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Abstract. In this paper, we obtained best proximity coincidence point theorems forα-Geraghty contractions
in the setting of complete metric spaces by using weak P-property. Also we presented some examples to
prove the validity of our results. Our results extended and unify many existing results in the literature.
Moreover, in the last section as applications of our main results, we can apply some coincidence best
proximity point and coupled coincidence proximity point on metric spaces endowed with an arbitrary
binary relation.

1. Introduction

Fixed point theory is a branch of non-linear analysis which has attracted much attention in recent times
due to its possible applications. The Banach contraction principle [1], which is a useful tool in the study
of many branches of mathematics and mathematical sciences, is one of the earlier and fundamental result
in fixed point theory. Because of its importance in non-linear analysis, a number of mathematicians have
intensively investigated sufficient conditions to ensure that certain contractive mappings have a fixed point.
They improved, generalized and extended this basic result either by defining a new contractive mappings
in the context of a complete metric space or by investigating the existing contractive mappings in various
abstract spaces; see, e.g., [2–11] and references therein. When a mapping from a metric space into itself has
no fixed points, it could be interesting to study the existence and uniqueness of some points that minimize
the distance between the origin and its corresponding image. These points are known as best proximity
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points and were introduced by [12] and modified by Sadiq Basha in [13]. Best proximity point theorems
for several types of non-self mappings have been derived in [13–21]. Recently, Geraghty [6] obtained a
generalization of the Banach contraction principle in the setting of complete metric spaces by considering
an auxiliary function. Later, Amini-Harandi and Emami [2] characterized the result of Geraghty in the
context of a partially ordered complete metric space. This result is of particular interest since many real
world problems can be identified in a partially ordered complete metric space. Many mathematicians
discussed the existence of a best proximity point of Geraghty contraction [22]. In this paper, we obtained
best proximity coincidence point and fixed point theorems for α-Geraghty contractions in the setting of
complete metric spaces. We obtain some examples to prove the validity of our results. Our results extend
and unify many existing results in the literature.

2. Preliminaries

Definition 2.1. [17] Let X be a metric space, A and B two nonempty subsets of X. Define

d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B},
A0 = {a ∈ A : there exists some b ∈ B such that d(a, b) = d(A,B)},
B0 = {b ∈ B : there exists some a ∈ A such that d(a, b) = d(A,B)}.

In [18], the authors present sufficient conditions which determine when the sets A0 and B0 are nonempty.

Definition 2.2. [23] Let f : X→ X be a map and α : X ×X→ R be a function. Then f is said to be α-admissible if
α(x, y) ≥ 1 implies α( f x, f y) ≥ 1.

Definition 2.3. An α−admissible map f is said to be triangular α−admissible if α(x, z) ≥ 1 and α(z, y) ≥ 1 implies
α(x, y) ≥ 1.

Definition 2.4. [24] A mapping T : A → B is said to be α−proximal admissible, where α : A × A → [0,∞) be a
function, if

α(x1, x2) ≥ 1
d(u1,Tx1) = d(A,B)
d(u2,Tx2) = d(A,B)

 =⇒ α(u1,u2) ≥ 1

for all x1, x2,u1,u2 ∈ A.

We denote by F the class of all functions β : [0,∞)→ [0, 1) satisfying β(tn)→ 1, implies tn → 0 as n→∞.

Definition 2.5. [6] Let (X, d) be a metric space. A map f : X → X is called Geraghty contraction if there exists
β ∈ F such that for all x, y ∈ X,

d( f x, f y) ≤ β(d(x, y))d(x, y).

By using such maps Geraghty et al. [6] proved the following fixed point result:

Theorem 2.6. Let (X, d) be a complete metric space. A Mapping f : X → X is Geraghty contraction. Then f has a
fixed point x ∈ X, and { f nx} converges to x.

Cho et al. [25] generalized the concept of Geraghty contraction to α-Geraghty contraction and prove the
fixed point theorem for such contraction.

Definition 2.7. [25] Let (X, d) be a metric space, and let α : X × X → R be a function. A map f : X → X is called
α-Geraghty contraction if there exists β ∈ F such that for all x, y ∈ X,

α(x, y)d( f x, f y) ≤ β(d(x, y))d(x, y).
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Theorem 2.8. [25] Let (X, d) be a complete metric space, α : X × X → R be a function. Define a map f : X → X
satisfying the following conditions:

1. f is continuous α-Geraghty contraction;
2. f be a triangular α-admissible;
3. there exists x1 ∈ X such that α(x1, f x1) ≥ 1.

Then f has a fixed point x ∈ X, and { f nx} converges to x.

Definition 2.9. [26] Let (A,B) be a pair of non-empty subsets of a metric space (X,d) with A0 , ∅.Then the pair
(A,B) is said to have the P-property if and only if for any x1, x2, x3, x4 ∈ A0,

d(x1, f x3) = d(A,B)
d(x2, f x4) = d(A,B)

}
⇒ d(x1, x2) = d( f x3, f x4).

