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Abstract. In this paper, we propose a new tool for modeling and analysis in finance, introducing an
impulsive discrete stochastic neural network (NN) fractional-order model. The main advantages of the
proposed approach are: (i) Using NNs which can be trained without the restriction of a model to derive
parameters and discover relationships, driven and shaped solely by the nature of the data; (ii) using
fractional-order differences, whose nonlocal property makes the fractional calculus a suitable tool for
modeling actual financial systems; (iii) using impulsive perturbations, which give an opportunity to control
the dynamic behavior of the model; (iv) including a stochastic term, which allows to study the effect of
noise disturbances generally existing in financial assets; (v) taking into account the existence of time delayed
influences. The modeling approach proposed in this paper can be applied to investigate macroeconomic
systems.

1. Introduction

During the past few decades, impressive applications of NNs have been proposed for various fields
such as optimization, linear and nonlinear programming, associative memory, pattern recognition, fault
diagnosis, image processing, and computer vision. Also, NNs have been successfully applied as an
alternative modeling approach to statistical models in finance as they are data-driven which does not
require any distributional assumption about the underlying data. Such an assumption has a drastic impact
on the accuracy and stability of the model. Indeed, most financial asset returns exhibit a fat-tail distribution,
but conventional value at risk (VaR) estimation models assume that returns are normally distributed. With
the NN approach, no distributional assumption regarding the return distribution is required for estimating
and forecasting the VaR using intra-daily data [38]. Another common advantage of an NN model is its
ability to deal with uncertain and robust data. Different aspects of NNs applications in quantitative finance
are given in [25, 29, 40].

As it is pointed out in [20], dynamics of financial assets demonstrate the stochastic behavior. A large
number of stochastic financial models appeared in the literature, see, for example, [13, 15, 18] and the
references therein. Also, the important effect of noise disturbances should be taken into account in studying
the dynamics of a financial system by means of the neural network approach. Recently, some stochastic
financial neural network models have been reported in [2, 10, 17].
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It is now recognized that introducing some kinds of time delays is inevitable in financial models. For
example, the time delay represents a memory length of a moving average rule in discrete-time stochastic
heterogeneous agent models of financial markets [12]. Also, it has been shown by many authors that
the introduction of information delay into the dynamic models significantly changes their asymptotical
properties [24]. Analysis on different market data shows that price fluctuations can be caused by time
delayed influences. During the last couple of decades, integer-order delay economic models have attracted
the attention of many mathematicians and economists, and various delay economic models have been
examined [5, 26, 36].

On the other hand, the state of an economic system is often subject to instantaneous perturbations and
experiences abrupt changes at certain instants which may be caused by population changes, technological
and financial structural changes, that is, it exhibits impulsive effects. It is now well known that real-world
phenomena, which are subject to short-term perturbations whose duration is negligible in comparison
with the duration of the process, are more accurately described using impulsive systems. Among them,
due to their numerous applications, delay impulsive systems and delay impulsive stochastic systems have
received a great deal of attention, see, e.g., [9, 44–46]. In the paper [33], it is found that the studying of
impulsive models in finance can give answers that a discrete model or pure continuous model cannot give.
Recently, several impulsive financial delay models have been developed [27, 31, 43]. It has been argued that
the impulsive perturbations have a control power which can be used to compensate the deviating trend
in a financial model, i.e., by means of appropriate impulsive perturbations, we can control the dynamic
behavior of the system. Since impulsive control arises naturally in a wide variety of financial models, some
impulsive control laws are proposed in [4, 16, 19, 32, 37].

In the last decade, a great progress in studying fractional evolution models has been made. Indeed,
fractional-order modeling has come to play a crucial rôle in many applications and real-world physical
phenomena [28, 34, 35]. Recently, there have been several attempts to incorporate the fractional approach
into some financial models [6, 14, 20, 41]. The empirical studies conducted in some of these papers suggest
that a discrete fractional dynamical system can describe the actual economic data accurately and predict
the future behavior more reasonably than an integer-order model. However, to the best of our knowledge,
the fractional concept has not been applied previously to an NN financial stochastic model.

The goal of the present work is to develop a financial model that brings together the advantages of all
of the following:

(i) The NN approach in finance;

(ii) the stochastic dynamic approach;

(iii) the greater flexibility in the model offered by a fractional-order difference;

(iv) the potential rôle of the memory in financial indicators;

(v) the control power of some impulsive perturbations.

Motivated by the above discussion, we propose to extend the impulsive stochastic delay NN concept in
financial mathematics to the fractional-order case. The main contribution of our paper is in two aspects:

(a) We develop an impulsive discrete stochastic NN fractional-order model that can be used to determine
qualitative properties of impulsive financial systems and all their subsystems, and

(b) we provide sufficient conditions for the global Mittag–Leffler stability in mean square of the zero
solution of the model, extending the existing theory to the fractional order case.

