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Abstract. In this paper, we introduce a class of new auxiliary functions and establish certain fixed point
theorems under (ϕ−ψ) contractive conditions in partially ordered metric-like spaces. Our work generalizes
some results in the literature and assumes some as particular case. Examples are provided to support the
useability of our results.

1. Introduction and Mathematical Preliminaries

The extensions of fixed point theory to generalized structures such as cone-metric, partial-metric spaces
and quasi-metric spaces have received much attention in the past years ([3, 5, 11, 14–17]). Fixed point
theorems in partial metric spaces have their applications in computer science, engineering and many other
fields ([10, 22, 23, 25]). Existence of fixed points in partially ordered metric spaces has been initiated by
Ran and Reurings [21] and further studied by Nieto and Lopez [19]. Subsequently, several interesting and
valuable results have appeared in the direction([1, 2, 4, 12, 13, 20, 24]). Recently, the notion of a metric-like
space was first introduced by Amini-Harandi [6], and obviously it is a new generalization of a partial metric
space [18].

Now we will recall some basic definitions and facts which will be used throughout the paper. Here we
only list the notion of metric-like space.

Definition 1.1. ([6]) A mapping σ : X × X → R+, where X is a nonempty set, is said to be metric-like on X
if for any x, y, z ∈ X, the following three conditions hold true:

(σ1)σ(x, y) = 0⇒ x = y;
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(σ2)σ(x, y) = σ(y, x);
(σ3)σ(x, z) ≤ σ(x, y) + σ(y, z).
The pair (X, σ) is then called a metric-like space.

Every partial metric space is a metric-like space. Here, we give some examples of metric-like spaces,
but not partial metric spaces.

Example 1.2. Let X = [0,+∞) and σ : X × X 7→ [0,+∞) be defined by

σ(x, y) = x + y,

for all x, y ∈ [0,+∞). Then (X, σ) is a metric-like space, but it is not a partial metric space.

Example 1.3. Let X = R, then mappings σi : X × X 7→ R+(i = 1, 2, 3) defined by

σ1(x, y) = |x| + |y| + a, σ2(x, y) = |x − b| + |y − b|, σ3(x, y) = x2 + y2,

are metric-like space on X, where a ≥ 0 and b ∈ R.

Proposition 1.4. Let (σ,X) be a metric-like space, and suppose that {xn} is σ− convergent to x. Then for any y ∈ X,
one has

σ(x, y) − σ(x, x) ≤ lim inf
n→∞

σ(xn, y)

≤ lim sup
n→∞

σ(xn, y)

≤ σ(x, y) + σ(x, x).

In particular, if σ(x, x) = 0, then one has lim
n→∞

σ(xn, y) = σ(x, y).

Proof. From the third condition of a metric-like, it follows that

σ(xn, y) ≤ σ(xn, x) + σ(x, y),
σ(x, y) ≤ σ(xn, x) + σ(xn, y).

Taking the upper limit as n→∞ in the first inequality and the lower limit as n→∞ in the second inequality,
we can obtain the conclusion.

Then we recall the notion of C-class and give some examples, for details see [7–9].

Definition 1.5. ([7]) A mapping f : [0,∞)2
→ R is called C-class function if it is continuous and satisfies

following axioms:
(1) f (s, t) ≤ s;
(2) f (s, t) = s implies that either s = 0 or t = 0, for all s, t ∈ [0,∞).

Note that for some f we have that f (0, 0) = 0. We denote C-class functions as C.
Also note that for some f , f with respect to second variable is non-increasing.

Example 1.6. ([7]) The following functions f : [0,∞)2
→ R are elements of C, for all s, t ∈ [0,∞):

(1) f (s, t) = s − t, f (s, t) = s⇒ t = 0.
(2) f (s, t) = ks, 0<k<1, f (s, t) = s⇒ s = 0.
(3) f (s, t) = s

(1+t)r , r ∈ (0,∞), f (s, t) = s⇒ s = 0 or t = 0.

(4) f (s, t) = n
√

ln(1 + sn), n ∈ N, f (s, t) = s⇒ s = 0.

In this paper, using a new auxiliary function called C−class functions (see Definition 1.5) introduced
by Ansari [7], we establish some fixed and common fixed point theorems involving (ψ − φ) contractive
mappings in the setting of partially ordered metric-like spaces. Our results extend, generalize, and improve
some well-known results from literature. Some examples are given to support our main results.
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2. Fixed Point Theorems

Throughout the rest of this paper, we denote a complete partially ordered metric-like space by (X,�, σ),
i.e. � is a partial order on the set X and σ is a complete metric-like on X.

Theorem 2.1. Let (X,�, σ) be a complete partially ordered metric-like space. Let F : X → X be a nondecreasing
mapping such that for all comparable x, y ∈ X,

ψ(σ(Fx,Fy)) ≤ f (ψ(M(x, y)), φ(M(x, y))), (1)

where M is given by
M(x, y) = max{σ(x, y), σ(x,Fx), σ(y,Fy), [σ(x,Fy)+σ(Fx,y)]

4 },
and

(1) ψ : [0,∞)→ [0,∞) is a continuous monotone nondecreasing function with ψ(t) = 0 if and only if t = 0;

(2) φ : [0,∞)→ [0,∞) is a lower semi-continuous function with φ(t) = 0 if and only if t = 0 or φ : [0,∞)→
[0,∞) is a lower semi-continuous function with φ(t) > 0 if and only if t > 0,and φ(0) ≥ 0;

(3) f : [0,∞)2
→ R are elements of C such that f is non-increasing with respect to second variable.

(4) (a)F is continuous or (b)X has the following property:
if a non-decreasing sequence {xn} → x as n→∞, then xn � x for all n ∈N.

(5) there exists x0 ∈ X with x0 � Fx0.

Then F has a fixed point.

Proof. Let x0 ∈ X. Then, we define a sequence {xn} in X such that xn+1 = Fxn. Since x0 � Fx0 and F is
nondecreasing, we have

x1 = Fx0 � x2 = Fx1 � · · · � xn = Fxn−1 � xn+1 = Fxn · · · .

