Filomat 32:18 (2018), 6281–6287 https://doi.org/10.2298/FIL1818281G

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Generalised CR-submanifolds of a LP-Sasakian Manifolds

Gopal Ghosh^a, Chiranjib Dey^b

^aDepartment of Pure Mathematics, University of Calcutta, 35, B. C. Road, Kolkata-700019, West Bengal, India ^b Dhamla Jr. High School, Dhamla, Hoogly, Pin-712406, West Bengal, India.

Abstract. The study of CR-submanifolds of a Kaehler manifold was initiated by Bejancu [1]. Since then many papers have appeared on CR-submanifolds. The aim of the present paper is to study generalised CR-submanifolds of a LP-Sasakian manifolds.

1. Introduction

Many authors have studied the geometry of CR-submanifolds of Kaehler, Sasakian and trans-Sasakian manifolds. The main ones can be found in [12]. Prasad [4], Prasad and Ojha [15] studied submanifolds of a LP-Sasakian manifolds. The geometry of CR-submanifold of a LP-Sasakian manifolds have been studied by several authors such as De and Sengupta [16], Ozgur et al. [5], Ahmad [13] and Ahmad et al. [14]. Mihai [7] introduced a new class of submanifolds called "Generalised CR-submanifoldss" of a Kaehler manifold. Mihai [8] also studied generalised CR-submanifolds of a Sasakian manifold. In 2001, Sengupta and De [3] studied generalised CR-submanifol of a trans-Sasakian manifolds. Motivated by the above studies in the present paper we study the leaves and integrability conditions of the distributions on generalised CR-submanifolds.

2. LP-Sasakian manifolds

Matsumoto [9] introduced the notion of LP-Sasakian manifolds or in short *LP*-Sasakian manifolds. An example of a five dimensional LP-Sasakian manifold was given by Matsumoto, Mihai and Rosaca in [10]. Let *M* be an *n*-dimensional differential manifold endowed with a (1, 1) tensor field ϕ , a vector field ξ , a 1-form η and a Lorentzian metric *g* of type (0, 2) such that for each point $p \in M$, the tensor $g_p: T_pM \times T_pM \to \mathbb{R}$ is a non-degenerate inner product of signature (-, +, +, ..., +), where T_pM denotes the tangent space of *M* at *p* and \mathbb{R} is the real number space which satisfies the following relations

$$\phi^2(X) = X + \eta(X)\xi, \ \eta(\xi) = -1, \tag{1}$$

$$g(X,\xi) = \eta(X), \ g(\phi X,\phi Y) = g(X,Y) + \eta(X)\eta(Y)$$
⁽²⁾

²⁰¹⁰ Mathematics Subject Classification. 53C25, 53C15

Keywords. LP-Sasakian manifolds, generalised CR-submanifolds.

Received: 15 June 2018; Accepted: 24 September 2018

Communicated by Ljubica Velimirović

Email addresses: ghoshgopal.pmath@gmail.com (Gopal Ghosh), dey9chiranjib@gmail.com (Chiranjib Dey)

for all vector fields *X*, *Y*. Then such a structure (ϕ , ξ , η , g) is termed as Lorentzian almost paracontact structure and the manifold with the structure (ϕ , ξ , η , g) is called a Lorentzian almost paracontact manifold [9]. In the Lorentzian almost paracontact manifold *M*, the following relations hold [9]:

$$\phi\xi = 0, \ \eta(\phi X) = 0, \tag{3}$$

$$\phi(X,Y) = \phi(Y,X),\tag{4}$$

where $\phi(X, Y) = g(X, \phi Y)$.

A Lorentzian almost paracontact manifold *M* endowed with the structure (φ , ξ , η , g) is called an LP-Sasakian manifold [9] if

$$(\nabla_X \phi)Y = g(\phi X, \phi Y)\xi + \eta(Y)\phi^2 X,$$
(5)

where ∇ denotes the operator of covariant differentiation with respect to the Lorentzian metric *g*. In an LP-Sasakian manifold *M* with the structure (ϕ , ξ , η , *g*), it is easily seen that [9]

$$\nabla_X \xi = \phi X,\tag{6}$$

$$(\nabla_X \eta)(Y) = g(\phi X, Y) = (\nabla_Y \eta)(X). \tag{7}$$

for all vector fields *X*, *Y* on *M*. LP-Sasakian manifolds have been studied by several authors such as ([11], [6], [2]) and many others.

