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Abstract. Due to the fact that a fractional Brownian motion (fBm) with the Hurst parameter H ∈ (0, 1/2)∪
(1/2, 1) is neither a semimartingale nor a Markov process, relatively little is studied about the T-stability
for impulsive stochastic differential equations (ISDEs) with fBm. Here, for such linear equations with
H ∈ (1/3, 1/2), by means of the average stability function, sufficient conditions of the T-stability are presented
to their numerical solutions which are established from the Euler-Maruyama method with variable step-size.
Moreover, some numerical examples are presented to support the theoretical results.

1. Introduction

The theory of stochastic differential equations (SDEs) driven by Brownian motion with the Hurst param-
eter H = 1/2 plays an important role on the stochastic analysis, and is widely used in many fields(see [23]).
In fact, quite a lot of observed natural and social phenomena, such as the fluctuation of stock price and
the rate of return in Financial markets, exhibit properties of ”biased random walk” and ”decile-shaped fat
tail”. It is suggested that fractional Brownian motion (fBm) with H ∈ (0, 1/2) ∪ (1/2, 1)(see [2, 7, 8, 14]),
which owns the self-similarity and the long-term memory, provides better modeling and description of
such phenomena. In particular, such fractional equations are simple and effective, which were discussed
early in [1, 17, 27, 31]. Moreover, It is worthwhile to note that the jump properties of impulsive systems have
significant applications in physics, biology, control science and so on(see [20, 38]). However, the research
of ISDEs with fBm with H ∈ (0, 1/2) ∪ (1/2, 1), which are neither semimartingale nor Markov processes, is
just at the beginning (see [37]). And many significative properties of these equations, such as the T-stability
of their numerical methods, are deserved to be discovered. The following sections summary the relevant
work accomplished and outline what I would be doing.

The classical Black-Scholes model in financial markets, which was first studied in [3, 26], was extended
by broadening the Hurst parameter from H = 1/2 to H ∈ (0, 1) (see [10, 16]). The generalized Black-
Scholes model can capture the characteristic of long-range dependence and heavy tailed distribution in
miscellaneous financial data. By using the chaos decomposition approach, the existence of a unique
continuous solution to linear equations with H ∈ (0, 1/2) is given in [21]. To semilinear equations, the
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existence and uniqueness with H ∈ (1/2, 1) and H ∈ (0, 1) have been proved in [25] and [12, 22, 27]
respectively. By means of the fractional integration and the classical Itô’s stochastic calculus, the existence
and uniqueness of multidimensional and time-dependent solutions for equations with multidimensional
fractional Brownian motion and H ∈ (1/2, 1) were given in [13]. In [11], an efficient method rooting in a
stochastic operational matrix based on the block pulse functions with H ∈ (1/2, 1) is proposed. Moreover,
in [4], the existence of mild solutions for semilinear impulsive stochastic functional differential equations
with H ∈ (0, 1) was proved.

As far as I know, few results [9, 35] about almost sure stochastic stability and pth moment stochastic
stability, which are important and widely used, were presented for stochastic processes with fBm. The
behavior of the dissipativeness of semilinear SDEs with H ∈ (0, 1) and their drift-implicit Euler method
have been analysed in [12]. The exponential stability of semilinear SDEs with H ∈ (1/2, 1) was analyzed
in [22] via an auxiliary fuction. A result of stability is given for H ∈ (1/2, 1) in [34]. In [41], by means
of the Lyapunov exponents, necessary and sufficient conditions on the two stabilities were established
for the generalized Black-Scholes model with H ∈ (0, 1). Moreover, in [42], with the help of defining a
new derivative operator and constructing Lyapunov functions, some sufficient conditions for stability in
probability and moment exponential stability of a class of nonlinear equations were given.

Other authors also focused on the convergence of the numerical methods [12, 15, 18, 28, 29, 39] for some
special fractional equations. The optimal rate of convergence in mean square of arbitrary approximation
methods based on an equidistant discretization was derived for H ∈ (1/2, 1) in [30]. By using wavelet
approximation of multifractional Brownian motion, the approximating method was constructed in [36].