If xn = xn+1 for some n ∈N, then xn = Fxn and hence xn is a fixed point of F. Then the conclusion holds. So
we may assume that xn , xn+1 for all n ∈N. By (1), we have

ψ(σ(xn+1, xn)) = ψ(σ(Fxn,Fxn−1)) ≤ f (ψ(M(xn, xn−1)), φ(M(xn, xn−1))), (2)

which implies that ψ(σ(xn+1, xn)) ≤ ψ(M(xn, xn−1)). Using the monotone property of the ψ−function, we get

σ(xn+1, xn) ≤M(xn, xn−1). (3)

Now, from the triangle inequality for σ, we have

M(xn, xn−1) = max{σ(xn, xn−1), σ(xn,Fxn), σ(xn−1,Fxn−1),
[σ(xn,Fxn−1) + σ(Fxn, xn−1)]

4
}

= max{σ(xn, xn−1), σ(xn, xn+1), σ(xn−1, xn),
[σ(xn, xn) + σ(xn+1, xn−1)]

4
}

≤ max{σ(xn, xn−1), σ(xn, xn+1),
[σ(xn, xn+1) + σ(xn, xn−1)]

2
}

= max{σ(xn, xn−1), σ(xn, xn+1)}.

If σ(xn+1, xn) > σ(xn, xn−1), then M(xn, xn−1) ≤ σ(xn+1, xn), combining with (3), we obtain that M(xn, xn−1) =
σ(xn, xn+1) > 0. By (2), it further implies that

ψ(σ(xn+1, xn)) ≤ f (ψ(σ(xn+1, xn)), φ(σ(xn+1, xn)))
≤ ψ(σ(xn+1, xn)).



Xiaolan Liu et al. / Filomat 32:3 (2018), 715–732 718

It implies that

ψ(σ(xn+1, xn)) = f (ψ(σ(xn+1, xn)), φ(σ(xn+1, xn)))

Therefore, by (2) of Definition 1.5,

ψ(σ(xn+1, xn)) = 0, or φ(σ(xn+1, xn)) = 0.

It both yields that σ(xn+1, xn) = 0 since ψ(σ(xn+1, xn)) = 0 or φ(σ(xn+1, xn)) = 0, which is a contradiction with
σ(xn+1, xn) > 0. So σ(xn+1, xn) < σ(xn, xn−1), then M(xn, xn−1) ≤ σ(xn, xn−1), combining with (3), thus we have

σ(xn+1, xn) ≤M(xn, xn−1) ≤ σ(xn, xn−1). (4)

Therefore, the sequence {σ(xn, xn+1)} is monotone non-increasing and bounded. Thus, there exists r ≥ 0 such
that

lim
n→∞

σ(xn, xn+1) = lim
n→∞

M(xn, xn−1) = r. (5)

Suppose r > 0. Then letting n→∞ in the inequality (2), we get

ψ(r) ≤ f (ψ(r)), lim inf
n→∞

φ(σ(xn+1, xn))) ≤ f (ψ(r), φ(r)) ≤ ψ(r),

where second inequality holds since f is non-increasing with respect second variable. It implies that

ψ(r) = f (ψ(r), φ(r)),

which yields that

ψ(r) = 0 or φ(r) = 0.

The above equalities both hold when r = 0. Hence,

lim
n→∞

σ(xn, xn+1) = 0. (6)

Next, we show that {xn} is a σ−Cauchy sequence in X. Suppose, to the contrary, that is, {xn} is not a
σ−Cauchy sequence. Then there exists ε > 0 for which we can choose two subsequences {xm(i)} and {xn(i)} of
{xn} such that n(i) is the smallest index for which

n(i) > m(i) > i, σ(xm(i), xn(i)) ≥ ε. (7)

This means that

σ(xm(i), xn(i)−1) < ε. (8)

Using (7), (8) and the triangle inequality, we have

ε ≤ σ(xn(i), xm(i)) ≤ σ(xm(i)−1, xm(i)) + σ(xm(i)−1, xn(i))
≤ σ(xm(i)−1, xm(i)) + σ(xm(i)−1, xn(i)−1) + σ(xn(i)−1, xn(i))
≤ 2σ(xm(i)−1, xm(i)) + σ(xm(i), xn(i)−1) + σ(xn(i)−1, xn(i))
< 2σ(xm(i)−1, xm(i)) + σ(xn(i)−1, xn(i)) + ε.

Using (6), (8) and letting n→∞, we get

lim
i→∞

σ(xm(i), xn(i)) = lim
i→∞

σ(xm(i)−1, xn(i))

= lim
i→∞

σ(xm(i)−1, xn(i)−1)

= lim
i→∞

σ(xm(i), xn(i)−1)

= ε. (9)
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As

M(xm(i)−1, xn(i)−1) = max{σ(xm(i)−1, xn(i)−1), σ(xm(i)−1, xm(i)),

σ(xn(i)−1, xn(i)),
[σ(xm(i)−1, xn(i)) + σ(xm(i), xn(i)−1)]

4
},

using (6) and (9), we have

lim
i→∞

M(xm(i)−1, xn(i)−1) = max{ε, 0, 0,
ε
2
} = ε. (10)

As n(i) > m(i) and xn(i), xm(i) are comparable, setting x = xm(i)−1 and y = xn(i)−1 in (1), we obtain

ψ(σ(xm(i), xn(i))) = ψ(σ(Fxm(i)−1,Fxn(i)−1))
≤ f (ψ(M(xm(i)−1, xn(i)−1)), φ(M(xm(i)−1, xn(i)−1))).

Letting i→∞ in the above inequality and using (9) and (10), we get

ψ(ε) ≤ f (ψ(ε), lim inf
i→∞

φ(M(xm(i)−1, xn(i)−1))) ≤ f (ψ(ε), φ(ε)) ≤ ψ(ε),

It implies that

ψ(ε) = f (ψ(ε), φ(ε)),

which yields that

ψ(ε) = 0 or φ(ε) = 0.

