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Beyond Cauchy and Quasi-Cauchy Sequences
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Abstract. In this paper, we investigate the concepts of downward continuity and upward continuity. A
real valued function on a subset E of R, the set of real numbers, is downward continuous if it preserves
downward quasi-Cauchy sequences; and is upward continuous if it preserves upward quasi-Cauchy se-
quences, where a sequence (xk) of points in R is called downward quasi-Cauchy if for every ε > 0 there
exists an n0 ∈N such that xn+1 − xn < ε for n ≥ n0, and called upward quasi-Cauchy if for every ε > 0 there
exists an n1 ∈ N such that xn − xn+1 < ε for n ≥ n1. We investigate the notions of downward compactness
and upward compactness and prove that downward compactness coincides with above boundedness. It
turns out that not only the set of downward continuous functions, but also the set of upward continuous
functions is a proper subset of the set of continuous functions.

1. Introduction

A subset E of R, the set of real numbers, is compact if and only if any sequence of points in E has
a convergent subsequence with limit in E. A subset E of R is bounded if and only if any sequence of
points in E has a quasi-Cauchy subsequence. Boundedness coincides not only with ward compactness
([7]), but also each of the following kinds of compactness, slowly oscillating compactness ([14, Theorem
3]), statistical ward compactness ([9, Lemma 2]), lacunary statistical ward compactness ([10, Theorem 3]),
Nθ-ward compactness ([2, Theorem 3.3]). Two of the results in this paper provide us with firstly, necessary
and sufficient conditions for below boundedness of a subset of R, and secondly, necessary and sufficient
conditions for above boundedness of a subset of R.

Recently, using the idea of continuity of a real function in terms of sequences, many kinds of continuities
were introduced and investigated, not all but some of them we recall in the following: slowly oscillating
continuity ([39]), quasi-slowly oscillating continuity ([26]), ward continuity ([7]), statistical ward continuity
([9]), λ-statistically ward continuity ([22]), ρ-statistical ward continuity ([4]), ideal ward continuity ([17]),
Abel statistical continuity ([24]), strongly lacunary-ward continuity ([18]), lacunary statistical ward continu-
ity ([15]), and arithmetic continuity ([6, 40]). Investigation of some of these kinds of continuities lead some
authors to enable interesting results related to uniform continuity of a real function in terms of sequences
in the above manner ([9, Theorem 6], [39, Theorem 8], [26, Theorem 2.3], [7, Theorem 7], [1, Theorem 1],
[2, Theorem 3.8], [22, Corollary 6]). Modifying the definitions of a forward Cauchy sequence, and a backward
Cauchy sequence introduced in [38] (see also [29, 36]), recently, the definitions of statistically downward and
upward half Cauchyness of a real sequence have been introduced in [12] (see also [3, 27, 28]).
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Email address: huseyincakalli@maltepe.edu.tr; hcakalli@gmail.com (Huseyin Cakalli)



H. Cakalli / Filomat 32:3 (2018), 1035–1042 1036

The purpose of this paper is to investigate the concepts of downward continuity and upward continuity,
and prove interesting theorems.

2. Downward and Upward Quasi-Cauchy Sequences

Students often misunderstand the definition of Cauchy sequences when they first encounter it in an
introductory real analysis course. In particular, many students fail to understand that it involves far more
than that the distance between successive terms is tending to zero. Nevertheless, sequences which satisfy
this weaker property are interesting in their own right. In [1] the authors call them ”quasi-Cauchy”, while
they were called ”forward convergent to 0” sequences in [7], where a sequence (xn) is called quasi-Cauchy
if given any ε > 0, there exists an integer K > 0 such that n ≥ K implies that |xn+1 − xn| < ε. A subset E of R
is compact if and only if any sequence in E has a convergent subsequence whose limit is in E. Boundedness
of a subset E of R coincides with that any sequence of points in E has either a Cauchy subsequence, or a
quasi-Cauchy subsequence. What is the case for below boundedness and above boundedness? Upward
quasi-Cauchy sequences and downward quasi-Cauchy sequences provide with the answers. Weakening the
condition on the definition of a quasi-Cauchy sequence, omitting the absolute value symbol, i.e. replacing
|xk+1 − xk| < ε with xk+1 − xk < ε in the definition of a quasi-Cauchy sequence given in [7], we introduce the
following definition.