But now, the results of above-mentioned stabilities for stochastic systems are far more than T-stability
(see [6, 32]), although the simulation of T-stability requires a small number of samples and can be easily
implemented by computer programming. My major aim here is to fill this gap in the T-stability of the
Euler-Maruyama method for the model of linear ISDEs with fBm with H ∈ (1/3, 1/2), which are further
developed from the generalized Black-Scholes model in [10, 16] with the help of introducing impulse. More
precisely, by means of the average stability function, sufficient conditions of the T-stability of such equations
are presented with variable step-size based on the distances between impulsive times (section 3). To show
these conditions, the strong convergence of the Euler-Maruyama method is proved in section 2, and the
stochastical and asymptotical stability in the large are firstly given to such equations in section 3.

2. Preliminary

Throughout this paper, let (Ω,F , (Ft)t≥0,P) be a complete filtered probability space satisfying standard
conditions. | · | is the Euclidean norm in Rd, d ∈ N and L2

F0
(Ω; Rd) denote the family of Rd-valued F0-

measurable random variables ξ with E|ξ|2 < ∞.
The following d-dimensional ISDE driven by fBm is concerned in my paper

dx(t) = λx(t)dt + µx(t)dBH(t), t ≥ 0, t , τk,

x(τk) = βkx(τ−k ), k = 1, 2, · · · (1)

x(t) = x0

where x(t−) = lims→t− x(s), initial value x0 ∈ L2
F0

(Ω; Rd) and λ, µ ∈ R. The fractional Brownian motion
BH(t) = (BH1 (t), · · · ,BHM (t))T with independent scalar components is defined on the filtered probability
space and the Hurst parameter H := min{H j ∈ (1/3, 1/2) | j = 1, · · · ,M}.

Assumption 1. The impulse of equation (1) satisfies the undermentioned conditions.
(i) The impulsive functions {βk}k=1,2,··· are independent real-valued random variables. And there exists a constant L
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such that βk ≤ L.
(ii) There are infinitely many impulsive times

0 < τ1 < τ2 < · · · < ∞,

which distances dk are bounded by two constants θ1 and θ2, that is to say,

0 < θ1 ≤ dk = τk+1 − τk ≤ θ2 < ∞.

(iii) Let τ0 = 0 and β0 = 1.

Based on the fact that the distances dk (k = 0, 1, 2, · · · ) might be unequal, the Euler-Maruyama method
with variable step-size hk = dk/m (m ∈ N+) applied to the equation (1) has the form

Xkm,p = Xkm,p−1 + λhkXkm,p−1 + µXkm,p−14BH
km,p−1, p = 1, 2, · · · ,m,

Xkm,0 = βkX(k−1)m,m (2)

X(0) = x0

where Xkm,p ≈ x(tkm,p), tkm,p = (km + p)hk, p = 1, 2, · · · ,m, Xkm,0 ≈ x(τ−k ).
In [33], the increments of the fractional Brownian motion have the property that BH

t − BH
s ∼ N(0, (t −

s)2H), 0 ≤ s < t. Therefore, the independent increments

4BH
km,p−1 := BH(tkm,p) − BH(tkm,p−1)

obey the normal distribution N(0, h2H
k ).

The existence and uniqueness of solutions of the equation (1) can be confirmed on the basis of [21, 37].
Before discussing the stability of the Euler-Maruyama method (2), we prove its convergence.

Theorem 2.1. Under Assumption 1, the Euler-Maruyama method (2) is strong convergent to the equation (1).

Proof. In the interval [τk, τk+1), k = 0, 1, 2, · · · , the equation (1) is a SDE with fBm H ∈ (1/3, 1/2). According
to [39], the Euler-Maruyama method (2) is strong convergent with order 2H in the interval [τk, τk+1), k =
0, 1, 2, · · · . Therefore, in the same way as Lemma 10.2.2 in [19], the Euler-Maruyama method (2) is strong
convergent to the equation (1) with order 2H in the interval [0,∞).

To demonstrate T-stability of the Euler-Maruyama method (2), stochastical and asymptotical stability in
the large of the equation (1) is firstly considered. Some definitions on stability (see [5, 23]) are consequently
introduced.