The above equalities both hold when ε = 0, which is a contradiction with ε > 0. Hence, {xn} is a σ−Cauchy
sequence. By the completeness of X, there exists z ∈ X such that lim

n→∞
xn = z, that is

lim
n→∞

σ(xn, z) = σ(z, z) = lim
m,n→∞

σ(xm, xn) = 0. (11)

Now consider the assumption 4(a) that F is continuous. The continuity of F implies that

lim
n→∞

σ(xn+1, z) = lim
n→∞

σ(Fxn, z) = σ(Fz, z) = 0,

It follows that z = Fz.
Now consider the assumption 4(b) holds. We have xn � z for every n ∈N. By (1), we have

ψ(σ(Fz, xn+1)) = ψ(σ(Fz,Fxn)) ≤ f (ψ(M(z, xn)), φ(M(z, xn))), (12)

where

σ(Fz, xn+1) ≤M(z, xn)

= max{σ(z, xn), σ(z,Fz), σ(xn, xn+1),
[σ(z, xn+1) + σ(Fz, xn)]

4
}.

Taking limit as n→∞, by (11), we obtain

lim
n→∞

M(z, xn) = σ(Fz, z).

Therefore, letting n→∞ in (12), we get

ψ(σ(Fz, z)) ≤ f (ψ(σ(Fz, z)), φ(σ(Fz, z))),

which is a contradiction unless σ(Fz, z) = 0. Thus, Fz = z. The proof is completed.
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Remark 2.2. In the definition of M(x, y), the set {σ(x, y), σ(x,Fx), σ(y,Fy), [σ(x,Fy)+σ(Fx,y)]
4 } is replaced by any of

its subsets or M1(x; y) = max{σ(x, y), [σ(x,Fy)+σ(Fx,y)]
2 }, Theorem 2.1 remains valid.

The following theorem gives a sufficient condition for the uniqueness of the fixed point.

Theorem 2.3. Let all the conditions of Theorem 2.1 be fulfilled and let the pair (F, ix) is weakly increasing. If the
following condition is satisfied: For arbitrary two points x, y ∈ X, there exists z ∈ X which is comparable with both x
and y. Then the fixed point of F is unique.

Proof. Suppose that there exist two fixed points u, v ∈ X, i.e. Fu = u and Fv = v.
Consider the following two cases.
Case 1. If u and v are comparable, then we can apply contractive condition (1) and obtain that

ψ(σ(u, v)) = ψ(σ(Fu,Fv)) ≤ f (ψ(M(u, v)), φ(M(u, v))), (13)

where

M(u, v) = max{σ(u, v), σ(u,Fu), σ(v,Fv),
[σ(Fu, v) + σ(u,Fv)]

4
}

= σ(u, v). (14)

Using (13) and (14), we have

ψ(σ(u, v)) ≤ f (ψ(σ(u, v)), φ(σ(u, v))),

which is a contradiction unless σ(u, v) = 0. This implies that u = v.
Case 2. If u is not comparable to v, then there exists y ∈ X which is comparable to u and v. The monotonicity
of F implies that Fny is comparable to Fnu = u and Fnv = v, for n = 0, 1, 2, · · · .
Moreover,

ψ(σ(u,Fny)) = ψ(σ(Fnu,Fny))
≤ f (ψ(M(Fn−1u,Fn−1y)), φ(M(Fn−1u,Fn−1y))), (15)

where

M(Fn−1u,Fn−1y) = max{σ(Fn−1u,Fn−1y), σ(Fn−1u,Fnu),

σ(Fn−1y,Fny),
[σ(Fnu,Fn−1y) + σ(Fn−1u,Fny)]

4
}

= max{σ(u,Fn−1y), σ(u,u), σ(Fn−1y,Fny),
[σ(u,Fn−1y) + σ(u,Fny)]

4
}

for n sufficiently large, because σ(Fn−1y,Fny)→ 0 when n→∞.
Similarly as in the proof of Theorem 2.1, it can be shown that

σ(u,Fny) ≤M(u,Fn−1y) ≤ σ(u,Fn−1y).

It follows that the sequence {σ(u,Fny)} is nonnegative decreasing. Then, there exists r ≥ 0 such that

lim
n→∞

σ(u,Fny) = lim
n→∞

M(u,Fny) = r.

We suppose that r > 0. Then letting n→∞ in (15), we have

ψ(r) ≤ f (ψ(r), φ(r)),

which is a contradiction. Hence r = 0. Similarly, it can be proved that

lim
n→∞

σ(v,Fny) = 0.

Now, passing the limit in σ(u, v) ≤ σ(u,Fny) + σ(Fny, v), as n → ∞, it follows that σ(u, v) = 0, so u = v, and
the uniqueness of the fixed point is proved. The proof is completed.
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Without the assumption of weakly increasing, we can get another version of uniqueness of fixed point
theorem by some modification for M(x, y).

Theorem 2.4. Let all the conditions of Theorem 2.3 be fulfilled except that M(x, y) defined in Theorem 2.1 is replaced
by M1(x, y) = max{σ(x, y), [σ(y,Fx)+σ(x,Fy)]

2 }. If the following additional condition is satisfied: For arbitrary two points
x, y ∈ X, there exists z ∈ X which is comparable with both x and y. Then the fixed point of F is unique.

Proof. Following the similar arguments to those demonstrated in Theorem 2.3, one can obtain the result.

Remark 2.5. In Theorem 2.1, Theorem 2.3, the condition x0 � Fx0 can be replaced by x0 � Fx0. Just as
demonstrated in Theorem 2.3, the conclusion remains valid when the assumption is changed: from the pair
(F, ix) which is weakly increasing to that which is weakly decreasing.

Now, we present an example to support the useability of our result.

Example 2.6. Let f (s, t) = s
1+t ,X = {0, 1, 2} and a partial order be defined as x � y whenever y ≤ x and define

σ : X × X→ R+ as follows:
σ(0, 0) = 10, σ(1, 1) = 6, σ(2, 2) = 0, σ(1, 0) = σ(0, 1) = 5,
σ(2, 0) = σ(0, 2) = 5, σ(1, 2) = σ(2, 1) = 3.
Then (X,�, σ) is a complete partial ordered metric-like space.
Let F : X→ X be defined by F0 = 1,F1 = 2,F2 = 2.
Define ψ,φ : [0,∞) → [0,∞) by ψ(t) = t and φ(t) = 1

2 . We next verify that the function F satisfies the
contractive condition (1). For that, given x, y ∈ X with x � y, so y ≤ x. Then, we have the following cases.
Case 1. If x = 1, y = 0, then
σ(F1,F0) = σ(2, 1) = 3
and

M(1, 0) = max{σ(1, 0), σ(1,F1), σ(0,F0),
[σ(F1, 0) + σ(1,F0)]

4
}

= max{5, 3, 5,
(5 + 6)

4
}

= 5.

