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Abstract. This paper is a novel work of portfolio-selection problem solving using multi objective model
considering four parameters, Expected return, downside beta coefficient, semivariance and conditional
value at risk at a specified confidence level. Multi-period models can be defined as stochastic models. Early
studies on portfolio selection developed using variance as a risk measure; although, theories and practices
revealed that variance, considering its downsides, is not a desirable risk measure. To increase accuracy
and overcoming negative aspects of variance, downside risk measures like semivarinace, downside beta
covariance, value at risk and conditional value at risk was other risk measures that replaced in models.
These risk measures all have advantages over variance and previous works using these parameters have
shown improvements in the best portfolio selection. Purposed models are solved using genetic algorithm
and for the topic completion, numerical example and plots to measure the performance of model in four
dimensions are provided.

1. Introduction

Portfolio selection problem introduced by Markowitz [13] established a fundamental base for single-
period portfolio selection by maximizing expected return for a certain level of risk or minimizing risk for a
certain level of return. In the real world portfolio strategies are usually multi-period as the investors are able
to rebalance their portfolio in each time period. Li and Ng [12] proposed an analytical optimal solution to
the multi-period mean-variance model. Wei and Ye [24] developed a multi-period mean-variance portfolio
selection model, taken bankruptcy constraint into consideration in stochastic markets. Gulpnar and Rustem
[8] proposed a multi-period meanvariance optimization, containing the construction of scenario tree to
present uncertainties and associated possibilities in future stages. Celikyurt and Ozekici [4] introduced
several multi-period portfolio optimization models in stochastic markets using the meanvariance approach.
As mentioned above, researchers mainly used variance as a risk measure. Later studies revealed measuring
the actual investment risk and asymmetric return distributions are reasons of replacing downside risk
measures, such as semi-variance, downside beta coefficient, Value-at-Risk (VaR) or Conditional Value-at-
Risk (CVaR) with variance. Markowitz et al. [14] proposed the mean-semivariance model as an alternative
to mean-variance model. Managing and controlling risk using Value at Risk (VaR), a risk measures, was
proposed by Baumol (1963) and known as quantile in the statistical literatures. However, VaR is not an
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acceptable risk measure since does not have sub-additive characteristics (Artzner et al. [2]). Therefore,
Rockafellar and Uryasev [19, 20], expressed another risk measure which was named Conditional Value at
Risk (CVaR). Pflug [18] proved that CVaR is a coherent risk measure having properties such as monotonicity,
sub-additivity, positive homogeneity, translation invariance, and convexity. CVaR is defined as average of
larger losses than VaR. CVaR became so popular for its advantages like convexity (Pflug [18], Ogryczak
and Ruszczynski [16]) and researchers use CVaR as a risk measure for portfolio and financial evaluations
(John and Hafize [11], Huang et al. [10], Zhu and Fukushima [27], Yau et al. [25], Sawik [21], Claro
and Pinho de Sousa [5]). Scaillet [22], considered a nonparametric estimation of CVaR by using kernel
estimator. A group of fully non parametric estimators based on the empirical conditional quantile function
are considered in Peracchi and Tanase [17]. Hong and Liu [9] used Monte Carlo simulation to calculate CVaR
for portfolio optimization. Another nonparametric estimation of CVaR is proposed by Yu et al. [26] based
on the kernel quantile estimation approach. Najafi and Mushakhian solved multi-stage stochastic mean-
semi variance-CVaR model using evolution algorithms[15]. In their paper optimal weights determined
using genetic algorithm and developed using downside beta coefficient, semi variance and CVaR as risk
measures. Therefore Mean-semi variance-β-CVaR multi-stage stochastic model is intoduced for portfolio
optimization. The purpose is to find the best weights for each cycle or stage. For this, genetic methods
for weights improvements are used. The remainder of this paper is organized as follows. Risk measures
definitions and formulations are explained in section 2. Proposed model described in section 3. In section
4, a numerical example is presented and genetic algorithm is used to solve proposed model. Section 5 sums
up with a conclusion.