3. Generalised CR-submanifolds of LP-Sasakian manifolds

Let *M* be an *m*-dimensional submanifold isometrically immersed in a LP-Sasakian manifold \overline{M} such that the structure vector field ξ of \overline{M} is tangent to the submanifold *M*. We denote by { ξ } the 1-dimensional distribution spanned by ξ on *M* and by { ξ }^{\perp} the complementary orthogonal distribution to { ξ } in *T*(*M*).

For any $X \in T(M)$ we have $g(\phi X, \xi) = 0$. Then we put

$$\phi X = bX + cX,\tag{8}$$

where $bX \in \{\xi\}^{\perp}$ and $cX \in T^{\perp}(M)$. Thus $X \to bX$ is an endomorphism of the tangent bundle T(M) and $X \to cX$ is a normal bundle valued 1-form on M.

Definition 3.1. [7] A submanifold M of an almost contact metric manifold \overline{M} with almost contact metric structure (ϕ, ξ, η, g) is said to be a generalised CR-submanifold if

$$D_x^{\perp} = T_x(M) \cap \phi T_x^{\perp}(M); x \in M$$

defines a differentiable subbundle of $T_x(M)$ *. Thus for* $X \in D^{\perp}$ *one has* bX = 0*.*

We denote by *D* the complementary orthogonal subbundle to $D^{\perp} \oplus \{\xi\}$ in T(M). For any $X \in D$, $bX \neq 0$. Also we have bD = D.

Thus for a generalised CR-submanifold *M* we have the orthogonal decomposition

$$T(M) = D \oplus D^{\perp} \oplus \{\xi\}.$$

Any vector field X tangent to M can be decomposed as

$$X = PX + QX + \eta(X)\xi,\tag{9}$$

where *PX* and *QX* belong to the distribution D and D^{\perp} , respectively. For any vector field N normal to M, we put

$$\phi N = tN + fN,\tag{10}$$

Where tN and fN denotes the tangential and normal component of ϕN . Now, we denote by $\overline{\nabla}$ the Riemannian connection on \overline{M} with respect to the Riemannian metric g. The linear connection induced by $\overline{\nabla}$ on the normal bundle $T^{\perp}(M)$ is denoted by ∇^{\perp} . Then the equations of Gauss and Weingarten are given by [12]

$$\bar{\nabla}_X Y = \bar{\nabla}_X Y + h(X, Y) \tag{11}$$

and

$$\bar{\nabla}_X N = -A_N X + \nabla_X^\perp N + \eta(N) X,\tag{12}$$

for $X, Y \in T(M), N \in TM^{\perp}$, h (respectively A_N) is the second fundamental form (respectively tensor) of M in \overline{M} and ∇^{\perp} denotes the operator of the normal connection. Moreoverted by these tensor fields are related by

$$g(h(X,Y),N) = g(A_N X,Y),$$
(13)

for $X, Y \in T(M)$.

We denote

$$u(X,Y) = \nabla_X bPY - A_{cPY}X - A_{\phi QY}X.$$

Theorem 3.2. Let M be a generalised CR-submanifold of LP-Sasakian manifold \overline{M} . Then we have

$$P(u(X,Y)) - bP\nabla_X Y - P \ th(X,Y) = \eta(Y)PX,$$
(14)

$$Q(u(X,Y)) - Q th(X,Y) = \eta(Y)QX,$$
(15)

$$\eta(u(X,Y)) = g(\phi X, \phi Y) \tag{16}$$

$$h(X, bPY) + \nabla_X^{\perp} cPY + \nabla_X^{\perp} \phi QY - cP\nabla_X Y - \phi Q\nabla_X Y - fh(X, Y) = 0,$$
(17)

for $X, Y \in T(M)$.

Proof. Making use of (8), (9), (10), (11) and (12) in (5)

$$\nabla_{X}bPY - bP\nabla_{X}Y + \nabla_{X}^{\perp}cPY - cP\nabla_{X}Y - A_{cPY}X$$

- $A_{\phi QY}X + \nabla_{X}^{\perp}\phi QY - \phi Q\nabla_{X}Y + h(X, bPY) - Pth(X, Y)$
- $Qth(X, Y) - fh(X, Y) = g(X, Y)\xi + \eta(Y)X + 2\eta(X)\eta(Y)\xi.$ (18)

Then equation (14)-(17) follows by taking components on each of the vector bundles $D, D^{\perp}, \{\xi\}$ and $T^{\perp}(M)$ respectively. \Box