Also, such knowledge could help scientists better understand the effects of some impulsive perturbations,
and to design an appropriate control strategy.
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2. Fractional-Order Impulsive Discrete Stochastic Neural Network Model with Delays

Let Rn be the n-dimensional Euclidean space with norm ‖·‖, R+ = [0,∞),

N0 = {0, 1, 2, . . .}, N =N0 \ {0}, N−τ = {−τ,−τ + 1, . . . ,−1, 0}

for τ ∈ N denoting the upper bound of the time delay. Throughout the paper, we suppose that matrices,
if not explicitly specified, have compatible dimensions. For any matrix A, ‖A‖ denotes the matrix norm
of A induced by the Euclidean vector norm, and AT denotes the transpose of the matrix A. For square
matrices X and Y, the notation X ≥ Y (respectively, X > Y, X ≤ Y, X < Y) means that X − Y is positive
semi-definite (respectively, positive definite, negative semi-definite, negative definite). I is the identity
matrix with compatible dimension.

To develop our fractional-order model, we first start with a classical integer-order discrete NN model
defined by the system

x(k + 1) = Cx(k) + A f (x(k)), k ∈N0, (2.1)

where x(k) = [x1(k), x2(k), . . . , xn(k)]T
∈ Rn is the state vector associated with the n inputs at time k, the

diagonal matrix C = diag(c1, c2, . . . , cn) has constant entries ci, i = 1, 2, . . . ,n, the constant matrix

A = (ai j)1≤i, j≤n

is the connection weight matrix, and

f (x) = [ f1(x1), f2(x2), . . . , fn(xn)]T

is the neuron activation function. In finance, depending on the activation function, NN models of type (2.1)
have been used for various tasks [38, 40].

Denote by (Ω,F ,P) a complete probability space with a filtration {Ft}t≥0 satisfying the usual conditions
(i.e., the filtration contains all P-null sets and is right continuous). E{·} stands for the mathematical
expectation operator with respect to the given probability measure P.

The potential rôle of the memory in financial indicators has been explored in various contexts [21, 36].
It is well known that time delay can generate oscillations, divergence, or instability which may be harmful
to the system. Therefore, the study of neural dynamics with the consideration of time delays has become
extremely important in manufacturing high-quality neural networks.

If we incorporate jointly the time delay and the noise disturbances in the financial NN modeling, we
then obtain the more general model

x(k + 1) = Cx(k) + A f (x(k)) + B1(x(k − τ(k))) + σ(k, x(k), x(k − τ(k)))w(k), k ∈N0,

where

B = (bi j)1≤i, j≤n

is the delayed connection weight matrix,

1(x) = [11(x1), 12(x2), . . . , 1n(xn)]T

is the delayed neuron activation function, τ(k) ∈ (0, τ) denotes the time delay depending on k, σ(·) represents
the random perturbation weight, and

w = [w1,w2, . . . ,wn]T

is an n-dimensional Brownian motion on (Ω,F ,P) with

E[w(k)] = 0, E[w2(k)] = 1, E[w(i)w( j)] = 0 for i , j. (2.2)
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Impulsive effects exist widely in many financial processes in which the system’s states change abruptly at
certain moments of time, involving such fields as asset management, risk assessment, investment analysis,
and so on. It is known that impulses can make unstable systems stable or, otherwise, stable systems can
become unstable after impulsive effects. The aim in combined stochastic and impulse control is to maximize
a certain functional, depending on a controlled financial process.

As an impulsive generalization of the model (2.1), we consider the n-neuron impulsive control discrete
neural network with time-depended delays

x(k + 1) = Cx(k) + A f (x(k)) + B1(x(k − τ(k))) + σ(k, x(k), x(k − τ(k)))w(k), k , km − 1,
x(km) = Dmx(km − 1), m ∈N0,

(2.3)

where the impulsive moments satisfy 0 = k0 < k1 < k2 < . . . and lim
m→∞

km = ∞, and the matrix Dm is the n × n
impulse gain matrix at the instants km − 1, m ∈N0.

However, the model (2.3) has rather limited capabilities for modelling fractional-order systems. Thus,
in this paper, we suggest the use of fractional-order calculus to built a model of an NN system.