2. Genetic Algorithm

Genetic algorithm (introduced in 1960s and described by Goldburg [7]) is a well-known evolutionary
algorithm, which is under Inspiration of natural evolution and looking for better future generations.
Procedure of evolution contains recombination operations and elites selection. Genetic algorithm was
firstly used by biologist; however, later it found its way to other branches of science where models had to
be solved and finding the best solutions were complicated. In genetic algorithm selection, crossover and
mutation methods are main methods used to evolve the under study population.
Evolution procedure starts with an initial population. Usually initial population is generated randomly.
Next step is an arbitrary one where all of the members are evaluated according to the objective function.
Next generation is going to be created by the application of elite ones (Figure 1). On the third step, next
generation is created using mutation or crossover methods. In mutation, some randomly selected genes
of a single selected chromosome are changed to form new generation (Figure 2). Crossover method is
performed by two selected chromosomes (parents). Selected genes of parents are combined (e.g. linear
combinations) and new chromosome is formed (Figure 3). This procedure continues till the desired criteria
(e.g. numbers of iteration or level of precious) are satisfied otherwise the procedure backs to the step 1.

3. Basics and fundamentals

In this section, risk measures, definitions and other useful basics are explained.

3.1. Semi-variance
Semi-variance, a statistical measure, evaluates how far values which are less than mean are spread out

from average. This measure makes investors be aware of risk of loss whenever return of their investment
is less than its expected return. In fact they are warned about negative fluctuations more directly. The
formula for semi-variance is as follows:

Semi-variance =
1
s

s∑
n=1

(Rn − R̄)2; (1)

Where Rn are returns less than the expected return (R̄) and s is the total number of returns below the
expected return or numeber of senario.
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Figure 1: Selection of elite members

Figure 2: Mutation method. B and A are arbitrary values.

Figure 3: Crossover method.

3.2. Value at Risk (VaR)

VaR is defined as the maximum money that one may loss in a specified time interval. Mathematically
VaR is defined as the quantile of a distribution. Suppose that Pt is the initial wealth and Pt+k is the secondary
wealth after k periods; probability of loss is defined as:

p(−∆Pk < VaR) = α (2)
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where ∆Pk is defined as Pk+t − Pk and α is the confidence level. Based on to this definition probability of
losing more than VaR is equal to 1-α. There are different methods for computing VaR, such as Variance-
Covariance method, Historical and Monte Carlo simulations. Variance-covariance method only used for
normally distributed data. As in most cases prices are not normally distributed, variance-covariance should
be used with considerations. In Historical and Monte Carlo simulation methods there is no hypothesis for
normally distributed data, thus these methods can be used with less restrictions.

3.3. Conditional Value at Risk (CVaR)
Let x ∈ φ ⊂ Rn be a decision vector, r ∈ Rn be the random vector representing the value of under lying

risk factors, and f (x, r) be the corresponding loss. For simplicity, it is assumed that r ∈ Rn is a continuous
random vector. For a given portfolio x, the probability of the loss not exceeding a threshold η, is given by
the probability function P(.).

ψ(x, η) := P( f (x, r) ≤ η) (3)

The VaR associated with a portfolio x and a specified confidence level α is the minimal η satisfying (x, η) ≥ α,
that is:

VaRα(x) := in f {η ∈ R, ψ(x, η) ≥ α}. (4)

Since ψ(x, η) is continuous by assumption, we have:

P( f (x, r) ≤ VaRα(x)) = ψ(x,VaRα(x)) = α (5)

CVaR is defined as the conditional expectation of the portfolio loss exceeding or equal to VaR

CVaRα(x) := E[ f (x, r)| f (x, r) ≥ VaRα(x) =
1

1 − α

∫ +∞

VaRα(x)
rd(r)dx] (6)

where E is the expectation operator and d(r) is the probability density function of the loss f (x, r). Rockafellar
and Uryasev [19] prove that CVaR has an equivalent definition as follows:

CVaRα(x) = minηFα(x, η) (7)

where Fα(x, η) is defined as:

Fα(x, η) := η +
1

1 − α
E[( f (x, r) − η)+] (8)

with (x)+ = max{x, 0}. They also show that minimizing CVaR over x ∈ φ ⊂ Rn is equiv-
alent to minimizing Fα(x, η) over (x, η) ∈ φ ×R ; i.e., minx∈φCVaRα(x) = min(x,η)∈φ×RFα(x, η).
Furthermore, when φ is a convex set and f (x, r) with respect to x is convex, the problem is a convex
programming problem.

