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Abstract. A nonmonotone line search method for solving unconstrained optimization problems with the
objective function in the form of mathematical expectation is proposed and analyzed. The method works
with approximate values of the objective function obtained with increasing sample sizes and improves
accuracy gradually. Nonmonotone rule significantly enlarges the set of admissible search directions and
prevents unnecessarily small steps at the beginning of the iterative procedure. The convergence is shown
for any search direction that approaches the negative gradient in the limit. The convergence results are
obtained in the sense of zero upper density. Initial numerical results confirm theoretical results and show
efficiency of the proposed approach.

1. Introduction

The problem that we consider is an unconstrained problem of the form

min
x∈IRp

f (x), (1)

where the objective function f is given as

f (x) = E(1(x, ω)). (2)

The mathematical expectation E is defined with respect toω in the probability space (Ω,F ,P). It is assumed
that the function 1 : IRp

× Ω → IR is known analytically or provided by a black box oracle with desired
accuracy. But the analytical form of the function f is seldom available and needs to be approximated in
some way. The most common approximation is the Sample Average Approximation defined as

G(x,w) =
1
n

n∑
j=1

1(x, ω j), (3)

whereω = {w1, . . . ,wn} is random sample of size n.The sample size n represents a tradeoff between precision
and cost, as large sample size provides better approximation but causes higher computation costs and vice
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N. Krejić, S. Lončar / Filomat 32:19 (2018), 6799–6807 6800

versa. Problems of this type appear in many applications, for example in mathematical models obtained
by simulations or whenever the set of model parameters is not known or is subject to noise. Thus, there is
a great need to solve them efficiently. In general, a large sample size is needed to obtain approximations
of reasonable accuracy. This fact causes large computational effort in solving (1) as the computation of the
objective function, as well as its derivatives, becomes very costly. The general approach is to consider a
sequence of approximations (2) with an increasing sample size, i.e., with a different sample size in each
iteration and lower the cost of the overall optimization procedure. The problem (1) is closely related to the
problem arising in machine learning where one has to minimize a finite, but a very large sum of functions,
see [3, 4].

There are many different approaches for a choice of the sequence {n(i)} of sample sizes at each iteration.
The dominant way of sample size scheduling is an increasing sample size sequence that results in smaller
computational costs than working with a large sample from the beginning. One can distinguish between
two main approaches in the sample size scheduling - a predetermined sample size schedule, for example
[12] or an adaptive sample size schedule, [6, 11, 13]. An overview of different sample size scheduling is
presented in [7].

The classical approach in deterministic optimization for unconstrained optimization is to apply a line
search method, either monotone and based on Armijo type decrease condition, or one of the well known
nonmonotone line search methods. The monotone line search method for (1)-(2) with a predetermined
sample size sequence is defined and considered for problems of type (1) in [12]. The method is based on
a decrease determined by the Armijo rule in each iteration, for the approximate objective function defined
with the current sample in the iteration. The search direction is an approximate negative gradient. It
is shown that the method converges with zero upper density. However, the decrease obtained with the
Armijo rule at each iteration is, in fact, a decrease of the approximate objective function at that iteration
and does not necessarily imply a decrease of the true objective function of (1). On the other hand, the strict
decrease condition might cause a rather small step size and thus trap the algorithm in a narrow valley of the
objective function. This is specially the case when the derivatives are not available. Hence, a nonmonotone
line search, which does not require a strict decrease in each iteration and allows for large step sizes, might
be a better option for the overall optimization procedure, in particular for the stochastic problems. An
additional property of a nonmonotone line search procedure is the step sizes are in general larger and there
is more freedom with the search direction. In this paper we consider the nonmonotone line search rule due
to Li, Fukushima [8] that is successfully applied in many papers, for deterministic and stochastic problems,
for example see [1, 6].

The main contribution of this paper is a generalization of the results presented in [12] in the following
sense. First, we define a nonmonotone line search strategy that allows us to take an arbitrary search
direction, not necessarily strictly decreasing for the current approximate objective function. The search
directions need to approach the negative gradient only in the limit. Furthermore, the step size rule allows
us more freedom and hence generates a sequence that might approach the solution faster. We prove the
convergence of the proposed algorithm in the sense of zero upper density, as in [12]. Finally, we present
a set of initial testing results that confirm the theoretical results and provide empirical evidence for the
proposed algorithm.