Let k , km − 1, m ∈N0. By subtracting xk from both sides of the first equation in the model (2.3), we can
rewrite (2.3) as

∇x(k + 1) = Cdx(k) + A f (x(k)) + B1(x(k − τ(k))) + σ(k, x(k), x(k − τ(k)))w(k), k , km − 1,
x(k + 1) = ∇x(k + 1) + x(k),

x(km) = Dmx(km − 1), m ∈N0,

(2.4)

where Cd = C − I, and ∇ is the first-order backward difference.
To obtain the fractional-order generalization of the model (2.4), we shall use the following definition of

the fractional-order difference (see e.g., [28, Formula (2.6)] or [8, 11]):

Definition 2.1. The fractional-order backward difference of order q ∈ R is given by

∇
qx(k) =

k∑
j=0

(−1) j
(
q
j

)
x(k − j),

where(
q
j

)
=

1 for j = 0,
q(q−1)···(q− j+1)

j! for j ∈N,

and k ∈N is the number of the sample for which the difference is obtained.

Using Definition 2.1, for q ∈ R, we propose the fractional-order impulsive discrete NN model with
time-varying delays

∇
qx(k + 1) = Cdx(k) + A f (x(k)) + B1(x(k − τ(k))) + σ(k, x(k), x(k − τ(k)))w(k), k , km − 1,

x(k + 1) = ∇qx(k + 1) −
k+1∑
j=1

(−1) j
(
q
j

)
x(k − j + 1),

x(km) = Dmx(km − 1), m ∈N0.

(2.5)

In this model, the order of differentiation q is taken the same for all state variables xi(k), i = 1, . . . ,n. This is
referred to as a commensurate order.

Let us consider the first two equations in the model (2.5) which represent the continuous part. Substi-
tuting the first equation in the problem (2.5) into the second one yields

x(k + 1) =Cdx(k) −
k+1∑
j=1

(−1) j
(
q
j

)
x(k − j + 1)

+ A f (x(k)) + B1(x(k − τ(k))) + σ(k, x(k), x(k − τ(k)))w(k), k , km − 1, m ∈N0.
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From here, by setting λ j = (−1) j
(
q
j

)
, we obtain

x(k + 1) =(Cd − λ1I)x(k) −
k+1∑
j=2

λ jx(k − j + 1)

+ A f (x(k)) + B1(x(k − τ(k))) + σ(k, x(k), x(k − τ(k)))w(k), k , km − 1, m ∈N0.

(2.6)

Let us put in (2.6)

C0 = Cd − λ1I = C + (q − 1)I,

and, for all j ∈N

C j = −λ j+1I.

This leads to

x(k + 1) =C0x(k) + C1x(k − 1) + C2x(k − 2) + . . . + Ckx(0)
+ A f (x(k)) + B1(x(k − τ(k))) + σ(k, x(k), x(k − τ(k)))w(k), k , km − 1, m ∈N0.

(2.7)

Practical implementation needs to reduce the number of samples taken into consideration, and therefore
we shall consider the equation

x(k + 1) =C0x(k) +

η∑
j=1

C jx(k − j) + A f (x(k)) + B1(x(k − τ(k)))

+ σ(k, x(k), x(k − τ(k)))w(k), k , km − 1, m ∈N0,

(2.8)

where 0 ≤ η ≤ k − 1. Using (2.8), we obtain the impulsive model

x(k + 1) =C0x(k) +

η∑
j=1

C jx(k − j) + A f (x(k)) + B1(x(k − τ(k)))

+ σ(k, x(k), x(k − τ(k)))w(k), k , km − 1,
x(km) =Dmx(km − 1), m ∈N0.

(2.9)

Let τ̃ = max{η, τ} and ϕ0 ∈ C(N−τ̃,Rn). Denote by x(k) = x(k; k0, ϕ0) the solution of (2.7) such that

x(θ) = ϕ0(θ) for θ ∈N−τ̃ and x(k0) = ϕ0(0). (2.10)

The impulsive control of (2.9) is performed in the following way: The point Pk = (k, x(k)) begins its motion
from the point (k0, x(k0)) and moves along (k, x(k)) described by the solution x of the system (2.8) until time
k1 > k0, at which point Pk is “instantly” transferred from the position Pk1 = (k1, x(k1)) into the position (k1, x+

1 ),
x+

1 = D1x(k1). Then the point Pk continues to move further along x(k) = x(k; k1, x+
1 ) as the solution of (2.8)

starting at (k1, x+
1 ) until it triggers a second transfer at k2 > k1, and so on. Clearly, this process continues as

long as the solution of (2.8) exists. More precisely, the solution x(k) = x(k; k0, ϕ) of the initial value problem
(2.9), (2.10) is characterized by the following:

1. For θ ∈N−τ̃, the solution x(θ) = x(k0 + θ) satisfies the initial conditions (2.10).

2. For k0 < k ≤ k1, x(k) coincides with the solution of the problem (2.8), (2.10) (see [8, 11]). At the moment
k = k1, the mapping point (k, x(k; k0, ϕ0)) is “instantly” transferred from the position Pk1 = (k1, x(k1))
into the position (k1, x+

1 ), x+
1 = D1x(k1).