Definition 2.2. The equation (1) is said to be stochastically stable (otherwise known as stable in probability), if for
any ε ∈ (0, 1) , there exists a positive constant δ = δ(ε) > 0 such that for |x0| < δ a.s.

p{lim
t→∞

x(t; x0) = 0} ≥ 1 − ε.

Definition 2.3. The equation (1) is said to be stochastical and asymptotical stability in the large, if the equation (1)
is stochastically stable and for all x0 ∈ L2

F0
(Ω; Rd)

p{lim
t→∞

x(t; x0) = 0} = 1.

Definition 2.4. The Euler-Maruyama method (2) of the equation (1) is said to be T-stable, if the equation (1) is
stochastical and asymptotical stability in the large and the solutions Xk = (Xkm,0,Xkm,1, · · · ,Xkm,m)T of the equation
(2) satisfy

lim
k→∞
|Xk| = 0.
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3. T-stability

In this section, the T-Stability of the Euler-Maruyama method (2) for the equation (1) is focused on. For
this purpose, the stochastical and asymptotical stability in the large of the equation (1) is firstly given by
means of the Lyapunov exponent.

Theorem 3.1. Under Assumption 1, if there is a positive constant q such that

|βk| exp[λ(τk+1 − τk) −
µ2

2
(τ2H

k+1 − τ
2H
k )] < q < 1, k = 0, 1, 2, · · · , (3)

where 1 < τk < τk+1, the equation (1) is stochastical and asymptotical stability in the large.

Proof. For any t ≥ 0, there exists an appropriate k ∈ N such that t ∈ [τk, τk+1). Applying the conditions of
reducibility in [40] and the Liouville formula in [24] to the equation (1), we have

x(t) = x0

k∏
i=0

βi exp[λt −
µ2

2
t2H + µBH(t)]

= βk exp[λ(t − τk) −
µ2

2
(t2H
− τ2H

k ) + µBH(t)]
k−1∏
i=0

βi exp[λ(τi+1 − τi) −
µ2

2
(τ2H

i+1 − τ
2H
i )]. (4)

Taking norms and logarithms on both sides yields

log |x(t)| = log |βkx0| + [(t − τk) −
µ2

2
(t2H
− τ2H

k ) + µBH(t)]

+

k−1∑
i=0

log{|βi| exp[λ(τi+1 − τi) −
µ2

2
(τ2H

i+1 − τ
2H
i )]}. (5)

I construct the function

f (x) = bx
− ax, 1 < a < b, x ∈ (0, 1], (6)

which is obviously monotonically increasing. I thus have

log |x(t)| ≤ log |Lx0| + |λ −
µ2

2
|θ2 + µBH(t) +

k−1∑
i=0

log{|βi| exp[λ(τi+1 − τi) −
µ2

2
(τ2H

i+1 − τ
2H
i )]}, (7)

where 1 < τk < τk+1.
The condition (3) means that

log{|βk| exp[λ(τk+1 − τk) −
µ2

2
(τ2H

k+1 − τ
2H
k )]} < 0, k = 0, 1, 2, · · · . (8)

From (7), (8) and the result (Lemma 2.2 in [41])

lim
t→∞

BH(t)
t

= 0, a.s.,

I can obtain the Lyapunov exponent

lim
t→∞

sup
1
t

log |x(t)| ≤ lim
t→∞

sup
1
t

k−1∑
i=0

log{|βi| exp[λ(τi+1 − τi) −
µ2

2
(τ2H

i+1 − τ
2H
i )]} < 0, (9)

which means that the equation (1) is stochastical and asymptotical stability in the large.

I therefore observe that the equation (1) is stochastical and asymptotical stability in the large if its Hurst
parameter, impulsive functions, impulsive times and coefficients satisfy (3).
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To analyze the T-Stability of the Euler-Maruyama method (2), I begin by deducing the recurrence relation

Xkm,p = (1 + λhk + µ4BH
km,p−1)Xkm,p−1

= (1 + λhk + µ4BH
km,p−1)(1 + λhk + µ4BH

km,p−2)Xkm,p−2

= · · ·

=

p−1∏
i=1

(1 + λhk + µ4BH
km,i)X(k−1)m,1

= βk

p−1∏
i=1

(1 + λhk + µ4BH
km,i)X(k−1)m,m.