Definition 2.10. [27] Let (A,B) be a part of nonempty subsets of a metric space (X, d) with A0 , ∅. Then the pair
(A,B) is said to have weak P-property if and only if for any x1, x2 ∈ A0 and y1, y2 ∈ B0

d(x1, y1) = d(A,B)
d(x2, y2) = d(A,B)

}
⇒ d(x1, x2) ≤ d(y1, y2).

Definition 2.11. [20] Given a non-self mapping f : A→ B, then an element x∗ is called best proximity point of the
mappings if this condition satisfied:

d(x∗, f x∗) = d(A,B).

We denote by BPP( f ), the set of best proximity points of f .

Definition 2.12. [28] Let (X, d) be a metric space and A,B ⊆ X, let 1 : A→ A and f : A→ B be mappings then a
point x ∈ A is a best proximity coincidence point of the pair (1, f ) if d(1x, f x) = d(A,B).

3. Main Result

In this section, we prove the existence and uniqueness of best proximity coincidence point forα-Geraghty
contraction in the field of complete metric space.

Our first result is the the existence of best proximity coincidence point for α-Geraghty contraction
mappings.

Definition 3.1. Let (X, d) be a metric space, and let α : X × X → R be a function. A map S : A → B is called
α-Geraghty contraction if there exists β ∈ F such that for all x, y ∈ A,

α(x, y)d(Sx,Sy) ≤ β(d(x, y))d(x, y),

where A,B ⊆ X.

Now, we are in a position to prove our main result.

Theorem 3.2. Let A,B be two nonempty closed subsets of a complete metric space (X, d) such that A0 is nonempty
and 1 : A → A is an isometry such that A0 ⊆ 1(A0), let α : A × A → R be a function. Define a map f : A → B
satisfying the following conditions:

1. f is continuous α-Geraghty contraction;
2. f be an α-proximal admissible;
3. for each x, y ∈ A0 satisfying d(x, f (y)) = d(A,B) and α(y, x) ≥ 1;
4. f (A0) ⊆ B0 and the pair (A,B) has the P-property.
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Then there exists x∗ in A such that d(1x∗, f x∗) = d(A,B).

Proof. Since A0 is nonempty, we take x0 ∈ A0, since f (A0) ⊆ B0 and A0 ⊆ 1(A0), there exists x1 ∈ A0 such that

d(1x1, f x0) = d(A,B) and α(x0, x1) ≥ 1. (1)

Again, since f (A0) ⊆ B0, there exists x2 ∈ A0 such that

d(1x2, f x1) = d(A,B). (2)

From (1), (2) and f be an α-proximal admissible, we obtain α(1x1, 1x2) ≥ 1.
Since 1 is an isometry so

α(x1, x2) ≥ 1.

Thus we have
d(1x2, f x1) = d(A,B) and α(x1, x2) ≥ 1. (3)

Again, since f (A0) ⊆ B0, there exists x3 ∈ A0 such that

d(1x3, f x2) = d(A,B). (4)

From (3), (4) and f be an α-proximal admissible, we obtain α(1x2, 1x3) ≥ 1.
Since 1 is an isometry so

α(x2, x3) ≥ 1.

Repeating this process, we get a sequence {1xn} in A0 satisfying

d(1xn+1, f xn) = d(A,B) with α(xn, xn+1) ≥ 1,

for any n ∈N.
Since (A,B) has the P-property, we have that

d(1xn, xn+1) = d( f xn−1, f xn)

for any n ∈N.
Taking into account that f is α-Geraghty contraction and (A,B) has the P-property, so for any n ∈ N, we
have that

d(1xn, 1xn+1) = d(xn, xn+1)
= d( f xn−1, f xn)
≤ α(xn−1, xn)d( f xn−1, f xn)
≤ β(d(xn−1, xn))d(xn−1, xn)
< d(xn−1, xn)
= d(1xn−1, 1xn)

where β(d(xn−1, xn)) < 1, 1 is an isometry and α(xn−1, xn) ≥ 1.

⇒ d(1xn, 1xn+1) < d(1xn−1, 1xn),

so {d(1xn, 1xn+1)} is strictly decreasing sequence of non-negative real numbers.
Suppose that there exists n0 ∈N such that d(1xn0 , 1xn0+1) = 0. In this case,

d(1xn0 , 1xn0+1) = 0 = d(xn0 , xn0+1) = d( f xn0−1, f xn0 ),

and consequently
f xn0−1 = f xn0 .
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Therefore,
d(A,B) = d(1xn0 , f xn0−1) = d(1xn0 , f xn0 ).

Note that x0 ∈ A0, x1 ∈ B0, and x0 = x1 so A ∩ B is non-empty, then d(A,B) = 0. Thus in this case, there
exists unique best proximity coincidence point, i.e. there exists unique x∗ in A for the pair (1, f ) such that
d(1x∗, f x∗) = d(A,B).
In the contrary case, suppose that d( f xn0 , f xn0−1) > 0 this implies that d(1xn, 1xn+1) > 0 for any n ∈ N. Since
{d(1xn, 1xn+1)} is strictly decreasing sequence of nonnegative real numbers and hence there exists r ≥ 0 such
that

lim
n→∞

d(1xn, 1xn+1) = lim
n→∞

d(xn, xn+1) = r.

