ∈ (0, 1),
x, y ∈ G and z = tx + (1 − t)y. Because Fa(G, {xn}) is an extreme subset of G, it follows that x, y ∈ Fa(G, {xn})
and hence x = y = z. Therefore, z ∈ Fa(G, {xn}) ∩ ext(G) and so we are done.

In the following, we discuss conditions under which ext(Fa(G, {xn})) , ∅, by the above proposition, this
means conditions under which there exists at least one asymptotic farthest point of {xn} in G such that it is
an extreme point of G. For instance, from Lemma V.8.2 of [4], we have the following proposition:

Proposition 3.2. Let X be a normed space and Fa(G, {xn}) nonempty and weakly compact. Then ext(Fa(G, {xn})) , ∅.

Obviously, it follows from the above proposition that if X is a normed space and Fa(G, {xn}) nonempty
and finite, then ext(Fa(G, {xn})) , ∅. Also, from this proposition, we conclude the following corollary:

Corollary 3.3. Let X be a normed space and G compact. Then ext(Fa(G, {xn})) , ∅.

It follows from the above corollary that if X is a normed space and G finite, then ext(Fa(G, {xn})) , ∅. Also,
this corollary and Theorem 1.7.5 of [1] (The Heine-Borel Theorem) imply that if X is a finite-dimensional
normed space and G closed, then ext(Fa(G, {xn})) , ∅.

If we want to replace the compactness of G in Corollary 3.3 by weakly compactness of G, then we obtain
the following theorem:

Theorem 3.4. Let X be a real normed space, G weakly compact and Fa(G, {xn}) , ∅. Then ext(Fa(G, {xn})) , ∅.

Proof. Set C := {x ∈ X : δa(x, {xn}) ≤ δa(G, {xn})}. Since the function δa(·, {xn}) : X → R is convex, then C is
convex.
If δa(x, {xn}) = δa(G, {xn}) for all x ∈ G, then Fa(G, {xn}) = G and so from Lemma V.8.2 of [4], we are done. But
otherwise, assume that there exists x0 ∈ G such that δa(x0, {xn}) < δa(G, {xn}). Thus, by the continuity of the
function δa(·, {xn}) : X→ R, we have C◦ , ∅.
Consider the convex function 1 : C → R defined by 1(x) = δa(x, {xn}), x ∈ C, and suppose z ∈ Fa(G, {xn}).
This function is nonconstant and attains a global maximum at z. Thus, from Proposition 2.13, we obtain
z ∈ ∂C. Therefore, from the fact that ∂C ⊆ (C◦)c, we conclude z ∈ (C◦)c.
Now from Theorem 1 in Section 5.12 of [6] (Mazur’s Theorem, Geometric Hahn-Banach Theorem), there
exists a nonzero element f ∈ X∗ and a constant α ∈ R such that f (z) = α and f (x) < α for all x ∈ C◦, i.e., there
exists a closed hyperplane H = {x ∈ X : f (x) = α} in X such that z ∈ H and

H ∩ C◦ = ∅. (1)

It follows from Lemma 5.28 of [2] that

f (x) ≤ α for all x ∈ C. (2)
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Set K := H∩ Fa(G, {xn}). Then z ∈ K, i.e., K , ∅. We prove that K is weakly compact and hence we infer from
Lemma V.8.2 of [4] that ext(K) , ∅. To prove the weakly compactness of K, assume {zn} be a sequence in K.
Therefore, f (zn) = α and zn ∈ Fa(G, {xn}) ⊆ G for all n ∈ N. Because G is weakly compact, it follows from
Theorem 2.8.6 of [8] (The Eberlein-Smulian Theorem) that there exists a subsequence {zni } of {zn} and z0 ∈ G
such that zni

w
→ z0 as i→ ∞ and so we have f (zni )→ f (z0) as i→ ∞. Thus, f (z0) = α, i.e., z0 ∈ H. Suppose,