2. Preliminaries

In this section we briefly repeat the results of Wardy [12] that will allow us to propose a nonmonotone
line search method and prove its convergence. Let us first state the definition of upper density convergence.

Definition 2.1. Let K be a set of integers. The upper density of K, denoted by ud(K) is the quantity

ud(K) = lim sup
i→∞

|K ∩ [1, i]|
i

, (4)

where |S| denotes cardinality of set S, and for integers i and j, j ≥ i

[i, j] := {i, i + 1, . . . , j}.
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The convergence in upper density is defined and proved by means of optimality function. The function
θ : IRp

→ IR+ is an optimality function if θ(x) = 0 if and only if x satisfies the optimality conditions.

Definition 2.2. An algorithm which generates sequences x1, x2, . . . inRp is said to converge with zero upper density
(ud) on compact sets if with probability 1, if {xi} is a bounded sequence, then there exists a set of integers J, such that
ud(J) = 0 and θ(xi)→

i<J
0.

We will prove that the nonmonotone line search method we propose here converges in upper density
as in [12]. To do so, we need to assume the following.

Assumption A1. [12]

If xi → x, xi ∈ IRp, i = 1, 2, 3, .. then θ(x) = 0 if and only if θ(xi)→ 0. (5)

The optimality function we consider is the norm of the gradient of the objective function and thus the
assumption above is satisfied.

An algorithm which generates sequence {xi}i∈IN, converges with zero upper density on a compact set if the
sequence is bounded and there exists w.p.1 a set J with ud(J) = 0, such that the any accumulation point of
subsequence {xi}i∈IN\J satisfies the optimality conditions.

Let us now recall the notation needed for formulation of conditions for convergence with zero upper
density on compact sets, [12]. For every compact set Γ ⊂ IRp, r ≥ 0, s ≥ 0 and integer i, let us define the
following events:

• Ei(Γ, r) is the event that xi ∈ Γ and θ(xi) ≥ r.

• Gi(Γ, s) is the event that xi ∈ Γ and f (xi+1) − f (xi) ≥ −s.

• Hi(Γ, s) is the event that xi ∈ Γ and f (xi+1) − f (xi) ≥ s.

Here, Fi is the σ-algebra generated by all the information leading to the construction of xi.
The following two conditions together constitute a sufficient condition for the convergence in zero upper

density if f is continuous function and the iterations are generated by a line search with a random sample
of predetermined size at each iteration, [12]. Let Ci be an arbitrary event from Fi.

Condition 2.3. [12] For every compact set Γ ⊂ IRp and r > 0, there exists s > 0 such that, for every ε > 0, there
exists an integer I such that for every i ≥ I and event Ci ∈ Fi

P(Gi(Γ, s)|Ei(Γ, r),Ci) < ε (6)

Condition 2.4. [12] For every compact set Γ ⊂ IRp, s > 0 and ε > 0, there exists an integer I such that for every i ≥ I
and event Ci ∈ Fi

P(Hi(Γ, s)|Ci) < ε (7)

The following two assumptions characterise the problem we consider more closely.

Assumption A2. The objective function f has the form (2), and 1(·, ω) ∈ C2 (IRp).

Assumption A3. For every compact set Γ ⊂ IRp, there exists K > 0 such that, for every x ∈ Γ and ω ∈ Ω,

|1(x, ω)| + ||
∂1

∂x
(x, ω)T

|| + ||
∂21

∂x2 (x, ω)|| ≤ K, (8)

where || · || denotes vector norm, or induced matrix norm, depending on context.

The consequence of A3 is that f is continuously differentiable and ∇ f is Lipschitz continuous on compact
sets, so

∇ f (x) = E
(
∂1

∂x
(x, ω)T

)
. (9)

This fact justifies the choice of ||∇ f (x)|| as the optimality function i.e. θ(x) = ||∇ f (x)||. Clearly, the condition
(5) holds.
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3. The Nonmonotone Line Search Method

Line Search algorithm presented here is a modification of the algorithm presented in [12]. Instead of
monotone Armijo-type line search with negative gradient as the search direction, we use a general search
direction satisfying (12), and nonmonotone Armijo rule. The nonmonotonicity is defined by a sequence
{εi}i∈IN such that

εi > 0,
∞∑

i=0

εi < ∞. (10)

Algorithm 3.1. Input: x0 ∈ IRp, {n(i)}i∈IN, {εi}i∈IN, α ∈ (0, 1), β ∈ (0, 1)

Step 0. Set i = 0.