Theorem 3.3. Let M be a generalised CR-submanifold of LP-Sasakian manifold \overline{M} . Then we have

$$P(t\nabla_X^{\perp}N + A_{fN}X - \nabla_X tN) = bPA_NX,$$
(19)

$$Q(t\nabla_X^{\perp}N + A_{fN}X - \nabla_X tN) = 0, \tag{20}$$

$$\eta(A_{fN} - \nabla_X tN) = 0, \tag{21}$$

$$h(X,tN) + \phi QA_N X + \nabla_X^{\perp} fN + cPA_N X = f \nabla_X^{\perp} N,$$
(22)

for $X \in T(M)$ and $N \in T^{\perp}(M)$.

Proof. For $X \in T(M)$ and $N \in T^{\perp}(M)$,

$$P\nabla_{X}tN + Q\nabla_{X}tN + \eta(\nabla_{X}tN)\xi - PA_{fN}X - QA_{fN}X$$

- $\eta(A_{fN}X)\xi + \nabla_{X}^{\perp}fN + bPA_{N}X + cPA_{N}X + \phi QA_{N}X$
- $Pt\nabla_{X}^{\perp}N - Qt\nabla_{X}^{b}otN - f\nabla_{X}^{\perp}N = 0.$ (23)

Hence the theorem follows by taking components on each of the vector bundles $D, D^{\perp}, \{\xi\}$ and $T^{\perp}(M)$ respectively. \Box

G. Ghosh, C. Dey / Filomat 32:18 (2018), 6281–6287	6284
Theorem 3.4. Let M be a generalised CR-submanifold of LP-Sasakian manifold \bar{M} . Then we have	

$$\nabla_X \xi = bX; \ h(X,\xi) = cX, \tag{24}$$

for $X \in D$

$$\nabla_Y \xi = 0; \ h(Y,\xi) = \phi Y, \tag{25}$$

for $Y \in D^{\perp}$

$$\nabla_{\xi}\xi = 0, \ h(\xi,\xi) = 0. \tag{26}$$

Proof. Hence the theorem follows from (6) by using (8), (9) and (11). \Box

Theorem 3.5. Let M be a generalised CR-submanifold of LP-Sasakian manifold \overline{M} . Then we have

 $A_{\phi X}Y = A_{\phi Y}X,$

for $X, Y \in D^{\perp}$.

Proof. Using (2), (5), (11) and (13) we get

$$g(A_{\phi X}Y,Z) = g(h(Y,Z),\phi X) = g(\bar{\nabla}_Z Y,\phi X) = -g(\phi \bar{\nabla}_Z Y,X)$$

= $-g(\bar{\nabla}_{Z\phi}Y,X) = g(\phi Y,\bar{\nabla}_Z X) = g(A_{\phi Y}X,Z),$ (27)

for $X, Y \in D^{\perp}$ and $Z \in T(M)$. \Box

Theorem 3.6. Let M be a generalised CR-submanifold of a LP-Sasakian manifold \overline{M} . Then we have

$$\nabla_{\xi} V \in D^{\perp},\tag{28}$$

for $V \in D^{\perp}$ and

$$\nabla_{\xi} W \in D, \tag{29}$$

for $W \in D$.

Proof. Let us take $X = \xi$ and $V = \phi N$ in (19) where $N \in \phi D$. Taking account that $tN = \phi N$, fN = 0 we get

$$P\nabla_{\xi}V = Pt\nabla_{\xi}^{\perp}N - bPA_{N}\xi.$$
(30)

The second relation of (24) gives

$$g(PN\xi, W) = g(A_N\xi, W) = g(h(W,\xi), N) = -g(cW, N) = 0,$$
(31)

for $W \in D$. Hence (30) becomes

$$P\nabla_{\xi}V = Pt\nabla_{\xi}^{\perp}N.$$
(32)

On the other hand (22) implies

$$h(\xi, V) = f \nabla_{\xi}^{\perp} N - \phi Q A_N \xi.$$
(33)

For $V \in D^{\perp}$,

$$h(\xi, V) = h(V, \xi) = -\phi V \in \phi D^{\perp}.$$
(34)

Now for $X \in D^{bot}$ by virtue of Lemma and of (13) we have

$$g(h(\xi, V), \phi X) = g(h(V, \xi), \phi X) = g(A_{\phi X}V, \xi) = g(A_{\phi V}X, \xi)$$