for contradiction, δa(z0, {xn}) < δa(G, {xn}). Then by the continuity of the function δa(·, {xn}) : X → R, we
have z0 ∈ C◦ and hence from (1), we obtain z0 < H, which is a contradiction. Therefore, z0 ∈ Fa(G, {xn}).
Thus, z0 ∈ K and so from Theorem 2.8.6 of [8] (The Eberlein-Smulian Theorem), K is weakly compact. This
implies that ext(K) , ∅.
Finally, we prove ext(K) ⊆ ext(Fa(G, {xn})) and so we infer ext(Fa(G, {xn})) , ∅. Let z′ ∈ ext(K). Then f (z′) = α
and z′ ∈ Fa(G, {xn}). Assume t ∈ (0, 1), x, y ∈ Fa(G, {xn}) and z′ = tx + (1− t)y. Since x, y ∈ Fa(G, {xn}), we have
x, y ∈ C. Therefore, from (2), we obtain f (x) ≤ α and f (y) ≤ α. If f (x) < α or f (y) < α, then we have

α = f (z′) = f (tx + (1 − t)y) = t f (x) + (1 − t) f (y) < tα + (1 − t)α = α,

which is a contradiction. Thus, f (x) = f (y) = α, i.e., x, y ∈ H. Then x, y ∈ K and so because z′ ∈ ext(K), we
conclude x = y = z′. Therefore, z′ ∈ ext(Fa(G, {xn})). This implies that ext(Fa(G, {xn})) , ∅.

Now we obtain the following corollary:

Corollary 3.5. Let X be a reflexive real normed space, G weakly closed and Fa(G, {xn}) , ∅. Then ext(Fa(G, {xn})) , ∅.

Proof. Because X is reflexive and G bounded and weakly closed, it follows from Theorem 2.8.6 of [8] (The
Eberlein-Smulian Theorem) and Corollary 2.8.9 of [8] that G is weakly compact and so by Theorem 3.4, we
are done.

In the following we discuss conditions under which we have Fa(G, {xn}) is nonempty (singleton) if and
only if Fa(ext(G), {xn}) is nonempty (singleton). Let X be a normed space. According to Proposition 3.1 of
[3], if K is a nonempty weakly compact subset of X and f : X → R a continuous convex function, then
supx∈K f (x) = supx∈ext(K) f (x). In a similar way, because the function δa(·, {xn}) : X → R is continuous and
convex, we infer the following proposition:

Proposition 3.6. Let X be a normed space and G weakly compact. Then δa(G, {xn}) = δa(ext(G), {xn}).

Obviously, from the above proposition and Proposition 3.1, we have the following corollary:

Corollary 3.7. Let X be a normed space and G weakly compact. Then

Fa(ext(G), {xn}) = Fa(G, {xn}) ∩ ext(G) = ext(Fa(G, {xn})).

Now we give the following two theorems:

Theorem 3.8. Let X be a real normed space and G weakly compact. Then Fa(G, {xn}) , ∅ if and only if

Fa(ext(G), {xn}) , ∅.

Proof. From Theorem 3.4 and Corollary 3.7 is obvious.

Theorem 3.9. Let X be a real normed space and G weakly compact. Then Fa(G, {xn}) = {z} if and only if
Fa(ext(G), {xn}) = {z}.