As ψ(σ(F1,F0)) = 3 < 5
1+ 1

2
=

ψ(M(1,0))
1+φ(M(1,0)) , the contractive condition (1) is satisfied in this case.

Case 2. If x = 2, y = 0, then
σ(F2,F0) = σ(2, 1) = 3
and

M(2, 0) = max{σ(2, 0), σ(2,F2), σ(0,F0),
[σ(F2, 0) + σ(2,F0)]

4
}

= max{5, 0, 5,
(5 + 3)

4
}

= 5.

As ψ(σ(F2,F0)) = 3 < 5
1+ 1

2
=

ψ(M(2,0))
1+φ(M(2,0)) , the contractive condition (1) is satisfied in this case.

Case 3. If x = 2, y = 1, then
σ(F2,F1) = 0
and

M(2, 1) = max{σ(2, 1), σ(2,F2), σ(1,F1),
[σ(F2, 1) + σ(2,F1)]

4
}

= max{3, 0, 3,
(3 + 0)

4
}

= 3.
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As ψ(σ(F2,F1)) = 0 < 3
1+ 1

2
=

ψ(M(2,1))
1+φ(M(2,1)) , the contractive condition (1) is satisfied in this case.

Case 4. If x = 0, y = 0, then
σ(F0,F0) = 6
and

M(0, 0) = max{σ(0, 0), σ(0,F0), σ(0,F0),
[σ(F0, 0) + σ(0,F0)]

4
}

= max{10, 5, 5,
(5 + 5)

4
}

= 10.

As ψ(σ(F0,F0)) = 6 < 10
1+ 1

2
=

ψ(M(0,0))
1+φ(M(0,0)) , the contractive condition (1) is satisfied in this case.

Case 5. If x = 1, y = 1, then
σ(F1,F1) = 0
and

M(1, 1) = max{σ(1, 1), σ(1,F1), σ(1,F1),
[σ(F1, 1) + σ(1,F1)]

4
}

= max{6, 3, 3,
(3 + 3)

4
}

= 6.

As ψ(σ(F1,F1)) = 0 < 6
1+ 1

2
=

ψ(M(1,1))
1+φ(M(1,1)) , the contractive condition (1) is satisfied in this case.

Case 6. If x = 2, y = 2, then
σ(F2,F2) = 0
and

M(2, 2) = max{σ(2, 2), σ(2,F2), σ(2,F2),
[σ(F2, 2) + σ(2,F2)]

4
}

= max{0, 0, 0,
(0 + 0)

4
}

= 0.

As ψ(σ(F2,F2)) = 0 = 6
1+ 1

2
=

ψ(M(2,2))
1+φ(M(2,2)) , the contractive condition (1) is satisfied in this case.

So, F, ψ and φ satisfy all the hypotheses of Theorem 2.4 except that the pair ( f , ix) is weakly increasing. But
according to Remark 2.5, we also obtain the uniqueness of fixed point. Indeed, here 2 is the unique fixed
point of F.

Remark 2.7. Let f (s, t) = s − t in Theorem 2.1-Theorem 2.4, then the conclusions coincide with Theorem
2.1, Theorem 2.2 and Theorem 2.3 in [26]. If we take ψ(t) = t, then the conclusions coincide with Corollary
2.1 in [26]. In addition, let f (s, t) = ks, k ∈ [0, 1), ψ(t) = t in Theorem 2.1-Theorem 2.4, then the conclusions
coincide with Corollary 2.9 in [26].

Let f (s, t) = s
1+t , in Theorem 2.1-Theorem 2.4, we have the following corollary.

Corollary 2.8. Let (X,�, σ) Let (X,�, σ) be a complete partially ordered metric-like space. Let F : X → X be
nondecreasing mapping such that for all comparable x, y ∈ X,

ψ(σ(Fx,Fy)) ≤
ψ(M(x, y))

1 + φ(M(x, y))
,

where M is given by
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M(x, y) = max{σ(x, y), σ(x,Fx), σ(y,Fy),
[σ(x,Fy) + σ(Fx, y)]

4
}

And ψ : [0,∞) → [0,∞) is a continuous monotone nondecreasing function with ψ(t) = 0 if and only if t = 0,
φ : [0,∞)→ [0,∞) is lower semi-continuous and φ(t) > 0 if t > 0 and φ(0) ≥ 0 .
If there exists x0 ∈ X with x0 � Fx0 and in each of the following two cases, F has a fixed point:

(a) F is continuous in (X,�, σ),
or

(b) {xn} is a nondecreasing sequence in X such that xn → x ∈ X implies xn � x for all n ∈N.

Moreover, if the additional conditions are satisfied:

(1) (F, ix) is weakly increasing or M(x, y) is replaced by M1(x, y), and

(2) For arbitrary two points x, y ∈ X, then there exists z ∈ X which is comparable with both x and y,

then the fixed point of F is unique.

Let f (s, t) = log
1+as

2
a , a > 1, in Theorem 2.1-Theorem 2.4, we have the following corollary.

Corollary 2.9. Let (X,�, σ) Let (X,�, σ) be a complete partially ordered metric-like space. Let F : X → X be
nondecreasing mapping such that for all comparable x, y ∈ X,

ψ(σ(Fx,Fy)) ≤ log
1+ψ(M(x,y))s

2
a ,

where M is given by

M(x, y) = max{σ(x, y), σ(x,Fx), σ(y,Fy),
[σ(x,Fy) + σ(Fx, y)]

4
}.

And ψ : [0,∞)→ [0,∞) is a continuous monotone nondecreasing function with ψ(t) = 0 if and only if t = 0,
If there exists x0 ∈ X with x0 � Fx0 and in each of the following two cases, F has a fixed point:

(a) F is continuous in (X,�, σ),
or

(b) {xn} is a nondecreasing sequence in X such that xn → x ∈ X implies xn � x for all n ∈N.

Moreover, if the additional conditions are satisfied:

(1) (F, ix) is weakly increasing or M(x, y) is replaced by M1(x, y), and

(2) For arbitrary two points x, y ∈ X, then there exists z ∈ X which is comparable with both x and y,

then the fixed point of F is unique.