M. Bohner, I. Stamova / Filomat 32:18 (2018), 6339–6352 6344

3. For k1 < k ≤ k2, the solution x(k) coincides with the solution of the equation (2.6) with the initial
condition

xk1 = x(k1 + θ) = ϕ1(θ), θ ∈N−τ̃,

where

ϕ1(k − k1) =


ϕ0(k − k1) if k ∈ [k0 − τ, k0] ∩ [k1 − τ̃, k1],
x(k; k0, ϕ0) if k ∈ (k0, k1) ∩ [k1 − τ̃, k1],
D1x(k; k0, ϕ0) if k = k1.

At the moment k = k2, the mapping point (k, x(k)) jumps momentarily, and so on.

3. Some Definitions and Lemmas

In this section, we provide the reader the necessary background on fractional discrete calculus and a
discrete fractional comparison principle. We define the notion of Mittag–Leffler stability for our model
under consideration. Let us note that this notion has been introduced in [22] for nonautonomous ordinary
differential equations of fractional order.

In what follows, we shall use a discrete analogue of the Mittag–Leffler function, which plays an important
rôle in the solution of noninteger-order differential equations. The standard Mittag–Leffler function (see
[22]) is given as

Eq(z) =

∞∑
j=0

z j

Γ(qj + 1)
,

where q > 0. It is also common to represent the Mittag–Leffler function in two parameters p, q > 0 such that

Eq,p(z) =

∞∑
j=0

z j

Γ(qj + p)
. (3.1)

For p = 1, we have Eq = Eq,1. Also, E1,1(z) = ez. The discrete analogue of the Mittag–Leffler function (3.1),
called nabla discrete Mittag–Leffler function, is defined in [1] by

Fq,p(λ, z) =

∞∑
j=0

λ j Γ(z + jq + p − 1)
Γ(z)Γ(qj + p)

,

where λ ∈ R \ {1}, p, q, z ∈ C, and Re(q) > 0. For p = 1, we have

Fq(λ, z) =

∞∑
j=0

λ j Γ(z + jq)
Γ(z)Γ(qj + 1)

. (3.2)

Note that, for 0 < q ≤ 1, the solution of the discrete fractional initial value problem (IVP)

∇
qv(k) = λv(k), v(k0) = v0 ∈ R

is given by

v(k) = v0Eq(λ, z),

i.e., it is a discrete analogue of the exponential function. Indeed, putting q = 1 in (3.2), we obtain a discrete
exponential function

F1(λ, z) =

∞∑
j=0

λ j Γ(z + j)
Γ(z)Γ( j + 1)

=

∞∑
j=0

λ j
(
z + j − 1

j

)
=

∞∑
j=0

(−λ) j
(
−z
j

)
= (1 − λ)−z.

For some basic concepts and theorems on discrete Mittag–Leffler functions, we refer the reader to [1, 3].
We shall introduce the following discrete analogue of Mittag–Leffler stability defined by [22].
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Definition 3.1. The zero solution x(k) ≡ 0 of (2.9) is said to be globally Mittag–Leffler stable in mean square if
there exist constants µ > 0 and d > 0 such that

E
[
‖x(k)‖2

]
≤

 sup
θ∈N−τ̃

E
[
‖x(θ)‖2

]
Fq(−µ, (k − k0))

d

, k ≥ k0,

where q ∈ (0, 1].

We make the following assumptions:

(H1) f (0) = 1(0) = 0, σT(k, 0, 0) = 0, k ∈N0.

(H2) There exist positive numbers l f
i and l1i (i = 1, 2, . . . ,n), such that for any u, v ∈ R,

| fi(u) − fi(v)| ≤ l f
i |u − v| and |1i(u) − 1i(v)| ≤ l1i |u − v|.

For the sake of simplicity, we let

L f = diag(l f
1 , l2,

f , . . . , l f
n) and L1 = diag(l11, l

1

2, . . . , l
1

n).

(H3) There exist two positive definite matrices θ1 and θ2 such that

σT(k, x, y)σ(k, x, y) ≤ xTθ1x + yTθ2y, k ∈N0, x, y ∈ Rn.

Together with the model (2.8), we consider the comparison impulsive fractional-order difference equation

∇
qu(k + 1) =1(k,u(k)), k , km − 1,

u(km) =Bmu(km − 1), m ∈N0,
(3.3)

where 0 < q ≤ 1, 1 :N0 ×R
+
→ R+, Bm :N0 → R

+.
According to [7], we denote by u+(t) = u+(k; k0,u0) the under function of equation (3.3), which satisfies

the initial condition

u+(k0; k0,u0) = u0 ∈ R
+. (3.4)

In the next section, the problem of global Mittag–Leffler stability in mean square of the trivial solution
of (2.9) is investigated for 0 < q ≤ 1. To this end, we shall use Lyapunov functions from the class φ0
(see Appendix A). Moreover, the technique of investigation essentially depends on the choice of minimal
subsets of a suitable space of functions, by the elements of which the derivatives of Lyapunov functions are
estimated. It is well known that this method (known as the Lyapunov–Razumikhin function method) has
been widely used in the treatment of stability of functional differential and difference equations [23, 31, 32,
42].