Proof. Suppose Fa(G, {xn}) = {z}. Then by Theorem 3.8, Fa(ext(G), {xn}) , ∅. On the other hand, from Corollary
3.7, we have Fa(ext(G), {xn}) ⊆ Fa(G, {xn}). Thus, we obtain Fa(ext(G), {xn}) = {z}. Conversely, assume that
Fa(ext(G), {xn}) = {z}. Then by Theorem 3.8, Fa(G, {xn}) , ∅. Set C := {x ∈ X : δa(x, {xn}) ≤ δa(G, {xn})}. Since
the function δa(·, {xn}) : X→ R is convex, then C is convex.
If δa(x, {xn}) = δa(G, {xn}) for all x ∈ ext(G), then Fa(ext(G), {xn}) = ext(G) and so ext(G) = {z}. Therefore,
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co(ext(G)) = {z} and hence from Theorem V.8.4 of [4] (The Krein-Milman Theorem), we have G = {z}. This
implies Fa(G, {xn}) = {z}. But otherwise, assume that there exists x0 ∈ ext(G) such that δa(x0, {xn}) < δa(G, {xn}).
Thus, by the continuity of the function δa(·, {xn}) : X→ R, we have C◦ , ∅.
Consider the convex function 1 : C → R defined by 1(x) = δa(x, {xn}), x ∈ C, and suppose z ∈ Fa(G, {xn}).
This function is nonconstant and attains a global maximum at z. Thus, from Proposition 2.13, we obtain
z ∈ ∂C. Therefore, from the fact that ∂C ⊆ (C◦)c, we conclude z ∈ (C◦)c.
Now from Theorem 1 in Section 5.12 of [6] (Mazur’s Theorem, Geometric Hahn-Banach Theorem), there
exists a nonzero element f ∈ X∗ and a constant α ∈ R such that f (z) = α and f (x) < α for all x ∈ C◦, i.e., there
exists a closed hyperplane H = {x ∈ X : f (x) = α} in X such that z ∈ H and

H ∩ C◦ = ∅. (3)

It follows from Lemma 5.28 of [2] that

f (x) ≤ α for all x ∈ C. (4)

Set K := H∩Fa(G, {xn}). Then z ∈ K, i.e., K , ∅. Similar to the proof of Theorem 3.4, from weakly compactness
of G and (3), it follows that K is weakly compact. Then by Lemma V.8.2 of [4], we conclude ext(K) , ∅ and
by Theorem V.8.4 of [4] (The Krein-Milman Theorem), we conclude

K ⊆ co(ext(K)). (5)

Also, similar to the proof of Theorem 3.4, from (4), we have ext(K) ⊆ ext(Fa(G, {xn})). Now from Corollary
3.7, we obtain

ext(K) ⊆ ext(Fa(G, {xn})) = Fa(ext(G), {xn}). (6)

If ext(K) contain more than one element, then by (6), we infer Fa(ext(G), {xn}) contain more than one element,
which is a contradiction. Thus, from the fact that ext(K) , ∅, we infer ext(K) is singleton. Therefore, from (5),
we have K is singleton. Infact, K = {z}. Then ext(K) = {z} and hence from (6), we conclude z ∈ Fa(ext(G), {xn}).
Thus, we have z = z. This implies Fa(G, {xn}) = {z}.

At the end of this section, we infer some results that say us under which conditions we have

ext(Fa(co(G), {xn})) , ∅.

These results will be used in Section 4.

Proposition 3.10. Let X be a reflexive real normed space and Fa(co(G), {xn}) , ∅. Then ext(Fa(co(G), {xn})) , ∅.

Proof. It follows from Theorem 2.5.16 of [8] (The Mazur Theorem) that co(G) is weakly closed. Thus, by
Corollary 3.5, we are done.

Proposition 3.11. Let X be a real Banach space, G weakly compact and Fa(co(G), {xn}) , ∅. Then

ext(Fa(co(G), {xn})) , ∅.

Proof. By Theorem 2.8.14 of [8] (The Krein-Smulian Weak Compactness Theorem), co(G) is weakly compact.
Therefore, from Theorem 3.4, we are done.

Proposition 3.12. Let X be a real normed space, co(G) weakly compact and Fa(co(G), {xn}) , ∅. Then

ext(Fa(co(G), {xn})) , ∅.