Step 1. Randomly draw n(i) sample points ωi := {ωi,1, ωi,2, . . . , ωi,n(i)} ∈ Ω.

Step 2. Choose a search direction hi.

Step 3. Set k(i) to be the smallest integer k satisfying

G(xi − β
khi, ω

i) − G(xi, ω
i) ≤ −αβk

||hi||
2 + εi. (11)

Set xi+1 = xi − βk(i)hi, i = i + 1 and go to Step 1.

In Step 3 our goal is to find the step size that satisfies the nonmonotone Armijo condition, i.e. find the
appropriate k(i) that satisfies (11). Notice that Algorithm is well defined for an arbitrary search direction as
εi > 0 so for any hi there exists k(i) large enough such that (11) holds and Step 3 finishes with a finite k(i).

Theorem 3.2. Assume that A2-A3 hold. If the search directions hi in Step 2 of Algorithm are chosen such that

lim
i→∞

||∇G(xi, ωi) − hi||

εi
= 0, (12)

where G(xi, ωi) :=
1

n(i)

n(i)∑
j=1

1(xi, ωi, j) and ∇G(xi, ωi) :=
∂G
∂x

(xi, ω
i)T, then Algorithm converges with zero upper

density on compact sets to a stationary point of (1).

Proof. To prove the statement we need to show that Conditions 1 and 2 hold. Then the statement follows
by Theorem 2.1 in [12]. Let Γ ⊂ IRp be a compact set. First, we show that the sequence ||hi|| is bounded from
above. Due to (12), there exists a constant K0 such that ||hi −∇G(xi, ωi)|| ≤ K0. Also, (8) guaranties that there
exists K1 > 0 such that ||∇G(xi, ωi)|| ≤ K1. So, for M = 2 max{K0,K1}, we have

||hi|| ≤ ||hi − ∇G(xi, ω
i)|| + ||∇G(xi, ω

i)|| ≤M. (13)

Therefore, ||hi|| is bounded from above. Let us prove now that

lim
i→∞

|hT
i hi − ∇G(xi, ωi)Thi|

εi
= 0. (14)

Given that

0 < |hT
i hi − ∇G(xi, ω

i)Thi| ≤ ||hi − ∇G(xi, ω
i)|| · ||hi|| (15)

and that ‖hi‖ is bounded, the limit (12) implies that (14) holds.
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Let us now prove that for an arbitrary compact set Γ ⊂ IR there exists an integer k such that for every
xi ∈ Γ we have . Let xi ∈ Γ and λ ≥ 0. By the Mean value theorem we have

G(xi − λhi, ω
i) − G(xi, ω

i) = −λ
∂G
∂x

(xi, ω
i)hi + λ2

∫ 1

0
(1 − s)〈

∂2G
∂x2 (xi − sλhi, ω

i)hi, hi〉ds (16)

By (14), there exists an integer i0 such that for every i ≥ i0

−λ
∂G
∂x

(xi, ω
i)hi ≤ −λ||hi||

2 + εi. (17)

By Cauchy - Schwarz’s inequality, continuity of ∂2G
∂x2 (·, ωi) and boundedness of ||hi||we obtain

|λ2
∫ 1

0
(1 − s)〈

∂2G
∂x2 (xi − sλhi, ω

i)hi, hi〉ds| ≤ λ2K||hi||
2 (18)

Now, (16)-(18) implies

G(xi − λhi, ω
i) − G(xi, ω

i) ≤ −λ(1 − λK)||hi||
2 + εi (19)

Substituting λ = βk in the above inequality, we get that (11) is satisfied if βk
≤ (1− α)/K holds, i.e, (11) holds

for all k ≥ log((1−α)/K)
log β . Therefore, there exists k such that k(i) ≤ k.

Let us consider Condition 2.3. Let Γ ⊂ IRp be a compact set. Take r > 0 and s = 1
2αβ

kr2 and ε > 0. We can
choose δ ∈ (0, r) such that

αβk(r − δ)2
≥ s.