In the sequel, we shall use the following auxiliary results.

Lemma 3.2. Assume the following:

1. The function 1 :N0 ×R
+
→ R+ is continuous in each of the sets (km − 1, km] ×R+, m ∈N0.

2. The functions ψm(u) = u + Bmu ≥ 0, m ∈N0 are nondecreasing with respect to u.

3. The under function u+(k; k0,u0) of IVP (3.3), (3.4) is defined on R+.

4. The function V ∈ φ0 is such that for t ∈ [t0,∞), ϕ ∈ PC,

V(km, x(km)) ≤ ψk(V(km − 1, x(km − 1)), m ∈N0,

and the inequality

∇
qV(k + 1, x(k + 1)) ≤ 1(k,V(k, x(k))), k , km − 1, m ∈N0

is valid whenever V(k + θ, x(k + θ)) ≤ V(k, x(k)) for −τ̃ ≤ θ ≤ 0 and 0 < q ≤ 1.
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Then

sup
−τ̃≤θ≤0

V(k0 + θ,ϕ0(θ)) ≤ u0

implies

V(k, x(k; k0, ϕ0)) ≤ u+(k; k0,u0) for all k ≥ k0.

Lemma 3.2 is the discrete analogue of [35, Theorem 3.1]. The proof is essentially a repetition of the
arguments used there, and we omit the details here.

Remark 3.3. Efficient comparison results for discrete fractional-order systems without delays and impulses
are given in [7].

In the case when 1(k,u) = λu for (k,u) ∈N0 ×R
+, where λ ∈ R \ {1} and ψk(u) = u for u ∈ R+, k ∈N, we

deduce the following corollary from Lemma 3.2.

Corollary 3.4. Assume that the function V ∈ φ0 is such that

V(km, x(km)) ≤ V(km − 1, x(km − 1)), x ∈ Rn, m ∈N0,

∇
qV(k + 1, x(k + 1)) ≤ λV(k, x(k)), k , km − 1, m ∈N0

is valid whenever V(k + θ, x(k + θ)) ≤ V(k, x(k)) for −τ̃ ≤ θ ≤ 0 and 0 < q ≤ 1. Then

V(k, x(k; k0, ϕ0)) ≤ sup
−τ̃≤θ≤0

V(k0 + θ,ϕ0(θ))Fq(λ, (k − k0)) for all k ≥ k0.

Lemma 3.5 (See [39]). Given any X,Y ∈ Rn and a positive definite matrix Q ∈ Rn×n, we have

2XTY ≤ XTQ−1X + YTQY.

Lemma 3.6 (See [8]). For j ≥ 2, the factors λ j = (−1) j
(
q
j

)
are negative for q ∈ (0, 1), positive for q ∈ (1, 2) and zero

for q ∈ {0, 1}.

4. Impulsive Control for 0 < q ≤ 1

In this section, by applying Lyapunov functions and Razumikhin’s technique combined with an impul-
sive feedback control, we establish some criteria for global Mittag–Leffler stability in mean square of the
trivial solution of (2.9) for 0 < q ≤ 1.

Theorem 4.1. Assume (H1)–(H3) and that there exist real numbers α, β, γ, positive numbers γ̃, ν, θ1, θ2, positive
diagonal matrices Ql, 1 ≤ l ≤ 6, and Q7i j , 1 ≤ i, j ≤ η, such that

(i) CT
0

(
I + AQ−1

1 AT + C1Q−1
2 CT

1 + BQ−1
3 BT

)
C0

+L f

(
Q1 + ATA + ATC1Q−1

4 CT
1 A + ATBQ−1

5 BTA
)

L f + θ1 − αI ≤ 0;

(ii) L1(Q3 + Q5 + Q6 + BTB)L1 + θ2 − βI ≤ 0;

(iii) Q2 + Q4 + CT
1 C1 + CT

1 BQ−1
6 BTC1 − γI ≤ 0;

(iv)
η∑

j=1
j,i

(
Q−1

7 ji
+ Q7i j

)
− γ̃I ≤ 0;

(v) α + β + γη(1 + γ̃) ≤ ν < q;
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(vi) Dm = diag(d1m, . . . , dnm) and κ = max{d2
jm} ≤ 1, m ∈N0, j = 1, 2, . . . ,n.

Then the zero solution of (2.9) is globally Mittag–Leffler stable in mean square.