Proof. From Theorem 3.4 is obvious.
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4. Convexity Results

In this section, we obtain some convexity results for the new concept of asymptotic farthest points. In
particular, one of the main purposes of this section is to discuss conditions under which we have Fa(G, {xn})
is nonempty (singleton) if and only if Fa(co(G), {xn}) is nonempty (singleton). At the beginning of this
section, we give the following proposition:

Proposition 4.1. Let X be a normed space, x, y ∈ G and Fa(G, {xn}) ∩ L(x, y) , ∅. Then G ∩ L[x, y] ⊆ Fa(G, {xn})
(L(x, y) (L[x, y]) is the open (closed) line segment between x and y).

Proof. Suppose z ∈ Fa(G, {xn})∩L(x, y). Because Fa(G, {xn}) is an extreme subset of G, we have x, y ∈ Fa(G, {xn}).
Assume that z′ ∈ G ∩ L(x, y) and z , z′. Then there exist t, t′ ∈ (0, 1) such that z = tx + (1 − t)y and
z′ = t′x + (1 − t′)y. Therefore, we obtain

z =
t
t′

z′ + (1 −
t
t′

)y, (1)

z = (1 −
1 − t
1 − t′

)x +
1 − t
1 − t′

z′. (2)

Because z , z′, we have either t < t′ or t > t′. If t < t′, then from (1) and the fact that Fa(G, {xn}) is an
extreme subset of G, we conclude z′ ∈ Fa(G, {xn}). Also, if t > t′, then from (2) and the fact that Fa(G, {xn}) is
an extreme subset of G, we conclude z′ ∈ Fa(G, {xn}). Thus, we have G ∩ L[x, y] ⊆ Fa(G, {xn}).

In the above proposition, if in addition, G is convex, then L[x, y] ⊆ Fa(G, {xn}). Also, combining this
proposition with Theorem 2.14 or Theorem 2.17, we obtain the following corollaries, respectively:

Corollary 4.2. Let X be a uniformly convex normed space, G convex, x, y ∈ G and Fa(G, {xn}) ∩ L(x, y) , ∅. Then
L[x, y] ⊆ ∂G.

Corollary 4.3. Let X be a finite-dimensional normed space, x, y ∈ G and Fa(G, {xn})∩L(x, y) , ∅. Then G∩L[x, y] ⊆
∂G.

In the above corollary, if in addition, G is convex, then L[x, y] ⊆ ∂G.
In Lemmas 2.5 and 2.6, we showed that if X is a normed space, then δa(G, {xn}) = δa(G, {xn}) = δa(Gw, {xn}).

Now we give the following lemma:

Lemma 4.4. Let X be a normed space. Then δa(G, {xn}) = δa(co(G), {xn}).

Proof. Since G ⊆ co(G), it follows that δa(G, {xn}) ≤ δa(co(G), {xn}). To prove the reversed inequality, let
z ∈ co(G). Then there exist n ∈N, t1, t2, ..., tn ∈ [0, 1] and z1, z2, ..., zn ∈ G such that

∑n
i=1 ti = 1 and z =

∑n
i=1 tizi.

Because the function δa(·, {xn}) : X→ R is convex, we have

δa(z, {xn}) ≤
n∑

i=1

tiδa(zi, {xn}) ≤
n∑

i=1

tiδa(G, {xn}) = δa(G, {xn}).

Now by taking the supremum over z ∈ co(G), we obtain δa(co(G), {xn}) ≤ δa(G, {xn}) and so we are done.

Therefore, from the fact that co(G) = co(G) ([8], Page 21), we infer the following corollary:

Corollary 4.5. Let X be a normed space. Then we have

δa(G, {xn}) = δa(G, {xn}) = δa(Gw, {xn}) = δa(co(G), {xn}) = δa(co(G), {xn}).

We now establish the relation between the existence (uniqueness) of asymptotic farthest point of {xn} in
G and the existence (uniqueness) of asymptotic farthest point of {xn} in co(G).
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Theorem 4.6. Let X be a normed space. Then we have Fa(G, {xn}) , ∅ if and only if Fa(co(G), {xn}) , ∅.