3.4. Downside β coefficient
Beta coefficient is a measure which talks over shares (portfolios) and market relation. Larger than 1 beta

indicates higher violation of shares (portfolios) in comparison with market. More clearly movements in
price of an understudy share are much more under effect of movements of market price. Beta coefficient is
defined as the ratio of Market and Share Returns covariance to variance of market return. When a share has
fewer movements in price, in comparison with market price, beta will be less than 1. Note that market’s
beta equals to 1. To calculate Beta, covariance of market and share returns can be restricted to ones which
are less than mean [6]. This formula known as downside Beta coefficient and defined as:

βis =
E[min(Ri − R̄i, 0)min(Rm − R̄m, 0)]

E[min((Rm − R̄m, 0)2]
(9)

Where Rm and R̄m are market return and average of market’s return respectively. Ri is share’s return and R̄i
stands for average of under evaluation share.
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4. Main results and methodology

Model is a multi objective one that should be changed one objective. One way is weighted sum of the
objective function. Also,ε constrained method is another way for these problems. Multi-period portfolio
problem can be defined as follows: there are N risky assets consist of bonds and stocks, one risk free asset;
a planning horizon consists of T periods (t = 0, 1, · · · ,T − 1). Uncertainly is stated through scenarios and
each scenario describes a probability realization of all uncertain parameters in model. Each Scenario has
a probability ps, where ps > 0 and

∑
ps = 1. For simplicity, we supposed ps = 1

s . Parameters and decision
variables can be defined as follows:

Parameters:

Ps probability that scenario s occurs.
rs

n,t Return of asset n, in time period t under scenario s
rs

m,t Return of market, in time period t under scenario s
d expected of wealth in the last time period
b expected of CVaR
c expected of semivariance
w0 wealth in the beginning of time period 0
α confidence level

(10)

Decision variables:

xs
n,t amount of asset’s weight n, in the beginning of time t before rebalancing.

ys
n,t amount of asset’s weight n, in the beginning of time t after rebalancing.

vs
n,t amount of money bought of asset n, in the beginning of time t

us
n,t amount of money sold of asset n, in the beginning of time t

ws
t wealth at the beginning of time t, under scenario s.

(11)

Our proposed model is as follows:

min downside β coefficient
min CVaR
max expected return
min semivariance
s.t. x ∈ S

(12)

The above model is changed by using ε constrained method as follows:

min downside β coefficient(x)
s.t. CVaR(x,α) ≤ b

E(x) ≥ d
1
S
∑S

n=1(Rn − R)2
≤ c

x ∈ S

(13)

In the following model objective function defined as the average of all under evalution parameters.

min 0.25 ∗ (−E(x) +
E[min(Ri−R̄i,0)min(Rm+R̄m,0)]

E[min((Rm−R̄m,0)2] + 1
S
∑S

n=1(Rn − R̄)2 + CVaR(x,α))
x ∈ S

(14)
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Finally, the model is defined as follows:

min
E[min(rs

n,t−E(rs
n,t),0) min(rm,t−E(rm,t),0)]

E[(rm,t−E(rm,t))]2

s.t
∑N

n=1 ys
n,tE(rs

n,t) =
∑N

n=1 xs
n,tE(rs

n,t) + vs
n,t − us

n,t ∀s ∈ S,∀n ∈ N,∀t ∈ T∑N
n=1 ws

n,0 = w0 ∀s ∈ S∑N
n=1 xs

n,tE(rs
n,t) = ws

t ∀s ∈ S,∀n ∈ N,∀t ∈ T
1
S
∑N

n=1 (rs
n,t − E(rs

n,t))
2
≤ c ∀s ∈ S,∀n ∈ N,∀t ∈ T

1
s
∑

ws
t ≥ d ∀s ∈ S,∀t ∈ T

αs ≥ η − ws
t ∀s ∈ S

αs ≥ 0 ∀s ∈ S
η − 1

(1−α)s
∑S

s=1 αs ≤ b∑N
n=1 xs

n,t = 1∑N
n=1 ys

n,t = 1

(15)

5. Empirical discussion

5.1. Data collection
This section goes through a numerical sample for previously discussed models. This paper is a new

attempt to find the best matrix of weights using Evolutionary Algorithms”. The idea of using evolutionary
algorithms is based on the fact that optimization of portfolios on a time horizon and considering different
investment cycles and scenarios and having this fact in mind that assets’ combination can be changed
during investment, needs large amounts of calculations. Therefore, evolutionary algorithms, although may
not find the best solution, they can find good ones in much considerable time.

In this sample last daily price of 12 assets over a year (23/08/2015 to 22/08/2016) from Tehran Stock
Exchange selected1). National holidays omitted and missing data estimated through interpolation meth-
ods. Using interpolated data, daily returns over 246 days calculated. Four under evaluation parameters
including expected return, semi variance, CVaR and downside β coefficient are calculated (Table 1).