Let f (s, t) = n
√

ln(1 + sn),n ∈ N, in Theorem 2.1-Theorem 2.4, we have the following corollary.
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Corollary 2.10. Let (X,�, σ) Let (X,�, σ) be a complete partially ordered metric-like space. Let F : X → X
be nondecreasing mapping such that for all comparable x, y ∈ X,

ψ(σ(Fx,Fy)) ≤ n
√

ln(1 + ψ(M(x, y))n),n ∈ N,

where M is given by

M(x, y) = max{σ(x, y), σ(x,Fx), σ(y,Fy),
[σ(x,Fy) + σ(Fx, y)]

4
}

And ψ : [0,∞) → [0,∞) is a continuous monotone nondecreasing function with ψ(t) = 0 if and only if
t = 0,

If there exists x0 ∈ X with x0 � Fx0 and in each of the following two cases, F has a fixed point:

(a) F is continuous in (X,�, σ),
or

(b) {xn} is a nondecreasing sequence in X such that xn → x ∈ X implies xn � x for all n ∈N.

Moreover, if the additional conditions are satisfied:

(1) (F, ix) is weakly increasing or M(x, y) is replaced by M1(x, y), and

(2) For arbitrary two points x, y ∈ X, then there exists z ∈ X which is comparable with both x and y,

then the fixed point of F is unique.

3. Common Fixed Point Theorems

In the following section, we present the common fixed point theorem of two self maps h, 1 in a complete
partially ordered metric-like space. At the same time, we also present an example to support our result.

Theorem 3.1. Let (X,�, σ) be a complete partially ordered metric-like space and let h, 1 : X → X be two weakly
increasing mappings w.r.t. � such that for every two comparable elements x, y ∈ X,

ψ(σ(hx, 1y)) ≤ f (ψ(M(x, y)), φ(M(x, y))), (16)

where M is given by

M(x, y) = max{σ(hx, 1y), σ(x, hx), σ(y, 1y),
[σ(x, 1y) + σ(hx, y)]

4
}

and

(a) ψ : [0,∞)→ [0,∞) is a continuous monotone nondecreasing function with ψ(t) = 0 if and only if t = 0.

(b) φ : [0,∞)→ [0,∞) is a lower semi-continuous function with φ(t) = 0 if and only if t = 0 or φ : [0,∞)→ [0,∞)
is a lower semi-continuous function with φ(t) > 0 if and only if t > 0,and φ(0) ≥ 0

(c) f : [0,∞)2
→ R are elements of C such that where f is non-increasing with respect second variable.

Then in each of the following two cases the mappings h and 1 have a common fixed point:
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(1) h or 1 is continuous,
or

(2) if a nondecreasing sequence {xn} converges to x∗ ∈ X, then xn � x∗ for all n.

Proof. Let us divide the proof into two parts.
(I)We prove that u is a fixed point of h if and only if u is a fixed point of 1.
Now, suppose that u is a fixed point of h, then hu = u. As u � u, apply contractive condition (16) with x = u,
y = u, we have

ψ(σ(u, 1u)) = ψ(σ(hu, 1u)) ≤ f (ψ(M(u,u)), φ(M(u,u))),

where

M(u,u) = max{σ(hu, 1u), σ(u, hu), σ(u, 1u),
[σ(u, 1u) + σ(hu,u)]

4
}

= max{σ(u, 1u), σ(u,u),
[σ(u, 1u) + σ(u,u)]

4
}

= max{σ(u, 1u), σ(u,u)}
= σ(u, 1u).

Then, we have

ψ(σ(u, 1u)) ≤ f (ψ(σ(u, 1u)), φ(σ(u, 1u)))
≤ ψ(σ(u, 1u)).

It follows that

ψ(σ(u, 1u)) = f (ψ(σ(u, 1u)), φ(σ(u, 1u))).

Therefore,

ψ(σ(u, 1u)) = 0 or φ(σ(u, 1u)) = 0

It both yields that σ(u, 1u) = 0 since ψ(σ(u, 1u)) = 0 or φ(σ(u, 1u)) = 0. Hence, u = 1u.
Similarly, we show that if u is a fixed point of 1, then u is a fixed point of h.
(II) Let x0 ∈ X. We construct a sequence {xn} in X such that x2n+1 = hx2n, x2n+2 = 1x2n+1, for all non-negative
integers, i.e. n ∈N ∪ {0}. As h and 1 are weakly increasing w.r.t. �, we obtain that

x1 = hx0 � 1hx0 = x2 = 1x1 � h1x1 = x3 � · · · � x2n+1 = hx2n � 1hx2n � x2n+2 � · · · .

If x2n = x2n+1, for some n ∈ N, then hx2n = x2n. Thus x2n is a fixed point of h. By the first part, we conclude
that x2n is also a fixed point of 1. The conclusion holds.
If x2n+1 = x2n+2, for some n ∈ N, then 1x2n+1 = x2n+1. Thus x2n is a fixed point of 1. By the first part, we
conclude that x2n is also a fixed point of h. The conclusion holds.
Therefore, we may assume that xn , xn+1 for all n ∈N. Now we complete the proof in the following steps:
Step 1. We will prove that lim

n→∞
σ(xn, xn+1) = 0.

As x2n+1 and x2n+2 are comparable, apply contractive condition (16) with x = x2n+1, y = x2n+2, we have

ψ(σ(x2n+1, x2n+2)) = ψ(σ(hx2n, 1x2n+1))
≤ f (ψ(M(x2n, x2n+1)), φ(M(x2n, x2n+1))). (17)
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where

M(x2n, x2n+1) = max{σ(hx2n, 1x2n+1), σ(x2n, hx2n), σ(x2n+1, 1x2n+1),
[σ(hx2n, x2n+1) + σ(x2n, 1x2n+1)]

4
}

= max{σ(x2n+1, x2n+2), σ(x2n, x2n+1), σ(x2n+1, x2n+2),
[σ(x2n+1, x2n+1) + σ(x2n, x2n+2)]

4
}

≤ max{σ(x2n+1, x2n+2), σ(x2n, x2n+1), σ(x2n+1, x2n+2),
[σ(x2n, x2n+1) + σ(x2n+1, x2n+2)]

2
}

≤ max{σ(x2n, x2n+1), σ(x2n+1, x2n+2)}.