Proof. Suppose Fa(G, {xn}) , ∅. Then there exists z ∈ G ⊆ co(G) such that δa(z, {xn}) = δa(G, {xn}). Thus, by
Lemma 4.4, we have δa(z, {xn}) = δa(co(G), {xn}) and so z ∈ Fa(co(G), {xn}), i.e., Fa(co(G), {xn}) , ∅. Conversely,
assume that Fa(co(G), {xn}) , ∅. Then there exists z ∈ co(G) such that δa(z, {xn}) = δa(co(G), {xn}). Thus, by
Lemma 4.4, we have δa(z, {xn}) = δa(G, {xn}). If z ∈ G, then we are done. But if z < G, then there exist n ≥ 2,
t1, t2, ..., tn ∈ (0, 1) and z1, z2, ..., zn ∈ G such that

∑n
i=1 ti = 1 and z =

∑n
i=1 tizi. Suppose, for contradiction,

δa(z j, {xn}) < δa(G, {xn}) for some j ∈ {1, 2, ...,n}. Then by the convexity of the function δa(·, {xn}) : X→ R, we
have

δa(G, {xn}) = δa(z, {xn}) ≤
n∑

i=1

tiδa(zi, {xn}) <
n∑

i=1

tiδa(G, {xn}) = δa(G, {xn}),

which is a contradiction. Thus, δa(zi, {xn}) = δa(G, {xn}) for all i ∈ {1, 2, ...,n} and so zi ∈ Fa(G, {xn}) for all
i ∈ {1, 2, ...,n}, i.e., Fa(G, {xn}) , ∅.

Theorem 4.7. Let X be a normed space. Then we have Fa(G, {xn}) = {z} if and only if Fa(co(G), {xn}) = {z}.

Proof. Suppose Fa(co(G), {xn}) = {z}. Then by Theorem 4.6, Fa(G, {xn}) , ∅. On the other hand, from
Lemma 4.4, we have Fa(G, {xn}) ⊆ Fa(co(G), {xn}). Thus, we obtain Fa(G, {xn}) = {z}. Conversely, assume that
Fa(G, {xn}) = {z}. Then by Theorem 4.6, Fa(co(G), {xn}) , ∅. Let z′ ∈ Fa(co(G), {xn}). Therefore, z′ ∈ co(G)
and δa(z′, {xn}) = δa(co(G), {xn}). Thus, from Lemma 4.4, we have δa(z′, {xn}) = δa(G, {xn}). Suppose, for
contradiction, z′ < G. Then there exist n ≥ 2, t1, t2, ..., tn ∈ (0, 1) and z1, z2, ..., zn ∈ G such that

∑n
i=1 ti = 1 and

z′ =
∑n

i=1 tizi. Similar to the proof of Theorem 4.6, we have zi ∈ Fa(G, {xn}) for all i ∈ {1, 2, ...,n}. Thus, zi = z
for all i ∈ {1, 2, ...,n} and hence z′ = z. Then z < G, which is a contradiction. Therefore, we have z′ ∈ G and
so z′ ∈ Fa(G, {xn}). Thus, z′ = z and hence we conclude Fa(co(G), {xn}) = {z}.

The importance of the above results is that these two theorems say us for study conditions under which
Fa(G, {xn}) is nonempty or singleton, we can assume that G is convex. If co(G) is replaced by G or Gw or
co(G), then Theorems 4.6 and 4.7 are not valid. To confirm this, we note to the following example:

Example 4.8. Let X = Rwith usual metric and xn = (−1)n for all n ∈N. Then Fa((−1, 1), {xn}) = ∅, Fa([−1, 1), {xn})
= {−1}, Fa((−1, 1], {xn}) = {1} and Fa([−1, 1], {xn}) = {−1, 1}.

Now we discuss conditions under which the existence (uniqueness) of asymptotic farthest point of {xn}

in G is equivalent to the existence (uniqueness) of asymptotic farthest point of {xn} in co(G).

Theorem 4.9. Let X be a real Banach space and G weakly compact. Then Fa(G, {xn}) , ∅ if and only if Fa(co(G), {xn}) ,
∅.