This implies

Xkm,p = X0βk

p−1∏
i=0

(1 + λhk + µ4BH
km,i)

k−1∏
j=0

[β j

m−1∏
q=0

(1 + λh j + µ4BH
jm,q)]. (10)

In this paper, the normal distribution 4BH
jm,q is taken as U jm,qhH

j whose probability distribution is given
by P{U jm,q = ±1} = 1/2. The average stability function of the Euler-Maruyama method (2) is thus obtained
by

R(hk;λ, µ, βk) = βk

m−1∏
q=0

(1 + λhk + µ4BH
km,q)

= βk

m−1∏
q=0

(1 + λhk + µUkm,qhH
k ). (11)

Making use of the results (3) and (6), I can compute

R2(hk;λ, µ, βk) = β2
k

m−1∏
q=0

(1 + λhk + µUkm,qhH
k )2

= β2
k

m−1∏
q=0

(1 + λhk + µhH
k )(1 + λhk − µhH

k )

= β2
k

m−1∏
q=0

[(1 + λhk)2
− µ2h2H

k ]

= β2
k[(1 + λhk)2

− µ2h2H
k ]m

≤ {[(1 + λhk)2
− µ2h2H

k ] exp[−2λhk +
µ2

m
(τ2H

k+1 − τ
2H
k )]}m

≤ {[(1 + λhk)2
− µ2h2H

k ] exp[(µ2
− 2λ)hk]}m, (12)

where 1 < τk < τk+1.
Recalling the definition 2.4, I can infer that the Euler-Maruyama method (2) of the equation (1) is T-

stability if and only if the average stability function (11) satisfies |R(hk;λ, µ, βk)| < 1, where 1 < τk < τk+1.
The region of T-stability is thus structured by

H(hk) = {hk

∣∣∣ |(1 + λhk)2
− µ2h2H

k | < exp[(2λ − µ2)hk]}, (13)

where 1 < τk < τk+1. In the following theorem, I seek appropriate hk to fulfil

(1 + λhk)2
− µ2h2H

k < exp[(2λ − µ2)hk]. (14)
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Modestly using the Taylor’s formula to the right side of (14) and choosing fitting hk , we can have

(1 + λhk)2
− µ2h2H

k < 1 + (2λ − µ2)hk +
(2λ − µ2)2

2
h2

k . (15)

Theorem 3.2. Under Assumption 1, the Euler-Maruyama method (2) for the equation (1) is T-stable when one of
the following cases is met
(i)

H1(hk) = {hk

∣∣∣ λ > µ2

2
, λ2 >

(2λ − µ2)2

2
, ∆1,1 < hk < ∆1,2}, (16)

where ∆1,1 = max{0,
1−2H
√

µ2

2λ }, ∆1,2 = min{1, τk+1 − τk,
1−2H

√
µ2

µ2+λ2−
(2λ−µ2)2

2

}.

(ii)

H2(hk) = {hk

∣∣∣ λ > µ2

2
, λ2 =

(2λ − µ2)2

2
, ∆2,1 < hk < ∆2,2}, (17)

where ∆2,1 = max{0,
1−2H
√

µ2

2λ }, ∆2,2 = min{1, τk+1 − τk }.
(iii)

H3(hk) = {hk

∣∣∣ λ > µ2

2
, λ2 <

(2λ − µ2)2

2
, ∆3,1 < hk < ∆3,2}, (18)

where ∆3,1 = max{0,
1−2H
√

µ2

2λ ,
µ2

(2λ−µ2)2

2 −λ2+µ2
}, ∆3,2 = min{1, τk+1 − τk }.