As
∑
∞

i=0 εi < ∞, there exists an integer i1 such that for every i ≥ i1 we have εi ≤ δ.
Let A(i) be the event: xi ∈ Γ, and

||∇ f (xi) − ∇G(xi, ω
i)|| <

δ
2
, | f (xi) − G(xi, ω

i)| <
δ
2
, | f (xi+1) − G(xi+1, ω

i)| <
δ
2
.

By the Weak Law of Large Numbers there exists an integer i2 such that for every i ≥ i2

P(A(i)|Ci, xi ∈ Γ) ≥ 1 − ε.

With I = max{i0, i1, i2}, for all i ≥ I, if A(i) is satisfied and ||∇ f (xi)|| ≥ r then

||∇ f (xi) − hi)|| = ||∇ f (xi) − G(xi, ω
i) + G(xi, ω

i) − hi||

≤ ||∇ f (xi) − G(xi, ω
i)|| + ||G(xi, ω

i) − hi|| ≤
δ
2

+
δ
2

= δ,

and

||hi|| = ||∇ f (xi) − (∇ f (xi) − hi)| ≥
∣∣∣||∇ f (xi)|| − ||(∇ f (xi) − hi)||

∣∣∣
≥ ||∇ f (xi)|| − ||(∇ f (xi) − hi)|| ≥ r − δ.

Then the following holds

f (xi+1) − f (xi) = f (xi+1) − G(xi+1, ω
i) −

(
f (xi) − G(xi, ω

i)
)

+ G(xi+1, ω
i) − G(xi, ω

i)

≤ δ − αβk
||hi||

2 + εi ≤ 2δ − αβk(r − δ)2
≤ −s.

The above inequalities imply that under Ei(Γ, r) and Ci, A(i) implies Gi(Γ, s). Therefore, Gi(Γ, s) implies
A(i), and conditional probability of Gi(Γ, s) is less or equal than the conditional probability of A(i). As

P(A(i)|Ci, xi ∈ Γ) ≤ ε,



N. Krejić, S. Lončar / Filomat 32:19 (2018), 6799–6807 6804

we conclude that
P(Gi(Γ, s)|Ei(Γ, r),Ci) < ε

i.e., Condition 2.3 is fulfilled.
To prove Condition 2.4 we consider again a compact set Γ ⊂ IR, s > 0 and ε > 0. As

∑
∞

i=0 εi < ∞, we can
take an integer i0 such that for every i ≥ i0 there holds

εi ≤
s
3
.

As f is Lipschitz continuous on Γ and (13) holds, for xi+1 = xi − βk(i)hi there exist constants L > 0, and M > 0
such that

| f (xi+1) − f (xi)| ≤ LMβk(i).

Thus, there exists an integer k, such that if k(i) ≥ k, then

f (xi+1) − f (xi) ≤ s. (20)

Now, we consider the case k(i) ≤ k. Let B(i) be the event

xi ∈ Γ, k(i) ≤ k, | f (xi) − G(xi, ω
i)| <

s
3
, | f (xi+1) − G(xi+1, ω

i)| <
s
3
.

If the event B(i) is realized, then

f (xi+1) − f (xi) = f (xi+1) − G(xi+1, ω
i) −

(
f (xi) − G(xi, ω

i)
)

+ G(xi+1, ω
i) − G(xi, ω

i)

≤
2s
3
− αβk(i)

||hi||
2 + εi ≤ s.

Again, by the Weak law of large number, there exists an integer i1, such that for all i ≥ i1

P(B(i), k(i) ≤ k|Ci, xi ∈ Γ) ≥ 1 − ε.

Taking I = max{i0, i1}, we have that for all i ≥ I and Ci ∈ Fi

P(B(i), k(i) ≤ k|Ci, xi ∈ Γ) ≤ ε. (21)

Now, (21), (20) and (7) imply that Condition 2.4 is fulfilled. As Conditions 2.3 - 2.4 are satisfied, the statement
follows by Theorem 2.1 in [12].

4. Numerical Results

In this section we report some preliminary numerical results that confirm theoretical results and demon-
strate efficiency of the proposed approach. We consider the following four test examples, defined as

1(x, ω) = φ(ωx), ω : N(1, σ2),

where φ : IRp
→ IR. The testing is done for two variance levels σ2 = 0.1 and σ2 = 1, using test functions φ

taken from [2] and [9]:

AP Aluffi-Pentini’s Problem, p = 2

1(x, ω) = 0.25(ωx1)4
− 0.5(ωx1)2 + 0.1(ωx1) + 0.5(ωx2)2.
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EXP Exponential Problem p = 10

1(x, ω) = exp(−0.5
p∑

i=1

(ωxi)2).