= $g(h(X, \xi), \phi V) = g(h(X, \xi), -N) = -g(A_N\xi, X) = -g(\phi A_N\xi, \phi X)$
= $-g(\phi PA_N\xi, \phi X) - g(\phi QA_N\xi, \phi X) = -g(\phi QA_N\xi, \phi X).$ (35)

Therefore,

 $h(\xi, V) = -\phi Q A_N \xi,$

which together with (33) implies $f \nabla_{\xi}^{\perp} N = 0$. Hence $\nabla_{\xi}^{\perp} N \in \phi D^{\perp}$, since f is an automorphism of $cD \oplus v$. Thus $t \nabla_{\xi}^{\perp} N \in D^{\perp}$ and from (32) it follows that

$$P\nabla_{\xi}V = 0, \tag{36}$$

for all $V \in D^{\perp}$. Now from (21) we have

$$\eta(\nabla_{\xi}V) = 0, \tag{37}$$

for all $V = \phi N \in D^{\perp}$, where $N \in \phi D^{\perp}$.

Hence (28) follows from (21) and (22). Finally by using (9), (26) and (28), we have

 $g(\nabla_{\xi} W, X) = g(\nabla_{\xi} W, PX),$

for $X \in T(M)$ and $W \in D$. Thus we have $\nabla_{\xi} W$, for $W \in D$ and this completes the proof. \Box

Corollary 3.7. Let M be a generalised CR-submanifold of the LP-Sasakian manifold \overline{M} . Then we have

$$[Y,\xi] \in D^{\perp},\tag{38}$$

for $Y \in D^{\perp}$ and

$$[X,\xi] \in D, \tag{39}$$

for $X \in D$.

The above corollary follows immediately from the Theorem 3.4 and THeorem 3.6.

Theorem 3.8. Let *M* be a generalised CR-submanifold of the LP-Sasakian manifold \overline{M} . Then the distribution D^{\perp} is always involutive.

Proof. For $X, Y \in D^{\perp}$ by using (30) we get

$$g([X,Y],\xi) = g(\nabla_X Y,\xi) - g(\nabla_Y X) = g(X,\nabla_Y \xi) - g(Y,\nabla_X \xi) = 0.$$

$$\tag{40}$$

On the other hand, from (14) we have

$$bP\nabla_X Y = -PA_{\phi Y} X - Pth(X, Y), \tag{41}$$

for $X, Y \in D^{\perp}$ and then by using Theorem 3.4 we get from (41)

$$bP[X,Y] = 0, (42)$$

for $X, Y \in D^{\perp}$. As b is an automorphism of *D*, the theorem follows from (40) and (42).

Theorem 3.9. Let *M* be a generalised CR-submanifold of the LP-Sasakian manifold \overline{M} . Then the distribution *D* is never involutive.

Proof. For $X, Y \in D$ by using (24), we have

$$g([X, Y], \xi) = g(\nabla_X Y, \xi) - g(\nabla_Y X) = g(X, \nabla_Y \xi) - g(Y, \nabla_X \xi) = g(X, bY) - g(Y, bX) = 2g(Y, bX).$$
(43)

Taking $X \neq 0$ and Y = bX in (43), it follows that *D* is not involutive. \Box

Theorem 3.10. Let M be a generalised CR-submanifold of the LP-Sasakian manifold \overline{M} . Then the distribution $D \oplus \{\xi\}$ is involutive if and only if

$$h(bX,Y) - h(X,bY) + \nabla_Y^{\perp} cX - \nabla_X^{\perp} cY \in cD \oplus v.$$

$$\tag{44}$$

Proof. Operating ϕ on both sides of (17) and then taking component in D^{\perp} we have

 $Q\nabla_XY=-Qt(h(X,bY))+\nabla_X^\perp cPY-fh(X,Y),$

X, *Y* \in *D* and thus

$$Q[X,Y] = Qt(h(Y,bX) - h(X,bY) + \nabla_Y^{\perp}cX - \nabla_X^{\perp}cY),$$
(45)

for $X, Y \in D$. Hence the theorem follows from (45) and (39). \Box

Theorem 3.11. Let *M* be a generalised CR-submanifold of the LP-Sasakian manifold \overline{M} . Then the leaves of distribution D^{\perp} are totally geodesic in *M* if and only if

$$h(X, bZ) + \nabla_X^\perp cZ \in cD \oplus v, \tag{46}$$

for $X \in D^{\perp}$ and $Z \in D \oplus \{\xi\}$.