(iv)

H4(hk) = {hk

∣∣∣ λ > µ2

2
, λ2 <

(2λ − µ2)2

2
, ∆4,1 < hk = 1 < ∆4,2}, (19)

where ∆4,1 = max{0,
1−2H
√

µ2

2λ }, ∆4,2 = τk+1 − τk.
(v)

H5(hk) = {hk

∣∣∣ λ > µ2

2
, λ2 <

(2λ − µ2)2

2
, ∆5,1 < hk < ∆5,2}, (20)

where ∆5,1 = max{1,
1−2H
√

µ2

2λ }, ∆5,2 = min{τk+1 − τk,
1−2H

√
(2λ−µ2)2

2 −λ2+µ2

µ2 }.

Proof. The conditions λ > µ2

2 and hk >
1−2H
√

µ2

2λ can imply (1 + λhk)2
− µ2h2H

k > 0 and 2λ − µ2 > 0 in (15). The
proof will be continued in five cases as follows.
(i) If hk ∈ H1(hk), it is easy to see

0 < hk < 1, (21)

h1−2H
k <

µ2

µ2 + λ2 −
(2λ−µ2)2

2

, (22)
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and

λ2
−

(2λ − µ2)2

2
> 0. (23)

The inequality (22) can be reduced to

[µ2 + λ2
−

(2λ − µ2)2

2
]hk < µ

2h2H
k . (24)

The inequality (21) means

[λ2
−

(2λ − µ2)2

2
]h2

k + µ2hk < [λ2
−

(2λ − µ2)2

2
]hk + µ2hk. (25)

From the inequalities (24) and (25), I have

[λ2
−

(2λ − µ2)2

2
]h2

k + µ2hk < µ
2h2H

k , (26)

which can give

1 + λ2h2
k + 2λhk − µ

2h2H
k < 1 + 2λhk − µ

2hk +
(2λ − µ2)2

2
h2

k . (27)

From (26), such hk can fulfil (15) and (14). Therefore the Euler-Maruyama method (2) for the equation (1) is
T-stable.
(ii) The inequality (14) is satisfied, if the inequality

[λ2
−

(2λ − µ2)2

2
]h2

k < µ
2(h2H

k − hk). (28)

holds. In addition, if hk ∈ H2(hk), the both sides of (27) have the distinguishing feature that

λ2
−

(2λ − µ2)2

2
]h2

k = 0 (29)

and

µ2(h2H
k − hk) > 0. (30)

From (29) and (30), I thus can obtain that (28) always holds for hk ∈ H2(hk).
(iii) For any hk ∈ H3(hk), we have

h2
k < hk < h2H

k , (31)

and

hk >
µ2

(2λ−µ2)2

2 − λ2 + µ2
, (32)

which lead to

[
(2λ − µ2)2

2
− λ2]h2

k + µ2h2H
k > [

(2λ − µ2)2

2
− λ2 + µ2]h2

k > µ
2hk. (33)

Hence (28) holds and then the Euler-Maruyama method (2) is T-stable.
(iv) In H4(hk), the condition

λ2 <
(2λ − µ2)2

2
(34)
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can be reduced to

[λ2
−

(2λ − µ2)2

2
] · 12 + µ2

· 1 < µ2
· 12H, (35)

which can give the inequality (28).
(v) If hk ∈ H5(hk), we can obtain

h2
k > hk > h2H

k (36)

and

h1−2H
k <

(2λ−µ2)2

2 − λ2 + µ2

µ2 , (37)

which mean

[
(2λ − µ2)2

2
− λ2]h2

k + µ2h2H
k > [

(2λ − µ2)2

2
− λ2 + µ2]h2H

k > µ2hk. (38)

From (37),it is easy to see hk ∈ H4(hk) satisfies (28). Therefore, the Euler-Maruyama method (2) is T-stable.

4. Numerical example

The influence of the parameters λ, µ, βk and the stepsize hk on T-stability of the Euler-Maruyama method
(2) to the equation (1) is shown in this section. Here, three groups of the parameters and their regions of
T-stability from Theorem 3.2 are given as

I : λ = 3, µ2 = 2, H =
3
8
, τk = k, βk = exp(−5), k = 1, 2, · · · ,

H1(hk) = {hk

∣∣∣ 0.0123 < hk < 0.1795}.