SAL Salomon Problem p = 10

1(x, ω) = 1 − cos(2π||ωx||) + 0.1||ωx||, where ||ωx|| =

√√ p∑
i=1

(ωxi)2.

SPH Sphere function or first function of De Jongs p = 10

1(x, ω) =

p∑
i=1

(ωxi)2.

Theoretical results are obtained for the case n→∞. But clearly, in actual implementation one can work
only with finite sample size. Let nmax denote the maximal sample size allowed and we fixed nmax = 100 for
the first two problems, nmax = 1300 for the third problem and nmax = 200 for the last problem. The choice
of nmax is highly non-trivial but we will not discuss it here as our aim is only to illustrate the potential
advantages of nonmonotone line search rule.

The algorithm is implemented and tested against classical Armijo monotone line search rule (εi = 0 in
Algorithm) for two search directions, the first one being the negative gradient while the second direction is
the finite difference approximation of the negative gradient ∇ξG(xi, ωi), defined in [10]. The jth component
is defined as

G(xi + ξe j, ωi) − G(xi − ξe j, ωi)
2ξ

,

where e j denotes the jth coordinate vector in Rp and ξ = 10−4. The sequence {εi} is defined as εi =

2−i, i = 1, 2, . . . . The convergence condition in Theorem 1 suggests that one should improve the gradient
approximation defined above as the iterates progress towards the stationary point. Therefore, it would be
natural to consider diminishing ξ in the finite difference approximation, perhaps even connected with εi and
the sample size in each iteration. But the finite difference approximation with small ξ tends to be unstable
in the stochastic problems, [10] and diminishing ξ might in fact deteriorate the quality of approximation.
Furthermore, the numerical results clearly indicate that the approximate gradient defined by ξ = 10−4

works well. This fact might also indicate that the convergence condition might be weakened, perhaps for
a different type of convergence in probability. We leave this issue for future research. Therefore, we have
implemented four different methods.

• NM1 Nonmonotone line search with the negative gradient search direction, hi = ∇G(xi, ωi)

• NM2 Nonmonotone line search with the finite difference approximation of the negative gradient.
hi = ∇ξG(xi, ωi)

• M1 Monotone (Armijo) line search with the the negative gradient search direction, hi = ∇G(xi, ωi)

• M2 Monotone (Armijo) line search with the finite difference approximation of the negative gradient.
hi = ∇ξG(xi, ωi)

The sample size in each iteration is defined as n(i+1) = min{d1.1n(i)e,nmax}, with the initial value n(0) = 3
and a new sample of the size n(i) is generated in ith iteration. The algorithmic parameters are the same for
all problems, the starting point is x0 = 10 · [1, 1, . . . , 1]T, α = 10−4 and backtracking is performed with β = 0.5.
We also limited the number of backtracking steps to 5. The stopping criteria is satisfied in xi if the norm of
the gradient or its approximation is smaller than 10−2 and n(i) = nmax. The number of function evaluations is
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used as the algorithm performance measure. Thus, for NM1 and M1, each gradient calculation is counted
as p function evaluation, while for NM2 and M2 we used the two-sided approximation of gradient, so each
gradient calculation is counted as 2p function evaluation. The method is stopped if the maximal allowed
number of function evaluation is exhausted, with the maximal number set to 107.

In the testing process, we generated 5 independent samples for each variance levels and all problems
are tested using the same collection of samples.

The results are shown at Figure 1, using the performance profile graph [5], where the cost function
is defined as the number of function evaluations. The graph clearly indicates that the nonmonotone
line search outperforms the classical Armijo line search at the considered test collection for both search
directions. As expected, negative gradient performs better than the finite difference approximation of the
negative gradient but nevertheless works reasonable well, which is an important property for problems
where the function is calculated using a black box and the exact gradient of 1 is not available.
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Performance profile σ2 = 0.1 & σ2 = 1
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Figure 1: Performance profile for methods M1, NM1, M2, NM2 and two variance levels 0.1 and 1.
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[6] N. Krejić, N. Krklec Jerinkić, Nonmonotone line search methods with variable sample size, Numerical Algorithms, 68(4) (2015)
711–739.
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