If σ(x2n+1, x2n+2) ≥ σ(x2n, x2n+1) > 0, then it follows from the last inequality above, we have M(x2n, x2n+1) ≤
σ(x2n+1, x2n+2). Combing (17) with the monotonicity of ψ, we have σ(x2n+1, x2n+2) ≤ M(x2n, x2n+1). Therefore,
M(x2n, x2n+1) = σ(x2n+1, x2n+2), and (17) implies that

ψ(σ(x2n+1, x2n+2)) ≤ f (ψ(M(x2n, x2n+1)), φ(M(x2n, x2n+1)))
= f (ψ(σ(x2n+1, x2n+2)), φ(σ(x2n+1, x2n+2))), (18)

which is only possible when σ(x2n+1, x2n+2) = 0. We deduce that x2n+1 = x2n+2. It is a contradiction with the
assumption that xn , xn+1 for all n ∈N.
Hence, σ(x2n+1, x2n+2) < σ(x2n, x2n+1) and M(x2n, x2n+1) ≤ σ(x2n, x2n+1).
Combing the above proof, we can obtain that

σ(x2n+1, x2n+2) ≤M(x2n, x2n+1) ≤ σ(x2n, x2n+1).

In a similar way, we can obtain that

σ(x2n+2, x2n+3) ≤M(x2n+1, x2n+2) ≤ σ(x2n+1, x2n+2).

Therefore, we conclude that for each n = 0, 1, 2, · · · ,

σ(xn, xn+1) ≤M(xn, xn−1) ≤ σ(xn, xn−1).

It follows that the sequence {σ(xn, xn+1)} is nonnegative monotone non-increasing and bounded. Thus, there
exists r ≥ 0 such that

lim
n→∞

σ(xn, xn+1) = lim
n→∞

M(xn, xn−1) = r.

Suppose r > 0. Then letting n→∞ in (18), we get

ψ(r) ≤ f (ψ(r), lim inf
n→∞

φ(M(x2n, x2n+1))) ≤ f (ψ(r), φ(r)) ≤ ψ(r),

which implies that

ψ(r) = f (ψ(r), φ(r)).

With Definition 1.5, we have that

ψ(r) = 0, or, φ(r) = 0.

It both yields that r = 0 since ψ(r) = 0 or φ(r) = 0.
So we have that

lim
n→∞

σ(xn, xn+1) = 0. (19)
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Step 2. We will prove that the sequence {xn} is a σ−Cauchy sequence. It is sufficient to show that {x2n} is a
σ−Cauchy sequence. Suppose, to the contrary, that is, {x2n} is not a σ−Cauchy sequence. Then there exists
ε > 0 for which we can find two subsequences of positive integers {x2m(i)} and{x2n(i)} such that n(i) is the
smallest index for which

n(i) > m(i) > i, σ(x2m(i), x2n(i)) ≥ ε. (20)

This means that

σ(x2m(i), x2n(i)−2) < ε. (21)

From (20) and (21) and the triangle inequality, we get

ε ≤ σ(x2m(i), x2n(i))
≤ σ(x2m(i), x2n(i)−2) + σ(x2n(i)−2, x2n(i)−1) + σ(x2n(i)−1, x2n(i))
< ε + σ(x2n(i)−2, x2n(i)−1) + σ(x2n(i)−1, x2n(i)). (22)

By letting i→∞ in the above inequality and using (19) and (22), we have that

lim
i→∞

σ(x2m(i), x2n(i)) = ε. (23)

Moreover,

ε ≤ σ(x2m(i), x2n(i))
≤ σ(x2m(i), x2m(i)−1) + σ(x2m(i)−1, x2n(i)+1) + σ(x2n(i)+1, x2n(i))
≤ σ(x2m(i), x2m(i)−1) + σ(x2m(i)−1, x2n(i)) + σ(x2n(i)+1, x2n(i)) + σ(x2n(i)+1, x2n(i))
= σ(x2m(i), x2m(i)−1) + σ(x2m(i)−1, x2n(i)) + 2σ(x2n(i)+1, x2n(i))
≤ σ(x2m(i), x2m(i)−1) + σ(x2m(i)−1, x2m(i)) + σ(x2m(i), x2n(i)) + 2σ(x2n(i)+1, x2n(i))
≤ 2σ(x2m(i), x2m(i)−1) + σ(x2m(i), x2n(i)+1) + 2σ(x2n(i)+1, x2n(i)). (24)

Using (21) and (24) and letting i→∞, we get

lim
i→∞

σ(x2m(i), x2n(i)) = lim
i→∞

σ(x2m(i)−1, x2n(i)+1)

= lim
i→∞

σ(x2m(i)−1, x2n(i))

= lim
i→∞

σ(x2m(i), x2n(i)+1) = ε.

Since x2n(i) and x2m(i)−1 are comparable, so by the definition of M(x, y) and using previous limits, we get that
lim
i→∞

M(x2n(i), x2m(i)−1) = ε. Indeed,

M(x2n(i), x2m(i)−1) = max{σ(x2n(i)+1, x2m(i)), σ(x2n(i), x2n(i)+1), σ(x2m(i)−1, x2m(i))
[σ(x2n(i)+1, x2m(i)−1) + σ(x2m(i), x2n(i))]

4
}

→ max{ε, 0, 0,
ε
2
}

= ε.

Now since the terms of the sequence {x2n} are mutually comparable, we can apply (16) to obtain

ψ(σ(x2n(i)+1, x2m(i)) = ψ(σ(hx2n(i), 1x2m(i)−1))
≤ f (ψ(M(x2n(i), x2m(i)−1)), φ(M(x2n(i), x2m(i)−1))).
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Passing to the limit when i→∞, we obtain that

ψ(ε) ≤ f (ψ(ε), φ(ε)),

which is a contradiction unless ε = 0. Hence, {x2n} is a σ−Cauchy sequence.
By the completeness of X, there is z ∈ X such that lim

i→∞
xn = z, that is,

lim
n→∞

σ(xn, z) = σ(z, z) = lim
m,n→∞

σ(xm, xn) = 0.