We have to show that r = 0. Let r , 0 and r > 0, then from above inequality and since 1 is an isometry, we
have

0 <
d(1xn, 1xn+1)

d(xn−1, xn)
≤ β(d(xn−1, xn)) < 1,

for any n ∈N. Which yields that
lim
n→∞

β(d(xn−1, xn)) = 1,

since β ∈ F , above equation implies that

lim
n→∞

d(xn−1, xn) = 0,

where 1 is an isometry, so
lim
n→∞

d(1xn−1, 1xn) = 0,

Hence r = 0 and this contradicts our assumption that r > 0. Therefore,

lim
n→∞

d(1xn, 1xn+1) = 0.

Since d(xn+1, f xn) = d(A,B) for any n ∈N, for fixed p, q ∈N, we have

d(1xp, f xp−1) = d(1xq, f xq−1) = d(A,B)

and since (A,B) satisfies P-property, so

d(1xp, 1xq) = d( f xp−1, f xq−1).

Now we have to show that {1xn} is a Cauchy sequence.
On contrary, suppose that {1xn} is not a Cauchy sequence. Then there exists ε > 0 such that for all k > 0,
there exists m(k) > n(k) > k with (the smallest number satisfying the condition below)

d(1xm(k), 1xn(k)) ≥ ε and d(1xm(k)−1, 1xn(k)) < ε.

Then, we have

ε ≤ d(1xm(k), 1xn(k))
≤ d(1xm(k), 1xm(k)−1) + d(1xm(k)−1, 1xn(k))
< d(1xm(k, 1xm(k)−1) + ε.

This implies that
ε < d(1xm(k), 1xm(k)−1) + ε. (5)

Let k→∞ in the above inequality, we have

lim
k→∞

d(1xm(k), 1xn(k)) = ε. (6)
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Now by using Triangular inequality, we have

d(1xm(k), 1xn(k)) ≤ d(1xm(k), 1xm(k)−1) + d(1xm(k)−1, 1xn(k)−1) + d(1xn(k)−1, 1xn(k)).

Take limit on both sides, we get

lim
k→∞

d(1xm(k)−1, 1xn(k)−1) ≥ lim
k→∞

d(1xm(k), 1xn(k)) − lim
k→∞

d(1xm(k), 1xm(k)−1)

− lim
k→∞

d(1xn(k)−1, 1xn(k)).

By using (5) and (6), we obtain
lim
k→∞

d(1xm(k)−1, 1xn(k)−1) = ε.

Since α(xn(k)−1, xm(k)−1) ≥ 1, we have

d(1xm(k), 1xn(k)) = d(xm(k), xn(k))
= d( f xm(k)−1, f xn(k)−1)
≤ α(xn(k)−1, xm(k)−1)d( f xn(k)−1, f xm(k)−1)
≤ β(d(xn(k)−1, xm(k)−1))d(xn(k)−1, xm(k)−1).

Since 1 is an isometry. It follows that

d(1xm(k), 1xn(k))
d(1xn(k)−1, 1xm(k)−1)

≤ β(d(xn(k)−1), xm(k)−1).

Letting m,n→∞ in the above inequality, we get

lim
k→∞

β(d(xn(k)−1, xm(k)−1)) = 1,

and so
lim
n→∞

d(xn(k)−1, xm(k)−1) = 0.

Then one can write as limn→∞ d(1xn(k)−1, 1xm(k)−1) = 0 Hence ε = 0, which contradicts our supposition that
ε > 0. So we conclude that {1xn} is a Cauchy sequence in A. Since {1xn} ⊆ A and A is closed subset of a
complete metric space (X, d). There is x∗ ∈ A such that 1xn → 1x∗ as n → ∞. Since f is continuous, so we
have

f xn → f x∗.
⇒ d(1xn+1, f xn)→ d(1x∗, f x∗).

Taking into account that {d(1xn+1, f xn)} is a constant sequence with a value d(A,B), we deduce

d(1x∗, f x∗) = d(A,B),

i.e., x∗ is best proximity coincidence point of the pair (1, f ).

Remark 3.3. The condition A and B are nonempty closed subsets of the metric space (X, d) is not a necessary condition
for the existence of the unique best proximity coincidence point for α-Geraghty contraction f : A→ B and 1 : A→ A.
Since for any nonempty subset A of X, the pair (A,B) satisfied the (weak P-property) P-property, we have the following
corollary.