Proof. Suppose Fa(G, {xn}) , ∅. Then there exists z ∈ G ⊆ co(G) such that δa(z, {xn}) = δa(G, {xn}). Thus, by
Corollary 4.5, we have δa(z, {xn}) = δa(co(G), {xn}) and so z ∈ Fa(co(G), {xn}), i.e., Fa(co(G), {xn}) , ∅. Conversely,
assume that Fa(co(G), {xn}) , ∅. Then from Proposition 3.11, we conclude ext(Fa(co(G), {xn})) , ∅. Thus, by
Proposition 3.1, there exists z ∈ Fa(co(G), {xn}) such that z ∈ ext(co(G)). Because z ∈ Fa(co(G), {xn}), we have
δa(z, {xn}) = δa(co(G), {xn}) and hence from Corollary 4.5, we obtain δa(z, {xn}) = δa(G, {xn}). On the other
hand, since X is a Banach space, G weakly compact (and so weakly closed) and z ∈ ext(co(G)), it follows
from Theorem 2.8.14 of [8] (The Krein-Smulian Weak Compactness Theorem) and Corollary 2.10.16 of [8]
that z ∈ G. This implies z ∈ Fa(G, {xn}), i.e., Fa(G, {xn}) , ∅.

Theorem 4.10. Let X be a real normed space, G weakly closed and co(G) weakly compact. Then Fa(G, {xn}) , ∅ if
and only if Fa(co(G), {xn}) , ∅.

Proof. Similar to the beginning of the proof of Theorem 4.9, if Fa(G, {xn}) , ∅, then Fa(co(G), {xn}) , ∅.
Conversely, assume that Fa(co(G), {xn}) , ∅. Thus, from Proposition 3.12, we conclude ext(Fa(co(G), {xn})) , ∅.
Therefore, by Proposition 3.1, there exists z ∈ Fa(co(G), {xn}) such that z ∈ ext(co(G)). Since z ∈ Fa(co(G), {xn}),
we have δa(z, {xn}) = δa(co(G), {xn}) and so from Corollary 4.5, we obtain δa(z, {xn}) = δa(G, {xn}). On the other
hand, because G is weakly closed, co(G) weakly compact and z ∈ ext(co(G)), it follows from Corollary 2.10.16
of [8] that z ∈ G. This implies z ∈ Fa(G, {xn}), i.e., Fa(G, {xn}) , ∅.
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Theorem 4.11. Let X be a real normed space, G weakly closed and co(G) weakly compact. Then Fa(G, {xn}) = {z} if
and only if Fa(co(G), {xn}) = {z}.

Proof. Suppose Fa(co(G), {xn}) = {z}. Then by Theorem 4.10, Fa(G, {xn}) , ∅. On the other hand, from
Corollary 4.5, we have Fa(G, {xn}) ⊆ Fa(co(G), {xn}). Thus, we obtain Fa(G, {xn}) = {z}. Conversely, assume
that Fa(G, {xn}) = {z}. Then by Theorem 4.10, Fa(co(G), {xn}) , ∅. Set C := {x ∈ X : δa(x, {xn}) ≤ δa(G, {xn})}.
Since the function δa(·, {xn}) : X→ R is convex, then C is convex.
If δa(x, {xn}) = δa(G, {xn}) for all x ∈ G, then Fa(G, {xn}) = G and so G = {z}. Therefore, co(G) = {z} and hence
Fa(co(G), {xn}) = {z}. But otherwise, assume that there exists x0 ∈ G such that δa(x0, {xn}) < δa(G, {xn}). Thus,
by the continuity of the function δa(·, {xn}) : X→ R, we have C◦ , ∅.
Consider the convex function 1 : C→ R defined by 1(x) = δa(x, {xn}), x ∈ C, and suppose z ∈ Fa(co(G), {xn}).
This function is nonconstant and attains a global maximum at z. Thus, from Proposition 2.13, we obtain
z ∈ ∂C. Therefore, from the fact that ∂C ⊆ (C◦)c, we conclude z ∈ (C◦)c.
Now from Theorem 1 in Section 5.12 of [6] (Mazur’s Theorem, Geometric Hahn-Banach Theorem), there
exists a nonzero element f ∈ X∗ and a constant α ∈ R such that f (z) = α and f (x) < α for all x ∈ C◦, i.e., there
exists a closed hyperplane H = {x ∈ X : f (x) = α} in X such that z ∈ H and