Table 1: Calculated parameters of under study companies
Stock’s
Name Semi Variance CVaR β Expected Return
AMI 0.000787 0.000092 0.031000 0.421609
BG 0.000967 0.000501 0.046488 3.014368
BA 0.000854 0.000385 0.043585 2.009351
DC -0.000532 0.000183 0.038174 0.863699
ENB 0.000800 0.000067 0.025103 0.765834
IT 0.002557 0.000345 0.043346 2.373823
IRIK -0.000308 0.000132 0.029721 1.248270
KD 0.000825 0.000204 0.040225 1.166596
MB 0.001216 0.000573 0.046174 2.760882
PS -0.002193 0.000278 0.038202 0.985883
PB 0.002726 0.000482 0.042222 2.324887
S&V 0.001850 0.000206 0.039535 1.603708

Investment period consists of 3 dependent cycles, where in each cycle combinations of assets can
change to form optimal portfolios based on the market situation. The aim is to find the best matrix of
weights for each cycle. Just as a matter of providing a series of investment opportunities for investors,
in each cycle 20 different arrays of weights (portfolios) are provided. In this paper genetic methods for

1)http://www.tse.ir/
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Figure 4: Portfolios constructed based on optimized weights. It is obvious that semi-varinace, beta and CVaR have direct and positive
relations.

weights improvements are used. Procedure generally consists of a series of parents’ chromosomes that new
generations are going to be developed by a group of elite ones. Parents in 3 cycles by three random matrixes
which have 6010 rows (parents) and 12 columns (assets) are generated. Mutation and crossover methods
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are used for improvements. In each iteration 2) of optimization elite members based on weighted objective
function (model 14) are selected and 20 members with the worst objective values are deleted. Procedure is
as follows:

• A random matrix of weights with 3 dimensions generated. This matrix had 6010 rows (repetitions) and
12 columns (assets) and 3 layers (cycles). Note for each iteration, 20 of the worst weights combinations
are omitted. In the last iteration only 20 rows with the least objective functions (elite ones) remain.

• In each cycle, 4 parameters for each portfolio calculated and objective function for all of them calcu-
lated. 20 of portfolios having the worst values (since model in minimization, 20 portfolios with the
most maximum values) are omitted. Remained portfolios are elites going to the next step. In the first
iteration after omitting 5990 rows remain.

• In the first step mutation method for improvement of weights used. 5 random numbers without repe-
tition selected. Random numbers stand for selected rows. Selected rows called parent chromosomes.
New generations built through linear calculations (Figure 2).
Since weights must be positive values in range of [0,1], after calculations, negative weights and greater
than 1s, replaced with 0 and 1 respectively.

• Crossover is another method used to improve future generations. In this method 2 rows (parent
chromosomes) selected and randomly selected sections of chromosomes are exchanged (Figure 3).

• And finally in the last step, under study parameters and the objectove function for each portfolio
with new weights calculated. New weights replaced with the previous ones, if the objective function
value was smaller than previous one. This procedure starts over 300 times till the best weights are
generated.

In figure 4 portfolios made according to optimized weights, are shown with circles. It can be seen
that risk measures have positive and direct relation. Also, Circle diameters show expected return of each
optimized portfolio. Circles with larger diameters have higher returns. However as expected there is not
any relationship between expected return and risk measures.

In figure 5, 6010 portfolios constructed based on primary weights in all cycles are shown. In figure 6
optimized and primary weighted portfolios are shown together. An interesting conclusion is optimized
weighted ones are less spread than not optimized ones. In fact most of optimized weighteds are in the
middle of cloud of primary weighteds.

6. Conclusion

The paper introduced a new multistage model for portfolio selection considering four risk parameters.
As mentioned through the paper, multi stage models by considering changes in the structure of portfolio
over time are closer to conditions that investors experience. Proposed model in this paper developed using
four risk parameters, semivarinace, downside beta covariance, value at risk and conditional value at risk.
Four periods of 3 months was considered for investment. Solving such models needs using evolutionary
algorithms. By using genetic algorithm model solved and optimal weights calculated. Outcomes revealed
risk parameters are positively and directly related however, expected return and risk measures are inde-
pendent. As the last point, visualization weighted portfolios are shown in four dimension diagrams where
diameters of circles were indicators of expected returns. Also plots revealed that optimized portfolios are
less speared.
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Figure 5: Cloud of primary wieghted portfolios in all cycles.
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