Proof. For $X, Y \in D^{\perp}$ and $Z \in D \oplus \{\xi\}$ by using (2), (4), (11) and (12) we get

$$g(\nabla_X Y, Z) = -g(Y, \overline{\nabla}_X Z) = -g(\phi \overline{\nabla}_X Z, \phi Y)$$

= $g((\overline{\nabla}_X \phi) Z, \phi Y) - g(\overline{\nabla}_X \phi Z, \phi Y)$
= $-g(\nabla_X b Z + h(X, b Z) - A_{cZ} X + \nabla_X^{\perp} c Z, \phi Y)$
= $-g(h(X, b Z) + \nabla_X^{\perp} c Z, \phi Y).$ (47)

Hence the theorem follows from (47). \Box

Theorem 3.12. Let M be a generalised CR-submanifold of the LP-Sasakian manifold \overline{M} . Then the distribution $D \oplus \{\xi\}$ is involutive and its leaves are totally geodesic in M if and only if

$$h(X, by) + \nabla_X^\perp cY \in cD \oplus v, \tag{48}$$

for $X, Y \in D \oplus \{\xi\}$.

Proof. For *X*, *Y* ∈ *D* ⊕ { ξ } and *Z* ∈ *D*[⊥] by using (2), (4), (8), (11) and (12) we get

$$g(\nabla_X Y, Z) = g(\bar{\nabla}_X Y, Z) = g(\phi \bar{\nabla}_X Y, \phi Z) = g(\bar{\nabla}_X \phi Y, \phi Z)$$

= $g(\nabla_X bY + h(X, bY) - A_{cY}X + \nabla_X^{\perp} cY, \phi Z).$ (49)

Hence the theorem follows from (49). \Box

References

- [1] A. Bejancu., CR-submanifold of a Kaehler manifold I, Proc. Amer. Math. Soc. 69(1978), 135-142.
- [2] A. Taleshian and N. Asghari., On LP-Sasakian manifolds satisfying certain conditions on the concircular curvature tensor, Differ. Geom. Dyn. Syst. 12 (2010), 228-232.
- [3] A. K. Sengupta and U. C. De., Generalised CR-submanifolds of a trans-sasakian manifold, Indian J. pure appl. Math., 32(2001), 573-580.
- [4] B. Prasad., Semi-invariant submanifolds of a Lorentzian para-Sasakian manifold, Bull. Malaysian Math. Soc., 21(1998), 21-26.
- [5] C. Ozgur., M. Ahmad and A. Haseeb., CR-submanifolds of a Lorentzian pra-Sasakian manifold with a semi-symmetric metric connection., Hacettepe J. of Math. and Stat., 39(2010), 489-496.
- [6] C. Özgür., On ϕ -conformally flat Lorentzian para-Sasakian manifolds, Radovi Matematicki 12 (2003), 99-106.
- [7] I. Mihai., Geometry and Topology of submanifolds, Vol. VII, 186-88, World Scientific, Singapore, 1995.
- [8] I. Mihai., Geometry and Topology of submanifolds, Vol. VIII, 265-68, World Scientific, Singapore, 1996.
- [9] K. Matsumoto., On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Natur. Sci. 12(1989), 151 156.
- [10] K. Matsumoto, I. Mihai and R. Rosca., ξ-null geodesic gradient vector fields on a Lorentzian para-Sasakian manifolds, J. Korean Math. Soc., 32(1995), 17 – 31.
- [11] K. De and U. C. De., LP-Sasakian manifolds with quasi-conformal curvature tensor, SUT J. of Math., 49(2013), 33-46.
- [12] M. Kobayashi., CR-submanifold of a Sasakian manifold, Tensor N. S. 35 (1981), 297-307.
- [13] M. Ahmad., CR-submanifolds of a Lorentzian pra-Sasakian manifold endowed with a quarter-symmetric metric connection., Bull. Korean Math. Soc., 49(2012), 25-32.
- [14] M. Ahmad, A. Haseeb, J. B. Jun and M. H. Shahid., CR-submanifolds and CR-product of a Lorentzian pra-Sasakian manifold endowed with a quarter symmetric semi-metric connection., Afr. Mat., 25(2014), 1113-1124.
- [15] S. Prasad and R. H. Ojha., Lorentzian para-contact submanifolds, Publ. Math. Debrecen., 44(1994), 215-223.
- [16] U. C. De and A. K. Sengupta., CR-submanifolds of a Lorentzian para-Sasakian manifold, Bull. Malaysian Math. Soc., 23(2000), 99-106.