H ∩ C◦ = ∅. (3)

It follows from Lemma 5.28 of [2] that

f (x) ≤ α for all x ∈ C. (4)

Set K := H ∩ Fa(co(G), {xn}). Then z ∈ K, i.e., K , ∅. Similar to the proof of Theorem 3.4, from weakly
compactness of co(G) and (3), it follows that K is weakly compact. Then by Lemma V.8.2 of [4], we conclude
ext(K) , ∅ and by Theorem V.8.4 of [4] (The Krein-Milman Theorem), we conclude

K ⊆ co(ext(K)). (5)

Also, similar to the proof of Theorem 3.4, from (4), it follows that ext(K) ⊆ ext(Fa(co(G), {xn})). Now from
Proposition 3.1 and Corollary 2.10.16 of [8], we obtain

ext(K) ⊆ ext(Fa(co(G), {xn})) = Fa(co(G), {xn}) ∩ ext(co(G)) ⊆ Fa(co(G), {xn}) ∩ G. (6)

If ext(K) contain more than one element, then from (6), we conclude Fa(G, {xn}) contain more than one
element, which is a contradiction. Thus, from the fact that ext(K) , ∅, we infer ext(K) is singleton. Therefore,
from (5), we have K is singleton. Infact, K = {z}. Then ext(K) = {z} and hence from (6), we conclude
z ∈ Fa(G, {xn}). Thus, we have z = z. This implies Fa(co(G), {xn}) = {z}.

From the above theorem and Theorem 2.8.14 of [8] (The Krein-Smulian Weak Compactness Theorem),
we obtain the following corollary:

Corollary 4.12. Let X be a real Banach space and G weakly compact. Then Fa(G, {xn}) = {z} if and only if
Fa(co(G), {xn}) = {z}.

At the end of this section, we discuss conditions under which Fa(Gw, {xn}) , ∅.

Theorem 4.13. Let X be a reflexive real normed space and Fa(co(G), {xn}) , ∅. Then Fa(Gw, {xn}) , ∅.

Proof. We know co(G) is weakly closed. Also, co(G) is bounded. Then from reflexivity of X, Theorem
2.8.6 of [8] (The Eberlein-Smulian Theorem) and Corollary 2.8.9 of [8], we obtain co(G) is weakly compact.
Therefore, from Corollary 2.10.16 of [8], we have ext(co(G)) ⊆ Gw. On the other hand, from Proposition
3.10, ext(Fa(co(G), {xn})) , ∅. Thus, by Proposition 3.1, there exists z ∈ Fa(co(G), {xn}) such that z ∈ ext(co(G)).
Therefore, from Corollary 4.5, we have z ∈ Fa(Gw, {xn}). This implies Fa(Gw, {xn}) , ∅.

Theorem 4.14. Let X be a real normed space, co(G) weakly compact and Fa(co(G), {xn}) , ∅. Then Fa(Gw, {xn}) , ∅.

Proof. It follows from Corollary 2.10.16 of [8] that ext(co(G)) ⊆ Gw. On the other hand, from Proposition
3.12, ext(Fa(co(G), {xn})) , ∅. Thus, by Proposition 3.1, there exists z ∈ Fa(co(G), {xn}) such that z ∈ ext(co(G)).
Therefore, from Corollary 4.5, we have z ∈ Fa(Gw, {xn}). This implies Fa(Gw, {xn}) , ∅.
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