II : λ =
1
2
, µ2 = 1 −

√
2

2
, H =

2
5
, τk = 2k, βk = exp(−2), k = 1, 2, · · · ,

H2(hk) = {hk

∣∣∣ 0.002155 < hk < 1}.

III : λ = 2, µ2 = 1, H =
5

12
, τk = 3k, βk = exp(−7), k = 1, 2, · · · ,

H3(hk) = {hk

∣∣∣ 0.0002441 < hk < 1},

H4(hk) = {hk

∣∣∣ 0.6667 < hk = 1 < 3},

H5(hk) = {hk

∣∣∣ 1 < hk < 3}.

I fix the parameters with I-III and choose the stepsizes inside and outside the regions of T-stability
H1-H5 in Figs.1-3, which describe the T-stability of the Euler-Maruyama method (2) to the equation (1) by
Matlab. The observations show that these numerical examples are consistent with the results of Theorem 3.2
in my paper.
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Figure 1: T-stability of the Euler-Maruyama method for I
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Figure 2: T-stability of the Euler-Maruyama method for II
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Figure 3: T-stability of the Euler-Maruyama method for III
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[7] L. Decreusefond, A.S. Üstünel, Stochastic analysis of the fractional Brownian motion, Potential Analysis 10(2)(2010)177–214.
[8] T.E. Duncan, Y. Hu, B. Pasik-Duncan, Stochastic calculus for fractional Brownian motion, Journal on Control and Optimization

38(2)(2000)582–612.
[9] T.E. Duncan, B. Maslowski, B. Pasik-Duncan, Stochastic equations in Hilbert space with a multiplicative fractional Gaussian

noise, Stochastic Processes and Their Applications 115(8)(2005)1357–1383.
[10] R.J. Elliott, J.V.D. Hoek, A general fractional white noise theory and applications to finance, Mathematical Finance 13(2)(2003)301–

330.
[11] R. Ezzati, M. Khodabin, Z. Sadati, Numerical implementation of stochastic operational matrix driven by a fractional Brow-

nian motion for solving a stochastic differential equation, Abstract and Applied Analysis 2014 (2014), Article ID 523163,
http://dx.doi.org/10.1155/2014/523163.

[12] M.J. Garrido-Atienza, P.E. Kloeden, A. Neuenkirch, Discretization of stationary solutions of stochastic systems driven by Frac-
tional Brownian motion, Applied Mathematics and Optimization 60(2)(2009)151–172.

[13] J. Guerra, D. Nualart, Stochastic differential equations driven by fractional Brownian motion and standard Brownian motion,
Stochastic Analysis and Applications 26(5)(2008)1053–1075.

[14] Z. Guo, H. Yuan, Pricing European option under the time-changed mixed Brownian-fractional Brownian model, Physica A
Statistical Mechanics and Its Applications 406(406)(2014)73–79.

[15] P. Guo, C. Zeng, C. Li, Y. Chen, Numerics for the fractional langevin equation driven by the fractional Brownian Motion, Fractional
Calculus and Applied Analysis 16(1)(2013)123–141.

[16] Y. Hu, B. ∅ksendal, Fractional white noise calculus and applications to finance, Infinite Dimensional Analysis Quantum Probability
and Related Topics 6(1)(2003),DOI: http://dx.doi.org/10.1142/S0219025703001110.

[17] M. Jolis, On the Wiener integral with respect to the fractional Brownian motion on an interval, Journal of Mathematical Analysis
and Applications 330(2)(2007)1115–1127.