Corollary 3.4. Let A be a nonempty closed subsets of a complete metric space (X, d) such that A0 is nonempty,
α : X × X→ R be a function. Define a map f : A→ A and 1 : A→ A such that 1(A) ⊆ A satisfying the following
conditions:
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1. f is continuous α-Geraghty contraction;
2. f be an α-proximal admissible;
3. 1 is an isometry;
4. for each x, y ∈ A0 satisfying d(x, f (y)) = d(A,B) and α(y, x) ≥ 1.

Then (1, f ) has a fixed coincidence point x∗ in A and f is a Picard operator, that is, f n(x) converges to x∗.

Proof. Following Theorem 3.2 by taking A = B, we obtained the desired result.

Corollary 3.5. Let A,B be two nonempty closed subsets of a complete metric space (X, d) such that A0 is nonempty.
Define a map f : A→ B and an isometry 1 : A→ A such that 1(A) ⊆ A satisfying the following conditions:

1. f is continuous;
1. f is Geraghty contraction;
2. f (A0) ⊆ B0 and the pair (A,B) has the P-property.

Then there exists a unique x∗ in A such that d(1x∗, f x∗) = d(A,B).

Proof. From Theorem 3.2, we put α(x, y) = 1, then we get desired result.

Corollary 3.6. Let A be a nonempty closed subsets of a complete metric space (X, d) such that A0 is nonempty. Define
a map f : A → A such that f is continuous Geraghty contraction and an isometry 1 : A → A such that 1(A) ⊆ A.
Then (1, f ) has a fixed coincidence point x∗ in A and f is a Picard operator, that is, f n(x) converges to x∗.

Proof. In Corollary 3.4, taking α(x, y) = 1 we have the desire result.

Continuity of the mapping f can be omitted Theorem 3.2. We replace continuity of f with a suitable
condition as follows:

(H) if {xn} is a sequence in A such that α(xn, xn+1) ≥ 1 for all n and xn → x ∈ X as n→ ∞,then there exists
a subsequence {xn(k)} of {xn} such that α(xn(k), x) ≥ 1 for all k.

Theorem 3.7. Let A,B be two nonempty closed subsets of a complete metric space (X, d) such that A0 is nonempty,
α : X × X → R be a function. Define a map f : A → B and 1 : A → A is an isometry, satisfying the following
conditions:

1. f is α-Geraghty contraction;
2. f be an α-proximal admissible;
3. for each x, y ∈ A0 satisfying d(x, f (y)) = d(A,B) and α(y, x) ≥ 1;
3. f (A0) ⊆ B0 and the pair (A,B) has the P-property;
4. (H) holds.

Then there exists x∗ in A such that d(1x∗, f x∗) = d(A,B).

Proof. Following Theorem 3.2, we have {1xn} is a Cauchy sequence such that 1xn → 1x as n→∞.
Let xm+1, xn+1 ∈ A0 and f xm, f xn ∈ B0, such that

d(1xm+1, f xm) = d(A,B)

and
d(1xn+1, f xn) = d(A,B),

where 1 is an isometry. Then by P-property, we obtain

d(1xm+1, 1xn+1) = d( f xm, f xn).
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So for xn, xn+1 ∈ A0,we have

d(1xn+1, 1xn) = d(xn+1, xn)
= d( f xn, f xn−1)
≤ α(xn, xn−1)d( f xn, f xn−1)
≤ β(d(xn, xn−1))d(xn, xn−1)
< d(xn, xn−1) = d( f xn−1, f xn−2),

this implies { f xn} is a Cauchy sequence and { f xn} → z.
Thus {d(1xn, 1x)} → 0 as n→∞, {d( f xn, f xn−1)} → 0 as n→∞ and

d(1xn+1, f xn) = d(A,B).

Taking limit as n→∞, we get
d(1x, z) = d(A,B).

Take a subsequence {1xn(k)} of {1xn}, and α(xn(k), x) ≥ 1. It follows that

d( f xn(k), f x) ≤ α(xn(k), x)d( f xn(k), f x) ≤ β(xn(k), x)d(1xn(k), 1x).

By applying the limit k→∞
d(z, f x) = 0.

Thus d(1x, f x) = d(A,B).

Next result, we will give sufficient conditions in order to prove the uniqueness of best proximity
coincidence point.

Definition 3.8. Let f : A → B, α : X × X → [0,∞) be two mappings. A mapping f is called α-regular if for all
x, y ∈ A0 such that α(x, y) < 1, there exists z ∈ A0 such that α(x, z) ≥ 1 and α(y, z) ≥ 1.

Theorem 3.9. Under the hypothesis of Theorem 3.2 (resp. Theorem 3.7), assume that f is α-regular. Then for all best
proximity coincidence points x∗ and y∗ of f in A0 we have that x∗ = y∗: In particular, f has a unique best proximity
coincidence point.

Proof. Let x∗, y∗ ∈ A0 be two best proximity coincidence points of f in A0. Then d(1x∗, f x∗) = d(1y∗, f y∗) =
d(A,B) and f has P−property, we deduce that

d(1x∗, 1y∗) = d( f x∗, f y∗).