Definition 2.1. Suppose that (xn) (n = 1, 2, 3, ...) is a sequence of real numbers. (xn) is called downward
quasi-Cauchy if given any ε > 0 there exists an integer K > 0 such that n ≥ K implies that xn+1 − xn < ε.

Trivially, any quasi-Cauchy sequence is downward quasi-Cauchy, but there are downward quasi-Cauchy
sequences which are not quasi-Cauchy. For example, the sequence (bn) = (−n) is downward quasi-Cauchy,
but not quasi-Cauchy. Thus the set of all quasi-Cauchy sequences is a proper subset of the set of downward
quasi-Cauchy sequences. Therefore any Cauchy sequence is downward quasi-Cauchy, so is a convergent
sequence. Any downward half Cauchy sequence is downward quasi-Cauchy, but the converse is not
always true, i.e. there are downward quasi-Cauchy sequences which are not downward half Cauchy,
where a sequence (xn) is called downward half Cauchy if given any ε > 0 there exists an integer K > 0
such that m ≥ n ≥ K implies that xm − xn < ε ([36]). As a counterexample consider the sequence (− log n).
Thus the set of all downward half Cauchy sequences is a proper subset of the set of downward quasi-
Cauchy sequences. Any subsequence of a downward half Cauchy sequence is downward half Cauchy.
The analogous property fails for downward quasi-Cauchy sequences. Counterexample is the sequence
(an) = (

√
n) with the subsequence (an2 ) = (n). In [36], Palladino proved that a sequence in R converges

if and only if it is bounded and downward half Cauchy. The situation is different for downward quasi-
Cauchyness, i.e. there are non-convergent sequences which are bounded and downward quasi-Cauchy.
The bounded sequence (cos(6 log(n + 1))) is downward quasi-Cauchy, but neither Cauchy, nor downward
half Cauchy.

As in the case that a sequence is Cauchy if and only if every subsequence of it is quasi-Cauchy, which
was proved in [1], we prove that a sequence is downward half Cauchy if and only if every subsequence of
it is downward quasi-Cauchy:

Theorem 2.2. A sequence x = (xn) of points in R is downward half Cauchy if and only if every subsequence of x is
downward quasi-Cauchy.

Proof. It is clear that if x = (xk) is downward half Cauchy, then any subsequence of x is downward half
Cauchy, so is downward quasi-Cauchy. To prove the converse now suppose that (xk) is not downward half
Cauchy so that there is a positive real number ε0 such that for every positive integer n there exist positive
integers ki and k j satisfying k j > ki > n and xk j − xki ≥ ε0. Choose positive integers k1 and k2 satisfying
k2 > k1 > 1 and xk2 −xk1 ≥ ε0. Then collect positive integers k3 and k4 satisfying k4 > k3 > k2 and xk4 −xk3 ≥ ε0.
Having inductively chosen positive integers kn and kn+1 satisfying kn+1 > kn > kn−1 and xkn+1 − xkn ≥ ε0 we
can choose positive integers kn+2 and kn+3 satisfying kn+3 > kn+2 > kn+1 and xkn+3 − xkn+2 ≥ ε0. Hence the
subsequence (xkn ) is not downward quasi-Cauchy. This completes the proof of the theorem.
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Now we introduce a definition of downward compactness of a subset of R by using the main idea in
the definition of ward compactness.

Definition 2.3. A subset E of R is called downward compact, if any sequence of points in E has a downward
quasi-Cauchy subsequence.

We note that any finite subset of R is downward compact and the union of two downward compact
subsets of R is downward compact. Any subset of a downward compact set is downward compact and
therefore the intersection of any family of any downward compact subsets of R is downward compact.
A bounded subset of R is downward compact. The sum of two downward compact subsets of R is also
downward compact and the product of a downward compact set with a positive real number is downward
compact. A slowly oscillating compact subset of R is downward compact (see [14] for the definition of
slowly oscillating compactness). A compact subset of R is also downward compact. The set of negative
integers is downward compact but the set of positive integers,N is not downward compact. Furthermore,
any above bounded subset of R is downward compact. These observations suggest to us the following.