[18] M. Kamrani, Numerical solution of stochastic fractional differential equations, Numerical Algorithms 68(1)(2015)81–93.
[19] P.E. Kloeden, E. Platen, Numerical solution of stochastic differential equations, Springer-Verlag, Berlin, 1992.
[20] V. Lakshimikantham, D.D. Bainov, P.S. Simeonov, Theory of impulsive ordinary differential equations, Aequationes Mathematicae

6(1989)288.
[21] J.A. León, J.S. Martin, Linear Stochastic differential equations driven by a fractional Brownian motion with Hurst parameter less

than 1/2, Stochastic Analysis and Applications 25(1)(2006)105–126.
[22] J. Liao, X. Wang, Stability of stochastic differential equation with linear fractal noise, Frontiers of Mathematics in China

9(3)(2014)495–507.
[23] X.R. Mao, C.G. Yuan, Stochastic differential equations with markovian switching, Imperial College Press, London, 2006.
[24] X.R. Mao, Stochastic differential equations and their applications, Horwood Publishing Limited, Chichester, 1997.
[25] B. Maslowski, B. Schmalfuss, Random dynamical systems and stationary solutions of differential equations driven by the

fractional Brownian motion, Stochastic Analysis and Applications 22(6)(2005)1577–1607.
[26] R.C. Merton, Theory of rational option pricing, Bell Journal of Economics and Management Science 4(1)(1973)141–183.
[27] Y.S. Mishura, Stochastic calculus for fractional Brownian motion and related processes, Springer-Verlag, Berlin, 2008.
[28] Y. Mishura, G. Shevchenko, The rate of convergence for Euler approximations of solutions of stochastic differential equa-

tions driven by fractional Brownian motion, Stochastics: An International Journal of Probability and Stochastic Processes
80(5)(2008)489–511.

[29] A. Neuenkirch, I. Nourdin, Exact rate of convergence of some approximation schemes associated to SDEs driven by a fractional
Brownian motion, Journal of Theoretical Probability 20(4)(2006)871–899.

[30] A. Neuenkirch, Optimal pointwise approximation of stochastic differential equations driven by fractional Brownian motion,
Stochastic Processes and Their Applications 118(12)(2008)2294–2333.

[31] D. Nualart, Stochastic integration with respect to the fractional Brownian motion, Stochastics and Stochastics Reports
75(3)(2003)129–152.

[32] Y. Saito, T. Mitsui, T-stability of numerical scheme for stochastic differential equations, World Scientific Series in Applicable
Analysis: Contributions in Numerical Mathematics, World Scientific Publishing, Washington D.C., 1993.

[33] M.R. Saelim, On some fractional stochastic models in finance, Ph. D. Dissertation, Suranaree University of Technology, Thailand,
2004.

[34] B. Saussereau, A stability result for stochastic differential equations driven by fractional Brownian motions, International Journal
of Stochastic Analysis, 2012(4)(2012),Article ID 281474, http://dx.doi.org/10.1155/2012/281474.

[35] H.S. Shu, C.L. Chen, G.L. Wei, Stability of linear stochastic differential equations with respect to fractional Brownian motion,
Journal of Donghua University 26(2)(2009)119–125.

[36] A. Soós, Approximation of the solution of stochastic differential equations driven by multifractional Brownian motion, Studia
Universitatis Babes-Bolyai, Mathematica 2(2011)587–598.

[37] D.N. Tien, Neutral stochastic differential equations driven by a fractional Brownian motion with impulsive effects and varying-



H. Yu / Filomat 32:18 (2018), 6493–6503 6503

time delays, Journal of the Korean Statistical Society 43(4)(2014)599–608.
[38] K Wu, X Ding, Convergence and stability of Euler method for impulsive stochastic delay differential equations, Applied

Mathematics and Computation 229(1)(2014)151–158.
[39] C.L. Xu, Numerical methods of a class of stochastic differential equations driven by a fractional Brownian motion, Ph. D.

Dissertation, Huazhong University of Science and Technology, Wuhan, 2014.
[40] C. Zeng, Q. Yang, Y.Q. Chen, Solving nonlinear stochstic differential equations with fractional Brownian motion using reducibility

approach, Nonlinear Dynamics 67(4)(2012)2719–2726.
[41] C. Zeng, Y.Q. Chen, Q. Yang, Almost sure and moment stability properties of fractional order Black-Scholes model, Fractional

Calculus and Applied Analysis 16(2)(2013)317–331.
[42] C. Zeng, Q. Yang, Y.Q. Chen, Lyapunov techniques for stochastic differential equations driven by fractional Brownian motion,

Abstract and Applied Analysis 2014(2)(2014)1–9.