We consider two cases:
Case-I: If α(x∗, y∗) ≥ 1. Using the fact that f is α-Geraghty contraction, we have

d(1x∗, 1y∗) = d(x∗, y∗) = d( f x∗, f y∗) ≤ α(x∗, y∗)d( f x∗, f y∗)
≤ β(d(x∗, y∗))d(x∗, y∗)
< d(1x∗, 1y∗)

⇒ d(1x∗, 1y∗) < d(1x∗, 1y∗),

which is contradiction. So
1x∗ = 1y∗.

By 1 is isometry, so x∗ = y∗.

Case-II: If α(x∗, y∗) < 1, then by the α-regularity of f , there exists z0 ∈ A0 such that α(x∗, z0) ≥ 1 and
α(y∗, z0) ≥ 1. Based on z0, we define a sequence {zn} and suppose that zn converges to x and y, which proves
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the uniqueness. First, we shall prove that {1zn} converges to 1x. Indeed, f z0 ∈ f A0 ⊆ B0 implies that z1 ∈ A0
such that d(1z1, f z0) = d(A,B). Now, we have

α(x∗, z0) ≥ 1, d(1x∗, f x∗) = d(1z1, f z0) = d(A,B).

Since T is α−proximal admissible, we get that α(1x∗, 1z1) ≥ 1.
Since 1 is an isometry, we get that α(x∗, z1) ≥ 1.
Continuing this process, by induction, we can construct a sequence {1zn} ⊆ A0 such that

d(1zn+1, f zn) = d(A,B) and α(x∗, zn) ≥ 1 for all n ≥ 0.

Since d(1zn+1, f zn) = d(1x∗, f x∗) = d(A,B), using the P-property, we obtain that

d(1x∗, 1zn+1) = d( f x∗, f zn)

for all n ≥ 0. Since f is α-Geraghty contraction, we have

d(1x∗, 1zn+1) = d( f x∗, f zn)
≤ α(x∗, zn)d( f x∗, f zn)
≤ β(d(x∗, zn))d(x∗, zn)
< d(x∗, zn).

Since 1 is an isometry, so d(1x∗, 1zn) = d(x∗, zn), which shows that {d(1x∗, 1zn+1)} is a decreasing sequence of
nonnegative real numbers, and there exists r ≥ 0 such that limn→∞ d(1x∗, 1zn+1) = r. Assume r > 0, then we
have

0 <
d(1x∗, 1zn+1)
d(1x∗, 1zn)

≤ β(d(x∗, zn)) < 1,

for any n ∈N.
The last inequality implies that limn→∞ β(d(1x∗, 1zn)) = 1 and since β ∈ F so r = 0 and this contradicts our
assumption. Therefore limn→∞ d(1x∗, 1zn+1) = 0, that is 1zn+1 → 1x∗ as n→∞
Repeating this argument,we have that 1zn → 1x∗ as n→∞,which proves that {1zn} is a sequence converging
to 1x∗. Similarly 1zn converges to 1y∗. By uniqueness of limit we have 1x∗ = 1y∗. Therefore x∗ = y∗.

Example 3.10. Consider X = R2, with the usual metric d. Let A = {0} × [1,∞) and B = {1} × [0,∞). Obviously,
d(A,B) = 1 and A,B are nonempty subsets of X, take A0 = A and B0 = B.
We define f : A→ B as:

f (0, x) = (1, ln x),

where (0, x) ∈ A and ln x ∈ [0,∞) and 1 : A→ A is defined as 1x = x.
Let α : R2

×R2
→ [0,∞) defined as:

α((x1, y1), (x2, y2)) =

1 if 0 = x1 = x2 and∞ > y1, y2 ≥ 0,
0 elsewhere.

Clearly, for (0, x1) ∈ A0 one has d((0, x1), f (0, x1)) = d(A,B) which implies that α((0, x1), f (0, x1)) = 1. Also f is
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α-Geraghty contraction as: for (0, x), (0, y) ∈ A with x , y and x > y, we have

α((0, x), (0, y))d( f (0, x), f (0, y)) = 1 · d( f (0, x), f (0, y))
= | ln(x) − ln(y)|

=

∣∣∣∣∣∣ln
(

x
y

)∣∣∣∣∣∣
=

∣∣∣∣∣∣ln
(

(y) + (x − y)
y

)∣∣∣∣∣∣
=

∣∣∣∣∣∣ln
(
1 +

x − y
y

)∣∣∣∣∣∣
≤ ln(1 + |x − y|)

=
ln(1 + |x − y|)
|x − y|

· |x − y|

=
ln(1 + d((0, x), (0, y)))

d((0, x), (0, y))
· d((0, x), (0, y)).

Take φ(t) = ln(t) for t ≥ 0, we have

α((0, x), (0, y))d( f (0, x), f (0, y)) ≤
φ(d(0, x), d(0, y))

d((0, x), (0, y))
· d((0, x), (0, y)).