Theorem 2.4. A subset E of R is bounded above if and only if it is downward compact, i.e. any sequence of points
in E has a downward quasi-Cauchy subsequence.

Proof. Let E be a above bounded subset of R. If E is also bounded below, then any sequence in E has a
convergent subsequence which is also downward quasi-Cauchy. If E is unbounded below, and (xn) is an
unbounded below sequence of points in E, then for k = 1 we can find an xn1 less than 0. For k=2 we can pick
an xn2 such that xn2 < −1 + xn1 . We can successively find for each k ∈ R an xnk+1 such that xnk+1 < −k + xnk .
Then xnk+1 − xnk < −k. Therefore for every ε > 0 we have xnk+1 − xnk < −k < ε for k ≥ n0. Thus we have
constructed a downward quasi-Cauchy subsequence (xnk ) of the sequence (xn).

Conversely, suppose that E is not bounded above. Pick an element x1 of E with x1 > 0. Then we can
choose an element x2 of E such that x2 > 1 + x1. Similarly we can choose an element x3 of E such that
x3 > 2 + x2. We can inductively choose xk+1 satisfying xk+1 > k + xk for each k ∈ N. Then the sequence (xn)
does not have any downward quasi-Cauchy subsequence. This contradiction completes the proof.

Now reversing the places of xk and xk+1 in the definition of downward quasi-Cauchy sequence in
Definition 2.1, we give the following definition.

Definition 2.5. Suppose that (xn) (n = 1, 2, 3, ...) is a sequence of real numbers. (xn) is called upward quasi-
Cauchy if given any ε > 0 there exists an integer K > 0 such that n ≥ K implies that xn − xn+1 < ε.

A sequence is called half quasi-Cauchy if it is either downward quasi-Cauchy, or upward quasi-Cauchy,
or both. Trivially, any quasi-Cauchy sequence is upward quasi-Cauchy, but there are upward quasi-Cauchy
sequences, which are not quasi-Cauchy. For example, the sequence (an) = (n) is upward quasi-Cauchy, but
not quasi-Cauchy. Thus the set of all quasi-Cauchy sequences is a proper subset of the set of upward quasi-
Cauchy sequences. The intersection of the set of upward quasi-Cauchy sequences and the set of downward
quasi-Cauchy sequences is equal to the set of all quasi-Cauchy sequences. Any Cauchy sequence is upward
quasi-Cauchy, so is a convergent sequence. Any upward half Cauchy sequence is upward quasi-Cauchy,
but the converse is not always true, i.e. there are upward quasi-Cauchy sequences which are not upward
half Cauchy, where a sequence (xn) is called upward half Cauchy if given any ε > 0 there exists an integer
K > 0 such that m ≥ n ≥ K implies that xn − xm < ε ([36]). As a counterexample consider the sequence (ln n).
Thus the set of all upward half Cauchy sequences is a proper subset of the set of upward quasi-Cauchy
sequences. Any subsequence of an upward half Cauchy sequence is upward half Cauchy. The analogous
property fails for upward quasi-Cauchy sequences. A counterexample is the sequence (an) = (−

√
n) with

the subsequence (an2 ) = (−n) . In [36], Palladino proved that a sequence in R converges if and only if it is
bounded and upward half Cauchy. The situation is different, not only for the downward quasi-Cauchyness,
but also for the upward quasi-Cauchyness, i.e. there are non-convergent sequences which are bounded and
upward quasi-Cauchy. The bounded sequence (cos(6 log(n + 1))) is upward quasi-Cauchy, but not upward
half Cauchy.
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As in Theorem 2.2, a sequence is half downward Cauchy if and only if every subsequence of it is
downward quasi-Cauchy, we prove that a sequence is upward half Cauchy if and only if every subsequence
of it is upward quasi-Cauchy:

Theorem 2.6. A sequence x = (xn) of points in R is upward half Cauchy if and only if every subsequence of x is
upward quasi-Cauchy.

Proof. The proof can be obtained using a similar technique to that of Theorem 2.2, so is omitted (see also
[5]).