Proof. Define the Lyapunov function

V(x) = xTx = ‖x‖2 .

For the sake of convenience, let

u(·) =

η∑
j=1

C jx(k − j) + B1(x(k − τ(k))),

σ(·) = σ(k, x(k), x(k − τ(k))).

Then we rewrite the impulse-free component of the neural network (2.9) as

x(k + 1) = C0x(k) + A f (x(k)) + u(·) + σ(·)w(k).

From the above representation, for all k ∈ [km, km+1 − 1], we have

V(k + 1, x(k + 1)) = xT(k + 1)x(k + 1)
= xT(k)CT

0 C0x(k) + xT(k)CT
0 A f (x(k)) + xT(k)CT

0 u(·) + xT(k)CT
0σ(·)w(k)

+ f T(x(k))ATC0x(k) + f T(x(k))ATA f (x(k))) + f T(x(k))ATu(·) + f T(x(k))ATσ(·)w(k)
+uT(·)C0x(k) + uT(·)A f (x(k)) + uT(·)u(·) + uT(·)σ(·)w(k)
+σT(·)C0x(k)w(k) + σT(·)TA f (x(k))w(k) + σT(·)u(·)w(k) + wT(k)σT(·)σ(·)w(k).

Now, taking the expectation on both sides, and by virtue of (2.2), we obtain

E[V(k + 1, x(k + 1))] ≤E
[
xT(k)CT

0 C0x(k) + 2xT(k)CT
0 A f (x(k)) + 2xT(k)CT

0 u(·)

+ f T(x(k)ATA f (x(k))) + 2 f T(x(k))ATu(·) + uT(·)u(·) + σT(·)σ(·)
]
.

(4.1)

From Lemma 3.5 and assumption (H2), it follows that

2xT(k)CT
0 A f (x(k)) ≤ xT(k)CT

0 AQ−1
1 ATC0x(k) + f T(x(k))Q1 f (x(k))

≤ xT(k)
[
CT

0 AQ−1
1 ATC0 + L f Q1L f

]
x(k);

2xT(k)CT
0 u(·) = 2xT(k)CT

0

 η∑
j=1

C jx(k − j) + B1(x(k − τ(k)))


≤ xT(k)CT

0 C1Q−1
2 CT

1 C0x(k) + x̃T(·)Q2x̃(·)

+xT(k)CT
0 BQ−1

3 BTC0x(k) + 1T(x(k − τ(k)))Q31(x(k − τ(k)))

≤ xT(k)
[
CT

0 C1Q−1
2 CT

1 C0 + CT
0 BQ−1

3 BTC0

]
x(k)

+x̃T(·)Q2x̃(·) + xT(k − τ(k))L1Q3L1x(k − τ(k));

f T(x(k))ATA f (x(k)) ≤ xT(k)L f ATAL f x(k);

2 f T(x(k))ATu(·) = 2 f T(x(k))AT

 η∑
j=1

C jx(k − j) + B1(x(k − τ(k)))


≤ f T(x(k))ATC1Q−1

4 CT
1 A f (x(k)) + x̃T(·)Q4x̃(·)
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+ f T(x(k))ATBQ−1
5 BTA f (x(k)) + 1T(x(k − τ(k)))Q51(x(k − τ(k)))

≤ xT(k)L f

[
ATC1Q−1

4 CT
1 A + ATBQ−1

5 BTA
]

L f x(k)

+x̃T(·)Q4x̃(·) + xT(k − τ(k))L1Q5L1x(k − τ(k));

uT(·)u(·) ≤ x̃T(·)CT
1 C1x̃(·) + 2x̃T(·)CT

1 B1(x(k − τ(k))) + 1T(x(k − τ(k)))BTB1(x(k − τ(k)))

≤ x̃T(·)CT
1 C1x̃(·) + x̃T(·)CT

1 BQ−1
6 BTC1x̃(·) + 1T(x(k − τ(k)))(Q6 + BTB)1(x(k − τ(k)))

≤ x̃T(·)
[
CT

1 C1 + CT
1 BQ−1

6 BTC1

]
x̃(·) + xT(k − τ(k))L1

[
Q6 + BTB

]
L1x(k − τ(k)),

where

x̃(·) =

η∑
j=1

x(k − j).

Also, from condition (H3), we have that

σT(k, x(k), x(k − τ(k)))σ(k, x(k), x(k − τ(k))) ≤ xT(k)θ1x(k) + xT(k − τ(k))θ2x(k − τ(k)).