Setting β(t) =
φ(t)

t for t > 0, and β(0) = 0, we have

α((0, x), (0, y))d( f (0, x), f (0, y)) ≤ β(d((0, x), (0, y))) · d((0, x), (0, y)).

Obviously, when x = y the inequality is satisfied. Also β(t) =
ln(t)

t ∈ F , by elementary calculus.
The pair (A,B) satisfied P-property. Thus, by Theorem 3.2 and Theorem 3.9, we get (0, 1) is the unique best proximity
coincidence point of (1, f ).

4. Some Applications

As applications of our main results, we can have some coincidence best proximity point and coupled
coincidence proximity point on metric spaces endowed with an arbitrary binary relation.

4.1. Best proximity coincidence point on metric spaces endowed with an arbitrary binary relation.

Before presenting our results, we need a few preliminaries. Let (X, d) be a metric space andR be a binary
relation over X. Denote

S = R ∪ R−1;

this is the symmetric relation attached to R. Clearly,

x, y ∈ X, xRy⇐⇒ xRy or yRx.

Definition 4.1. [24] We say that f : A→ B is a proximal comparative mapping if

x1Sx2
d(u1, f x1) = d(A,B)
d(u2, f x2) = d(A,B)

 =⇒ u1Su2,

for all x1, x2,u1,u2 ∈ A.
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We also need the following hypothesis (H):

(HB) if {xn} is a sequence in X and the point x ∈ X are such that xnSxn+1 for all n and limn→∞ d(xn, x) = 0,
then there exists a subsequence {xn(k)} of {xn} such that xn(k)Sx for all k.

We have the following from coincidence best proximity point results.

Theorem 4.2. Let A,B be two nonempty closed subsets of a complete metric space (X, d) such that A0 is nonempty.
Let R be a binary relation over X and 1 : A → A is isometry such that A0 ⊆ 1(A0). Define a map f : A → B is a
continuous non-self-mapping satisfying the following conditions:

1. There exists β ∈ F such that

x, y ∈ A, xSy =⇒ d( f x, f y) ≤ B(d(x, y))d(x, y);

2. f be a proximal comparative mapping;
3. for each x, y ∈ A0 satisfying d(x, f (y)) = d(A,B) and ySx;
4. f (A0) ⊆ B0 and the pair (A,B) has the P−property.

Then there exists x∗ in A such that d(1x∗, f x∗) = d(A,B).

Proof. Define the mapping α : X × X→ [0,∞) by:

α(x, y) =

{
1 if xSy,
0 otherwise. (7)

Suppose that 
α(x1, x2) ≥ 1,
d(u1, f x1) = d(A,B),
d(u2, f x2) = d(A,B),

for some x1, x2,u1,u2 ∈ A. By the definition of α, we get that
x1Sx2,
d(u1, f x1) = d(A,B),
d(u2, f x2) = d(A,B).

Condition (2) implies that u1Su2, which gives us from the definition of α that α(u1,u2) ≥ 1.
Thus we proved that f is α−proxiaml admissible. Condition (3) implies that

d(x, f (y)) = d(A,B) and α(y, x) ≥ 1.

Finally, condition (1) implies that

α(x, y)d( f x, f y) ≤ β(d(x, y))d(x, y), ∀x, y ∈ A

that is, f is an α−Geraghty contraction. Now all the hypotheses of Theorem 3.2 are satisfied, and the desired
results follows immediately form this theorem.

Theorem 4.3. Let (X, d) be two nonempty closed subsets of a complete metric space (X, d) such that A0 is nonempty.
Let R be a binary relation over X and 1 : A → A is isometry such that A0 ⊆ 1(A0). Define a map f : A → B is a
non-self-mapping satisfying the following conditions:

1. There exists β ∈ F such that

x, y ∈ A, xSy =⇒ d( f x, f y) ≤ B(d(x, y))d(x, y);

2. f be a proximal comparative mapping;
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3. for each x, y ∈ A0 satisfying d(x, f (y)) = d(A,B) and ySx;
4. f (A0) ⊆ B0 and the pair (A,B) has the P−property;
5. (HB) holds.

Then there exists x∗ in A such that d(1x∗, f x∗) = d(A,B).

Proof. The result follows form Theorem 3.7 by considering the mapping α give by (7) and by observing that
condition (H) implies condition (HB).

Theorem 4.4. Under the hypothesis of Theorem 4.2 (resp. Theorem 4.3), assume that the following condition holds:
for all (x, y) ∈ A × A with (x, y) < S, there exists z ∈ A0 such that xSz and ySz. Then for all best proximity
coincidence points x∗ and y∗ of f in A0 we have that x∗ = y∗: In particular, f has a unique best proximity coincidence
point.

Proof. The result follows form Theorem 3.9 by considering the mapping α give by (7) and by observing that
condition (H) implies condition (HB).

4.2. Best proximity coupled coincidence point on metric spaces endowed with an arbitrary binary relation
We continuous the use of the notations of the previous subsection. Let F : A×A→ B be a given mapping

and 1 : A→ A.