Step 3. We have to prove that z is a common fixed point of h and 1. We shall distinguish the cases (1) and
(2) of the theorem.
(1) Suppose that the mapping h is continuous. Since x2n → z, we obtain that x2n+1 = hx2n → hz. On the
other hand, x2n+1 → z (as the subsequence of {xn}). It follows that hz = z. To prove that 1z = z, using z � z,
we can put x = y = z in (16) and obtain that

ψ(σ(hz, 1z)) ≤ f (ψ(M(z, z)), φ(M(z, z))),

where

M(z, z) = max{σ(hz, 1z), σ(z, hz), σ(z, 1z),
[σ(hz, z) + σ(z, 1z)]

4
}

= max{σ(z, 1z), σ(z, z), σ(z, 1z),
[σ(z, z) + σ(z, 1z)]

4
}

= σ(z, 1z).

Hence, ψ(σ(z, 1z)) ≤ f (ψ(σ(z, 1z)), φ(σ(z, 1z))) and it follows that z = 1z.
The proof is similar if 1 is continuous.
(2) Suppose now that the condition (2) of the theorem holds.
The sequence {xn} is nondecreasing w.r.t. � and it follows that xn � x∗.
Taking x2n = x, x∗ = y in (16), we get that

ψ(σ(hx2n, 1x∗) ≤ f (ψ(M(x2n, x∗)), φ(M(x2n, x∗))), (25)

where

M(x2n, x∗)) = max{σ(x2n+1, 1x∗), σ(x∗, 1x∗), σ(x2n, x2n+1)
[σ(x2n+1, x∗) + σ(x2n, 1x∗)]

4
}

→ σ(x∗, 1x∗).

Now passing the limits when n→∞ in (25) , we have

ψ(σ(x∗, 1x∗)) ≤ f (ψ(σ(x∗, 1x∗)), φ(σ(x∗, 1x∗))) ≤ ψ(σ(x∗, 1x∗)).

It follows that

ψ(σ(x∗, 1x∗)) = f (ψ(σ(x∗, 1x∗)), φ(σ(x∗, 1x∗)))

With Definition 1.5, we obtain that

ψ(σ(x∗, 1x∗)) = 0, or, φ(σ(x∗, 1x∗)) = 0.

It yields that σ(x∗, 1x∗) = 0 and hence 1x∗ = x∗.
The fact that hx∗ = x∗ is now derived in the same way in the case (2). The proof is completed.
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Remark 3.2. Theorem 3.1 remains valid if the condition that (h, 1) is weakly increasing is replaced by (h, 1)
is weakly decreasing, i.e., hx � 1hx and 1x � h1x for each x ∈ X.

Referring to Theorem 2.3 and Theorem 2.4, we present two theorems for uniqueness of common fixed
point theorem which give sufficient conditions for the uniqueness of the common fixed point.

Theorem 3.3. Let all the conditions of Theorem 3.1 be satisfied. If the following additional condition is satisfied: For
arbitrary two points x, y ∈ X, there exists z ∈ X which is comparable with both x and y. Then the common fixed point
of h and 1 is unique.

Proof. Following the similar arguments to those presented in Theorem 2.3, one can get the result. The proof
is completed.

Theorem 3.4. Let all the conditions of Theorem 3.1 be satisfied except that M(x, y) defined in Theorem 3.3 is replaced
by M2(x, y) = max{σ(hx, 1y), [σ(hx,y)+σ(x,1y)]

2 }. If the following additional condition is satisfied: For arbitrary two
points x, y ∈ X, there exists z ∈ X which is comparable with both x and y. Then the common fixed point of f and 1 is
unique.

Proof. Following the similar arguments to those presented in Theorem 2.4, one can get the result. The proof
is completed.

Now, we present an example to support the useability of our result.

Example 3.5. Let X = {0, 1, 2, · · · }. Define the function h, 1 : X→ X by

hx=

 0, if x = 0,
x − 1, if x , 0,

and

1x=

 0, if x ∈ {0, 1},
x − 2, if x ≥ 2.

Let σ : X × X→ R+ be given by

σ(x, y)=

 x, if x = y,
max{ x2 ,

y
2 } if x , y.

Define ψ,φ : [0,∞) → [0,∞) by ψ(t) = t2 and φ(t) = 1
|2t−1|+ 1

1000
. Define a partial order � on X by x � y if

and only if y ≤ x. Then we have the following conclusions:

(1) (X,�, σ) is a complete partially ordered metric-like space,

(2) h and 1 are weakly increasing mappings w.r.t. � ,

(3) h is continuous,

(4) For every two comparable elements x, y ∈ X, (16) holds.

Proof. The proof of (1) holds obviously.
To prove (2), let x ∈ X. If x ∈ {0, 1, 2}, then h1x = 0 ≤ 1x = 0 and 1hx = 0 ≤ hx. So, 1x � h1x and hx � 1hx.

While, if x ≥ 3, then h1x = x− 3 ≤ x− 2 = 1x and 1hx = x− 3 ≤ x− 1 = hx. So, 1x � h1x and hx � 1hx. Hence,
h and 1 are weakly increasing mappings w.r.t.�.

To prove h is continuous, let {xn} be a sequence in X such that xn → x∗ ∈ X, i.e. there exists k ∈ N such
that xn = x∗ for all n ≥ k. So hxn = hx∗ for all n ≥ k. Hence, hxn → hx∗, that is, h is continuous.
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To prove (4), given x, y ∈ X with x � y, so y ≤ x. Thus, we have the following cases:
Case 1. If x = 0, y = 0, then as σ(h0, 10) = 0,

M(0, 0) = max{σ(h0, 10), σ(0, h0), σ(0, 10),
[σ(0, 10) + σ(h0, 0)]

4
}

= max{0, 0, 0,
(0 + 0)

4
}

= 0,

and ψ(σ( f 0, 10)) = 0 ≤ ψ(M(0,0))
1+φ(M(0,0)) , the contractive condition (16) is satisfied in this case.

Case 2. If x = 1, y = 0, then as σ( f 1, 10) = 0,

M(1, 0) = max{σ(h1, 10), σ(1, h1), σ(0, 10),
[σ(1, 10) + σ(h1, 0)]

4
}

= max{0,
1
2
, 0,

1
8
}

=
1
2
,

and ψ(σ( f 1, 10)) = 0 ≤ ψ(M(1,0))
1+φ(M(1,0)) , the contractive condition (16) is satisfied in this case.