We now give a definition of upward compactness of a subset ofR by using the main idea in the definition
of downward compactness.

Definition 2.7. A subset E of R is called upward compact if any sequence of points in E has an upward
quasi-Cauchy subsequence.

It follows that any finite subset of R is upward compact, the union of two upward compact subsets of
R is upward compact and the intersection of any family of any upward compact subsets of R is upward
compact. Any subset of an upward compact set is upward compact and any bounded subset ofR is upward
compact. The sum of two upward compact sets ofR is also upward compact and the product of an upward
compact set with a positive real number is upward compact. Any Nθ ward compact subset of R is upward
compact (see [2], and [18] for the definition and the concepts related to Nθ ward compactness). Any compact
subset of R is also upward compact. The set of negative integers is not upward compact, whereas the set
of positive integers,N is upward compact. We note that if a closed subset E of R is upward compact, then
any sequence of points in E has a Abel convergent subsequence (see [25, 42, 43]). Furthermore, any below
bounded subset of R is upward compact. These observations suggest to us the following.

Theorem 2.8. A subset E of R is bounded below if and only if it is upward compact, i.e. any sequence of points in E
has an upward quasi-Cauchy subsequence.

Proof. The proof can be obtained using a similar technique to that of Theorem 2.4, so is omitted.

3. Downward and Upward Continuities

A real valued function f onR is continuous if and only if for each point ` in the domain, limn→∞ f (xn) =
f (`) whenever limn→∞ xn = `. This is equivalent to the statement that ( f (xn)) is a convergent sequence
whenever (xn) is. This is also equivalent to the statement that ( f (xn)) is a Cauchy sequence whenever (xn)
is Cauchy. These known results for continuity for real functions in terms of sequences might suggest to us
introducing a new type continuity, namely, downward continuity.

Definition 3.1. A function f : E → R is called downward continuous on a subset E of R, if it preserves
downward quasi-Cauchy sequences, i.e. the sequence ( f (xn)) is downward quasi-Cauchy whenever (xn) is
a downward quasi-Cauchy sequence of points in E.

It should be noted that downward continuity cannot be given by any G-continuity in the manner of
[8] (see also [30, 34]). We see that the composition of two downward continuous functions is downward
continuous, and for every positive real number c, c f is downward continuous, if f is a downward continuous
function.

We see in the following that the sum of two downward continuous functions is downward continuous.

Theorem 3.2. If f and 1 are downward continuous functions, then f + 1 is downward continuous.



H. Cakalli / Filomat 32:3 (2018), 1035–1042 1039

Proof. Let f , 1 be two downward continuous functions on a subset E ofR. To prove that f + 1 is downward
continuous on E, take any downward quasi-Cauchy sequence (xn) of points in E. Then ( f (xn)) and (1(xn))
are downward quasi-Cauchy sequences. Let ε > 0 be given. Since ( f (xn)) and (1(xn)) are downward quasi-
Cauchy, there exist positive integers n1 and n2 such that
f (xn+1) − f (xn) < ε

2 for n ≥ n1, and 1(xn+1) − 1(xn) < ε
2 for n ≥ n2.

Write n0 = max{n1,n2}. Then n ≥ n0 implies that
f (xn+1) − f (xn) + 1(xn+1) − 1(xn) < ε

2 + ε
2 = ε.

This completes the proof.

As far as the product of two functions is considered, the case is different. If f and 1 are bounded positive
valued functions, then the product of f and 1 is downward continuous, whenever f and 1 are.

In connection with downward quasi-Cauchy sequences, and convergent sequences the problem arises
to investigate the following types of continuity of functions on R:

(c) (xn) ∈ c⇒ ( f (xn)) ∈ c,
(Sρ) (xn) ∈ Sρ ⇒ ( f (xn)) ∈ Sρ,
(δ) (xn) ∈ ∆⇒ ( f (xn)) ∈ ∆,
(δ−) (xn) ∈ ∆− ⇒ ( f (xn)) ∈ ∆−,
(δ−c) (xn) ∈ ∆− ⇒ ( f (xn)) ∈ c,
(cδ−) (xn) ∈ c⇒ ( f (xn)) ∈ ∆−,

where Sρ denotes the set of ρ-statistical convergent sequences. We see that (c) can be replaced by not only ρ-
statistical continuity, but also by lacunary statistical continuity, Nθ-sequential continuity ([18]), I-sequential
continuity for a nontrivial admissible ideal I ([17]), and more generally G-sequential continuity for any
regular subsequential method G ([8, 13]). We see that (δ−) is downward continuity of f . It is easy to see
that (δ−c) implies (δ−); (δ−) does not imply (δ−c); (δ−) implies (cδ−); (cδ−) does not imply (δ−); (δ−c) implies
(c), and (c) does not imply (δ−c); and (c) implies (cδ−).

Now we give the implication of (δ−) to (c), i.e. any downward continuous function is continuous.

Theorem 3.3. Any downward continuous function is continuous.

Proof. Let (xn) be any convergent sequence with limk→∞ xk = `. Then the sequence

(x1, `, x1, `, x2, `, x2, `, ..., xn, `, xn, `, ...)

also converges to `. Thus it is downward quasi-Cauchy. Hence

( f (x1), f (`), f (x1), f (`), f (x2), f (`), f (x2), f (`), ..., f (xn), f (`), f (xn), f (`), ...)

is downward quasi-Cauchy. Therefore limn→∞ f (xk) = f (`). This completes the proof of the theorem.

It is easy to give an example that the converse of the preceding theorem is not always true.
We have the following result for general sequential methods.

Corollary 3.4. If f is downward continuous, then it is G-continuous for any regular subsequential method G.

Proof. The proof follows from Theorem 3.3, and [8, Theorem 13] (see also [13]).

Corollary 3.5. If f is downward continuous, then it is I-continuous for any non-trivial admissible ideal I ofN.

Proof. The proof follows from Theorem 3.3, and [17, Theorem 4].

We note that if f is downward continuous, then it is either ρ-statistically continuous, or lacunary
statistically continuous or Nθ-continuous ([2, 18]).

Theorem 3.6. A downward continuous image of any downward compact subset of R is downward compact.
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Proof. Let E be a subset of R, f : E −→ R be a downward continuous function, and A be a downward
compact subset of E. Take any sequence y = (yn) of points in f (A). Write yn = f (xn), where xn ∈ A for each
n ∈ R, x = (xn). Downward compactness of A implies that there is a downward quasi-Cauchy subsequence
ξ of the sequence of x. Write z = (zk) = f (ξ) = ( f (ξk)). Then z is a downward quasi-Cauchy subsequence of
the sequence f (x). This completes the proof of the theorem.

We note that downward continuous image of any Nθ-sequentially compact subset ofR is Nθ-sequentially
compact, and downward continuous image of any ρ-statistically sequentially compact subset of R is lacu-
nary statistically sequentially compact. Furthermore downward continuous image of any G-sequentially
connected subset of R is G-sequentially connected (see [11, 19]).

We see in the following that the uniform limit of downward continuous functions on a subset of R is
downward continuous.

Theorem 3.7. If ( fn) is a sequence of downward continuous functions defined on a subset E ofR and ( fn) is uniformly
convergent to a function f , then f is downward continuous on E.

Proof. Let ε > 0. Then there exists a positive integer N such that | fn(x) − f (x)| < ε
3 for all x ∈ E whenever

n ≥ N. Take any downward quasi-Cauchy sequence (xn) of points in E. As fN is downward continuous, the
sequence ( fN(xn)) is a downward quasi-Cauchy sequence, so there exists a positive integer N1, depending
on ε, and greater than N such that

fN(xn+1) − fN(xn) < ε
3 for n ≥ N1.

Now for n ≥ N1 we have

f (xn+1) − f (xn) = f (xn+1) − fN(xn+1) + fN(xn+1) − fN(xn) + fN(xn) − f (xn)

≤ f (xn+1) − fN(xn+1) +
ε
3

+ fN(xn) − f (xn)

≤ | f (xn+1) − fN(xn+1)| +
ε
3

+ | fN(xn) − f (xn)| ≤
ε
3

+
ε
3

+
ε
3

= ε.

This completes the proof of the theorem.