Definition 4.5. We say that (x∗, y∗) ∈ A × A is is coupled coincidence best proximity point of F ang 1 if

d(1x∗,F(x∗, y∗)) = d(1y∗,F(x∗, y∗)) = d(A,B).

We will use the following notations:

X := X × X, A := A × A, B := B × B.

Define the non-self-mapping f : A→ B by:

f (x, y) = (F(x, y),F(y, x)), ∀(x, y) ∈ A.

We endow the product set Xwith the metric d2 given by:

d2((x, y), (u, v)) =
d(x,u) + d(y, v)

2
, ∀(x, y), (u, v) ∈ X.

Clearly, if (X, d) is complete, then (X, d2) is complete.

Definition 4.6. [24] We say that F : A × A→ B is bi-proximal comparative mapping if

x1Sx2, y1Sy2
d(u1,F(x1, y1) = d(A,B),
d(u2,F(x2, y2) = d(A,B).

 =⇒ u1Su2,

for all x1, x2, y1, y2,u1,u2 ∈ A.

We have the following coupled coincidence best proximity point result.

Theorem 4.7. Let A,B be two nonempty closed subsets of a complete metric space (X, d) such that A0 is nonempty.
Let R be a binary relation over X and 1 : A→ A is isometry such that A0 ⊆ 1(A0). Define a map F : A ×A→ B is a
continuous non-self-mapping satisfying the following conditions:

1. There exists β ∈ F such that x, y,u, v ∈ A,

xSu, ySv =⇒ d(F(x, y),F(u, v)) ≤ B
(

d(x,u) + d(y, v)
2

) (
d(x,u) + d(y, v)

2

)
;
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2. F be a bi-proximal comparative mapping;
3. for each x, y,u, v ∈ A0 satisfying

d(u,F(x, y)) = d(v,F(y, x)) = d(A,B) and xSu, ySv;
4. F(A0 × A0) ⊆ B0 and the pair (A,B) has the P−property.

Then there exists x∗, y∗ in A such that d(1x∗,F(x∗, y∗)) = d(1y∗,F(y∗, x∗)) = d(A,B).

Proof. Define the binary relation R2 over X by:

(x, y), (u, v) ∈ X, (x, y)R2(u, v)⇐⇒ xSu, ySv.

If we denote by S2 the symmetric relation attached to R2, clearly, we have S2 = R2.
We claim that f : A → B and 1 : A → A is an isometry such that A0 ⊆ 1(A0) have a coincidence best

proximity point (x∗, y∗) ∈ A0 × A0, that is, there exists (x∗, y∗) ∈ A0 × A0 such that

d2(1(x∗, y∗), f (x∗, y∗)) = d(A,B). (8)

Denote by:

A0 := {(a1, a2) ∈ A : d2((a1, a2), (b1, b2)) = d2(A,B) for some (b1, b2) ∈ B};

B0 := {(b1, b2) ∈ A : d2((a1, a2), (b1, b2)) = d2(A,B) for some (a1, a2) ∈ A}.

We can observe that
d2(A,B) = d(A,B).

In fact, we have

d2(A,B) = inf{d2((a1, a2), (b1, b2)) : (a1, a2) ∈ A, (b1, b2) ∈ B}

=
1
2

inf{d(a1, b1) + d(a2, b2) : (a1, b1) ∈ A × B, (a2, b2) ∈ A × B}

=
1
2

(inf{d(a1, b1) : (a1, b1) ∈ A × B} + inf{d(a2, b2) : (a2, b2) ∈ A × B})

=
1
2

(d(A,B) + d(A,B))

= d(A,B).

Now, let (a1, a2) ∈ A0. Then there exists (b1, b2) ∈ B such that

d2((a1, a2), (b1, b2)) = d2(A,B),

that is,
d(a1, b1) + d(a2, b2) = 2d(A,B).

Thus we have 
d(a1, b1) + d(a2, b2) = 2d(A,B),
d(a1, b1) ≥ d(A,B),
d(a2, b2) ≥ d(A,B),

which implies that
d(a1, b1) = d(a2, b2) = d(A,B).

This implies that
(a1, a2) ∈ A0 × A0.

Similarly, if (a1, a2) ∈ A0 × A0, we have (a1, a2) ∈ A0. Thus we proved that

A0 = A0 × A0.
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Similarly, we can show that
B = B0 × B0.

Since A0 is nonempty, thenA0 is nonempty. On the other hand, from (4), we have

f (A0) = {(F(x, y),F(y, x)) : (x, y) ∈ A0 × A0} ⊂ F(A0 × A0) × F(A0 × A0) ⊆ B.

Suppose now that for some (a1, a2), (x1, x2) ∈ A and (b1, b2), (y1, y2) ∈ B, we have

d2((a1, a2), (b1, b2)) = d2(A,B),

d2((x1, x2), (y1, y2)) = d2(A,B).

This implies that
d(a1, b1) = d(a2, b2) = d(A,B),

d(x1, y1) = d(x2, y2) = d(A,B).