Case 3. If x = 2, y = 0, then as σ( f 2, 10) = 1
2 ,

M(2, 0) = max{σ( f 2, 10), σ(2, f 2), σ(0, 10),
[σ(2, 10) + σ( f 2, 0)]

4
}

= max{
1
2
, 1, 0,

(1 + 1
2 )

4
}

= 1,

and ψ(σ(h2, 10)) = 1
4 <

[1]2

1+ 1
1+ 1

1000

=
ψ(M(2,0))

1+φ(M(2,0)) , the contractive condition (16) is satisfied in this case.

Case 4. If x = 1, y = 1, then as σ( f 1, 11) = 0,

M(1, 1) = max{σ( f 1, 11), σ(1, f 1), σ(1, 11),
[σ(1, 11) + σ( f 1, 1)]

4
}

= max{0,
1
2
,

1
2
,

( 1
2 + 1

2 )
4
}

=
1
2
,

and ψ(σ( f 1, 11)) = 0 ≤ ψ(M(1,1))
1+φ(M(1,1)) , the contractive condition (16) is satisfied in this case.

Case 5. If x = 2, y = 1, then as σ(h2, 11) = 1
2 ,

M(2, 1) = max{σ(h2, 11), σ(2, h2), σ(1, 11),
[σ(2, 11) + σ(h2, 1)]

4
}

= max{
1
2
, 1,

1
2
,

(1 + 1)
4
}

= 1,

and ψ(σ(h2, 11)) = ( 1
2 )2 = 1

4 <
[1]2

1+ 1
1+ 1

1000

=
ψ(M(2,1))

1+φ(M(2,1)) , the contractive condition (16) is satisfied in this case.
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Case 6. If x, y ≥ 2, with x = y, then as σ(hx, 1y) = x−1
2 ,

M(x, y) = max{σ( f x, 1y), σ(x, f x), σ(y, 1y),
[σ(x, 1y) + σ( f x, y)]

4
}

= max{
x − 1

2
,

x
2
,

y
2
,

[ x
2 +

y
2 ]

4
}

=
x
2

=
y
2
,

and ψ(σ( f x, 1y)) = ( x−1
2 )2
≤

( x
2 )2

1+ 1
|x−1|+ 1

1000

=
ψ( x

2 )
1+φ( x

2 ) , the contractive condition (16) is satisfied in this case.

Case 7. If x > y ≥ 2, with x = y + 1, then as σ( f x, 1y) =
y
2 ,

M(x, y) = max{σ(hx, 1y), σ(x, hx), σ(y, 1y),
[σ(x, 1y) + σ(hx, y)]

4
}

= max{
y
2
,

y + 1
2

,
y
2
,

(y+1)
2 + y

4
}

=
y + 1

2
,

and ψ(σ(hx, 1y)) = ( y
2 )2
≤

( y+1
2 )2

1+ 1
|y|+ 1

1000

=
ψ( y+1

2 )

1+φ( y+1
2 )

, the contractive condition (16) is satisfied in this case.

Case 8. If x > y ≥ 2, with x > y + 1, then as σ(hx, 1y) = x−1
2 ,

M(x, y) = max{σ(hx, 1y), σ(x, hx), σ(y, 1y),
[σ(x, 1y) + σ(hx, y)]

4
}

= max{
x − 1

2
,

x
2
,

y
2
,

x
2 + x−1

2

4
}

=
x
2
,

and ψ(σ(hx, 1y)) = ( x−1
2 )2
≤

( x
2 )2

1+ 1
|x−1|+ 1

1000

=
ψ( x

2 )
1+φ( x

2 ) , the contractive condition (16) is satisfied in this case.

Thus, h, 1, ψ and φ satisfy the hypotheses of Theorem 3.3 in the case (1) and hence f and 1 have a common
fixed point. Indeed, 0 is the common fixed point of h and 1.

Remark 3.6. (1) If we take f (s, t) = s − t in the Theorem 3.1-Theorem 3.4, the conclusion coincides with
Theorem 3.1.- Theorem 3.3 in [26].

(2) If we take f (s, t) = s − t and ψ(t) = t in the Theorem 3.1-Theorem 3.4, the conclusion coincides with
Corollary 3.1.-Corollary 3.2 in [26].

(3) If we take f (s, t) = ks and ψ(t) = t in the Theorem 3.1-Theorem 3.4, the conclusion coincides with
Corollary 3.3.- Corollary 3.4 in [26].
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[11] D.D. Dekić, T. Došenović, H. Huang, S. Radenović, A note on recent cyclic fixed point results in dislocated quasi-metric spaces,
Fixed Point Theory Appl. (2016) 2016:74.

[12] N. Hussain, J.R. Roshan, V. Parvaneh, M. Abbas, Common fixed point results for weak contractive mappings in ordered b-
dislocated metric spaces with applications, J. Ineq. Appl. 1 (2013) 1–21.

[13] N. Hussain, J.R. Roshan, V. Parvaneh, Z. Kadelburg, Fixed points of contractive mappings in b-metric-like spaces, Scientific
World Journal, Article ID 471827, 1 (2014) 1–15.

[14] E. Karapinar, Couple fixed point theorems for nonlinear contraction in cone metric spaces, Comput. Math. Appl. 59 (2010)
3656–3668.

[15] E. Karapinar, Generalization of Caristi Klrk’s theorem on partial metric spaces, Fixed Point Theory Appl. 4 (2011) doi:10.1186/1687-
1812-2011-4.

[16] A. Latif, S.A. Al-Mezel, Fixed point results in quasi metric spaces. Fixed Point Theory Appl. 2011 (2011), Article ID 178306, 8
pages

[17] J. Marin, S. Romaguera, P. Tirado, Q-functions on quasi-metric spaces and fixed points for multivalued maps, Fixed Point Theory
Appl. 2011 (2011) Article ID 603861, 10 pp.

[18] S.G. Mattews, Partial metric topology, In: Proc. 8th Summer Conf. Gen. Topology Appl., Ann. New York Acad. Sci. 728 (1994)
183–197.
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