Definition 3.8. A function f is called upward continuous on a subset E of R if it preserves upward quasi-
Cauchy sequences, i.e. the sequence ( f (xn)) is upward quasi-Cauchy whenever x = (xn) is an upward
quasi-Cauchy sequence of points in E.

We see that the sum of two upward continuous functions is upward continuous and the composite of
two upward continuous functions is upward continuous.

In connection with upward quasi-Cauchy sequences and convergent sequences the problem arises to
investigate the following types of continuity of functions on R:

(δ+)(xn) ∈ ∆+
⇒ ( f (xn)) ∈ ∆+,

(δ+c)(xn) ∈ ∆+
⇒ ( f (xn)) ∈ c,

(cδ+)(xn) ∈ c⇒ ( f (xn)) ∈ ∆+.
We see that (δ+) is downward continuity of f . It is easy to see that (δ+c) implies (δ+); (δ+) does not imply
(δ+c); (δ+) implies (cδ+); (cδ+) does not imply (δ+); (δ+c) implies (c), and (c) does not imply (δ+c).

Now we see that (δ+) implies (c) in the following:

Theorem 3.9. If f is upward continuous on a subset E of R, then it is continuous on E in the ordinary sense.

Proof. The proof can be obtained using a similar technique to that of Theorem 3.3, so is omitted (see also
[5]).

It should be noted that the converse of the preceding theorem is not always true, i.e. there are continuous
functions which are not upward continuous.

We have the following result for general sequential methods.
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Corollary 3.10. If f is upward continuous, then it is G-continuous for any regular subsequential method G.

Proof. The proof follows from Theorem 3.9, and [8, Theorem 13].

Corollary 3.11. If f is upward continuous, then it is I-continuous for any non-trivial admissible ideal I ofN.

Proof. The proof follows from Theorem 3.9, and [17, Theorem 4].

We note that if f is upward continuous, then it is either ρ-statistically continuous, or lacunary statistically
continuous or Nθ-continuous.

Theorem 3.12. A upward continuous image of any upward compact subset of R is upward compact.

Proof. The proof can be obtained using a similar technique to that of Theorem 3.6, so is omitted (see also
[5]).

Corollary 3.13. A upward continuous image of any G-sequentially compact subset of R is G-sequentially compact
for a regular subsequential method G.

We see that Nθ-sequentially compact subset of R is upward compact, and upward continuous image of
any ρ-statistically compact subset of R is ρ-statistically compact (see [4]), upward continuous image of any
statistically compact subset of R is statistically compact, and upward continuous image of any lacunary
statistically compact subset of R is lacunary statistically compact (see [15]).

Now we prove in the following that uniform limit of upward continuous functions is upward continuous,
which was placed in [5] without proof.

Theorem 3.14. If ( fn) is a sequence of upward continuous functions defined on a subset E ofR and ( fn) is uniformly
convergent to a function f , then f is upward continuous on E.

Proof. The proof is similar to the proof of Theorem 3.7 so is omitted.

4. Conclusion

In this paper, the notions of downward continuity and upward continuity of a real function are intro-
duced and investigated. In this investigation we have obtained results related to downward continuity,
upward continuity, some other kinds of continuities. We also introduce and study some other continuities
involving downward quasi-Cauchy sequences, upward quasi-Cauchy sequences, convergent sequences,
ρ-statistical convergent sequences, lacunary λ-statistical convergent sequences of points in R. It turns out
that not only the set of downward continuous functions, but also the set of upward continuous functions
is a proper subset of the set of continuous functions. We suggest to investigate downward and upward
quasi-Cauchy sequences of fuzzy points in asymmetric fuzzy spaces (see [16, 33] for the definitions and
related concepts in fuzzy setting). We also suggest to investigate downward and upward quasi-Cauchy
double sequences (see for example [20, 31, 32, 37] for the definitions and related concepts in the double
sequences case). For another further study, we suggest to investigate upward quasi-Cauchy sequences of
points in an asymmetric cone metric space since in a cone metric space the notion of an upward quasi-
Cauchy sequence coincides with the notion of a downward quasi-Cauchy sequence, and therefore upward
continuity coincides with downward continuity (see [21, 23, 35, 41]).
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