Since (A,B) satisfies the P-property, we get that

d(a1, x1) = d(b1, y1) and d(a2, x2) = d(b2, y2),

which implies that
d2((a1, a2), (x1, x2)) = d2((b1, b2), (y1, y2)).

Thus we proved that theA,B satisfies the P-property.
Suppose now that for some (a1, a2), (x1, x2), (u1,u2), (v1, v2) ∈ A, we have

(a1, a2)S2(x1, x2),
d2((u1,u2), f (a1, a2)) = d2(A,B),
d2((v1, v2), f (x1, x2)) = d2(A,B).

This implies that
a1Sx1, a2Sx2,
d(u1,F(a1, a2)) = d(A,B),
d(v1,F(x1, x2)) = d(A,B),

and
a2Sx2, a1Sx1,
d(u2,F(a2, a1)) = d(A,B),
d(v2,F(x2, x1)) = d(A,B).

Since F is a bi-proximal comparative mapping, we get that

u1Sv1 and u2Sv2,

that is, (u1,u2)S2(v1, v2). Thus we proved that f is a proximal comparative mapping. Now, from condition
(3), we have

d(x1,F(x0, y0)) + d(y1,F(y0, x0)) = 2d(A,B) and (x0, y0)S2(x1, y1),

which implies that
d2((x1, y1), f (x0, y0)) = d2(A,B) and (x0, y0)S2(x1, y1).

Moreover, if (x, y), (u, v) ∈ A are such that (x, y)S2(u, v), that is xSu and ySv, from condition (1), we get that

d(F(x, y),F(u, v)) ≤ β
(

d(x,u) + d(y, v)
2

) (
d(x,u) + d(y, v)

2

)
(9)
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and

d(F(y, x),F(v,u)) ≤ β
(

d(x,u) + d(y, v)
2

) (
d(x,u) + d(y, v)

2

)
(10)

Adding (9) to (10) we obtain that

d2((F(x, y),F(y, x)), (F(u, v),F(v,u))) ≤ β(d2((x, y), (u, v)))d2((x, y), (u, v)),

that is,
d2( f (x, y), f (y, x)) ≤ β(d2((x, y), (u, v)))d2((x, y), (u, v)),

Now, all the conditions of Theorem 4.2 are satisfied, we deduce that f and 1 have coincidence best proximity
point (x∗, y∗) ∈ A0, that is (x∗, y∗) ∈ A0 × A0 and satisfies

d2(1(x∗, y∗), f (x∗, y∗)) = d2(A,B).

Thus we proved our claim (8). Since d2(A,B) = d(A,B) and 1 is isometry, the above equality implies
immediately that d(1x∗,F(x∗, y∗)) = d(1y∗,F(y∗, x∗)) = d(A,B). This completes the proof.

Similarly, form Theorem 4.3, we get the following result.

Theorem 4.8. Let A,B be two nonempty closed subsets of a complete metric space (X, d) such that A0 is nonempty.
Let R be a binary relation over X and 1 : A→ A is isometry such that A0 ⊆ 1(A0). Define a map F : A ×A→ B is a
non-self-mapping satisfying the following conditions:

1. There exists β ∈ F such that x, y,u, v ∈ A,

xSu, ySv =⇒ d(F(x, y),F(u, v)) ≤ B
(

d(x,u) + d(y, v)
2

) (
d(x,u) + d(y, v)

2

)
;

2. F be a bi-proximal comparative mapping;
3. for each x, y,u, v ∈ A0 satisfying

d(u,F(x, y)) = d(v,F(y, x)) = d(A,B) and xSu, ySv;
4. F(A0 × A0) ⊆ B0 and the pair (A,B) has the P−property;
5. (HB) holds.

Then there exists x∗, y∗ in A such that d(1x∗,F(x∗, y∗)) = d(1y∗,F(y∗, x∗)) = d(A,B).

Next, we have the following uniqueness result of a coupled coincidence best proximity point.

Theorem 4.9. Under the hypothesis of Theorem 4.7 (resp. Theorem 4.8), assume that the following condition holds:
for all (x, y) ∈ A × A, there exists z ∈ A0 such that xSz and ySz. Then f and 1 have a unique coincidence best
proximity points (x∗, y∗) ∈ A × A. Moreover, we have x∗ = y∗.

Proof. Let (x, y), (u, v) ∈ A. By hypothesis, there exists z1 ∈ A0 such that xSz1 and uSz1. Similarly, there
exists z2 ∈ A0 such that ySz2 and vSz2. Then, we have (x, y)S2(z1, z2) and (u, v)S2(z1, z2) where (z1, z2) ∈ A0.
Now, applying Theorem 4.4, we obtain that f and 1 have a unique coincidence best proximity point that is
unique coupled coincidence best proximity point of F and 1. For the equality x∗ = y∗ we have only to remark
that if (x∗, y∗) is a coupled coincidence best proximity point, then (y∗, x∗) is also a coupled coincidence best
proximity point.
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