Substituting all these into (4.1) and using (i)–(iii), we obtain

E[V(k + 1, x(k + 1))] ≤ E
[
xT(k)

[
CT

0

(
I + AQ−1

1 AT + C1Q−1
2 CT

1 + BQ−1
3 BT

)
C0

+L f

(
Q1 + ATA + ATC1Q−1

4 CT
1 A + ATBQ−1

5 BTA
)

L f + θ1 − αI
]
x(k)

+xT(k − τ(k))
[
L1(Q3 + Q5 + Q6 + BTB)L1 + θ2 − βI

]
x(k − τ(k))

+x̃T(·)
(
Q2 + Q4 + CT

1 C1 + CT
1 BQ−1

6 BTC1 − γI
)

x̃(·)

+αxT(k)x(k) + βxT(k − τ(k))x(k − τ(k)) + γx̃T(·)x̃(·)
]

≤ E
[
xT(k)Ω1x(k) + xT(k − τ(k))Ω2x(k − τ(k))

+x̃T(·)Ω3x̃(·) + αxT(k)x(k) + βxT(k − τ(k))(k − τ(k)) + γx̃T(·)x̃(·)
]

≤ αE[V(k, x(k))] + γE[V(·, x̃(·))] + βE[V(k − τ(k), x(k − τ(k)))],

where, by virtue of (i)–(iii)

Ω1 = CT
0

(
I + AQ−1

1 AT + C1Q−1
2 CT

1 + BQ−1
3 BT

)
C0

+L f

(
Q1 + ATA + ATC1Q−1

4 CT
1 A + ATBQ−1

5 BTA
)

L f + θ1 − αI ≤ 0,

Ω2 = L1(Q3 + Q5 + Q6 + BTB)L1 + θ2 − βI ≤ 0,

Ω3 = Q2 + Q4 + CT
1 C1 + CT

1 BQ−1
6 BTC1 − γI ≤ 0.

For V(·, x̃(·)), using the matrices Q7i j , 1 ≤ i, j ≤ η, from Lemma 3.5 and (iv), we have

V(·, x̃(·)) =

 η∑
j=1

xT(k − j)


 η∑

j=1

x(k − j)


≤

η∑
j=1

xT(k − j)x(k − j) +

η∑
j=1

xT(k − j)


η∑

j=1
j,i

(
Q−1

7 ji
+ Q7i j

) x(k − j)

≤ (1 + γ̃)
η∑

j=1

xT(k − j)x(k − j).
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From here and using the Razumikhin condition V(k + θ, x(k + θ)) < V(k, x(k)), θ ∈N−τ̃, we get

E[V(k + 1, x(k + 1))] ≤ E
[
(α + β + γη(1 + γ̃))V(k, x(k))

]
,

and hence by (v)

V(k + 1, x(k + 1)) ≤ νV(k, x(k)), k ∈ [km, km+1 − 1].

Therefore, for k , km − 1, m ∈N0, we have

∇
qV(k + 1, x(k + 1)) −

k+1∑
j=1

(−1) j
(
q
j

)
V(k − j + 1, x(k − j + 1)) ≤ νV(k, x(k)), ∈ [km, km+1 − 1].

From the properties of the functions V ∈ φ0 and Lemma 3.3, we have

∇
qV(k + 1, x(k + 1)) ≤ (ν − q)V(k, x(k)) +

k+1∑
j=2

(−1) j
(
q
j

)
V(k − j + 1, x(k − j + 1))

≤ (ν − q)V(k, x(k)), k ∈ [km, km+1 − 1].

By virtue of condition (v), there exits a real number µ > 0 such that

∇
qV(k + 1, x(k + 1)) ≤ −µV(k, x(k)), k ∈ [km, km+1 − 1].

Also, for m ∈N and k = km, from (vi), we get

V(km, x(km)) = ‖x(km)‖2 = x2
1(km) + x2

2(km) + . . . + x2
n(km)

= d2
1mx2

1(km − 1) + d2
2mx2

2(km − 1) + . . . + d2
nmx2

n(km − 1)

≤ κ ‖x(km − 1‖2 = κV(km − 1, x(km − 1))
≤ V(km − 1, x(km − 1)).

Since all conditions of Corollary 3.4 are met, we obtain

V(k, x(k; k0, ϕ0)) ≤ sup
−τ̃≤θ≤0

V(k0 + θ,ϕ0(θ))Fq(−µ, (k − k0)) for all k ≥ k0,

and thus

E
[
‖x(k)‖2

]
≤ sup
θ∈N−τ̃

E
[
‖x(θ)‖2

]
Fq(−µ, (k − k0)) for all k ≥ k0,

which implies that the trivial solution of (2.9) is globally Mittag–Leffler stable in mean square. The proof is
complete.

Remark 4.2. When q = 1, then system (2.9) is reduced to the integer-order system of stochastic discrete-time
Hopfield neural networks with impulsive effects (2.3), which has been studied in [42]. Therefore, our results
improve and generalize some known results.

Remark 4.3. It is worth mentioning that, in contrast to some earlier results [42], the presented impulsive
control law does not depend on the lengths of the impulsive intervals. Thus, our approach is less restrictive
and conservative.
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5. An Illustrative Example and Applications in Finance

Let q = 0.6. In order to demonstrate the effectiveness of the obtained stability criteria, we consider the
NN fractional-order model

x(k + 1) =C0x(k) +

2∑
j=1

C jx(k − j) + A f (x(k)) + B1(x(k − τ(k)))

+ σ(k, x(k), x(k − τ(k)))w(k), k , km − 1,
x(km) =Dmx(km − 1), m ∈N0,

(5.1)

where

x(k) = (x1(k), x2(k))T, C0 = diag(−0.042,−0.033),
θ1 = 0.02I, θ2 = 0.007I,

A =

(
−0.03 0.01
0.02 0.01

)
, B =

(
−0.3 0.2
0.3 0.2

)
, Dm = diag(−0.2,−0.5),

and the impulsive moments satisfy 0 = k0 < k1 < k2 < . . . and lim
m→∞

km = ∞. Since q = 0.6, we have

C1 = diag(0.12, 0.12) and C2 = diag(0.056, 0.056).

Let

fi(xi) = 0.01 tanh(xi) and 1i(xi) = 0.1 (|xi + 1| − |xi − 1|) .

Hence, the assumptions (H1) and (H2) are satisfied for

L f = diag(0.01, 0.01) and L1 = diag(0.1, 0.1).

It is easy to check that all conditions of Theorem 4.1 are satisfied for

Q1 =

(
0.01 0
0 0.01

)
, Q2 =

(
0.03 0
0 0.04

)
, Q3 =

(
0.03 0
0 0.07

)
,

Q4 =

(
0.03 0
0 0.04

)
, Q5 =

(
0.03 0
0 0.06

)
, Q6 =

(
0.04 0
0 0.07

)
,

Q712 = Q721 =

(
0.001 0
0 0.0001

)
, α = 0.29, β = 0.1, γ = 0.12,

γ̃ = 0.0002, κ = 0.25, ν = 0.55.

Therefore, the zero solution of the model (5.1) is globally Mittag–Leffler stable in mean square.
The advanced properties of system (2.9) make it a potential candidate to model in a variety of financial

assets related problems. The proposed approach extends some existing NN integer-order models in finance
reported in the literature and expands recently presented impulsive control results of fractional order. For
example, the models of the type (2.9) can be considered as

• a fractional order generalization the NN model applied in VaR analysis, proposed by [38]. In addition
to the ability to consider non-normality of returns our fractional-order approach is able to (i) allow
greater flexibility in the model, (ii) take into account external impulsive effects, and (iii) deal with
events that are relatively infrequent e.g., some changes in the level of volatility;

• a discrete fractional order generalization with mixed delays of the impulsive investment model intro-
duced in [27];

• a discrete fractional order generalization with mixed delays of the impulsive advertising model intro-
duced in [37, 43];

• a discrete impulsive generalization with mixed delays of the model introduced by [41] for modeling of
the national economics in state-space.
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6. Conclusions and Future Directions

In this paper, we set up a new NN approach for financial modeling using a discrete fractional order
impulsive model with delays. The proposed model outperforms existing ones by offering a fractional-order
difference operator, impulsive control strategy and time delays. By using the fractional Lyapunov method,
sufficient conditions for global Mittag–Leffler stability in mean square of the zero solution of the model are
obtained. Our results can be used to design an impulsive control law under which to stabilize the behavior
of different types of impulsive fractional-order NN models of diverse interest.

An objective of our future investigations is to construct an extension of the proposed model with
Markovian jumping parameters and mode-dependent delays which will improve and generalize some
switching regime models [30]. Fractional Brownian motion which has shown promise in other financial
models (see [20]) may also be taken under our future consideration.

Appendix A

The second method of Lyapunov is one of the universal methods for investigating the dynamical systems
of a different type. The method is also known as a direct method of Lyapunov or a method of the Lyapunov
functions. Also, the Lyapunov–Razumikhin technique has been applied successfully by various authors to
study of stability problems for discrete delay systems. See, for example [23, 42] and the references therein.
For impulsive discrete systems the following generalization of Lyapunov functions is used.

A function V :N0 ×R
n
→ R+ belongs to class φ0 if

1. V is continuous on each of the sets (km−1, km) ×Rn, and V(km, 0) = 0 for all m ∈N0.

2. V is locally Lipschitz continuous with respect to its second argument x ∈ Rn.

3. For each m = 1, 2, . . . and x ∈ Rn, there exist the finite limits

V(km − 0, x) = lim
k→km
k<km

V(k, x), V(km + 0, x) = lim
k→km
k>km

V(k, x),

and the equalities

V(km − 0, x) = V(km, x).

are valid.
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