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Abstract. Making use of an elementary approach instead of the weighted Lp estimate with a special
weight, we prove global Morrey estimates of the weak derivatives to the Dirichlet problems of linear
elliptic equations with small partially BMO coefficients in a half space. Here, the leading coefficients
ai j(x) are assumed to be merely measurable in one variable, and have small BMO in the remaining spatial
variables.

1. Introduction

The main purpose of this paper is to use a direct approach to attain global Morrey estimates of the
weak derivative for the Dirichlet problems regrading linear elliptic equations in divergence form with
small partially BMO coefficients over the half spaces. Rather than the weighted Lp estimate with a special
weight to the weak derivatives (cf. [2, 27]), we are here devoted to its estimate in the framework of Morrey
spaces in accordance with the Lp estimates via a direct argument first introduced by Lieberman [20]. For
technical simplicity, we only consider their Dirichlet problems over a half space. In fact, its conclusion can
be extended to the corresponding problems defined in the Reifenberg flat domain due to the Lp theory of
linear elliptic equations with small partially BMO coefficients by Byun and Wang in [4]. By Rd denotes
d-dimensional Euclidean space for d ≥ 2. Let us write Rd

+ = {x = (x1, x2, · · · , xd) ∈ Rd
| x1 > 0} to be open

upper half space, and its boundary of Rd
+ by ∂Rd

+ = {x = (x1, x2, · · · , xd) ∈ Rd
| x1 = 0}. We consider the

following Dirichlet problems of linear elliptic equations:{
Lu :=

∑d
i, j=1 Dx j (ai j(x)Dxi u) =

∑d
j=1 Dx j f j(x) in Rd

+,
u = 0 on ∂Rd

+.
(1)

As usual, we suppose the coefficients ai j(x) to be uniform boundedness and ellipticity, which means that
there exist 0 < ν ≤ Λ < ∞ such that

ν|ξ|2 ≤ ai j(x)ξiξ j ≤ Λ|ξ|2 (2)
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for any x ∈ Rd
+ and ξ ∈ Rd. As we know, the existence and uniqueness of weak solution in H1

0(Ω) for the zero
boundary value problems (1) with (2) in a bounded domain is a direct result of the classical Lax-Milgram
theorem; moveover, there exists a constant c > 0 such that

‖Du‖L2(Ω) ≤ c‖F‖L2(Ω). (3)

Various regularities to elliptic and parabolic problems with the minimal regular assumptions are extremely
popular researches in recent decades. In particular, the Calderón-Zygmund estimates of weak derivatives to
divergence elliptic and parabolic equations with discontinuous coefficients. This is due to a subtle link with
applications to stochastic processes [16], linearly elastic laminates [8], composite material [21], etc. Generally
speaking, it does not exist solvability in the Sobolev spaces u ∈W1,p

0 (Ω) with p > 2 to the Dirichlet problems
(1) merely with boundedness and ellipticity (2) even if the domain is smooth. In fact, if the coefficients ai j

are only measurable, then there could not exist a unique solution to the above-mentioned equations even
in a very generalized sense due to the famous counterexample by Nadirashvili. Furthermore, Ural’tseva
[28] in 1967 constructed an example of an equation in Rd (d ≥ 3) with the coefficients depending only on
the first two coordinates so that we reached that there is no unique solvability in W2,p for any p > 1. This
reminds us of the significance to treat particular cases for the leading discontinuous coefficients in order to
obtain the solvability in Lebesque or Morrey spaces for the problems (1). Therefore, this makes necessary to
impose some suitable minimal regular assumptions on coefficients and geometric restriction on domains.

We would like to mention that Sarason [24] in 1975 introduced the classes of so-called VMO functions
(Vanishing Mean Oscillations) which is not shared by general bounded measurable functions and BMO
functions. Since then, there have been a lot of research activities on the Calderón-Zygmund theory to
elliptic and parabolic problems, and it developed various different arguments to deal with divergence
or non-divergence elliptic or parabolic PDEs with VMO leading coefficients. For example, a celebrated
approach for the Lp boundedness of singular integral operators and Coifman-Rochberg-Weiss commutators
by Chiarenza-Frasca-Longo [6, 7], a geometrical technique by way of modified Vitali covering by Byun-Wang
[3], an unified approach based on pointwise estimates of Fefferman sharp functions by Dong-Kim-Krylov
[15, 16] and the Large-M-inequality principle introduced by Acerbi-Mingione [1]. Regarding the Calderón-
Zygmund theory, we would like to point out that a recent distinguishing feature of small partially BMO
coefficients originated from Kim-Krylov’s work [14], which means that they are allowed to be very irregular
with respect to one spatial direction, and the remaining (d − 1) variables are controlled in terms of small
BMO discontinuous one. It is also worth noticing that the equations with continuous, VMO and small
BMO coefficients are the special setting with partially VMO ones. Indeed, this is a kind of minimal regular
requirement on the leading coefficients in accordance with the famous counterexample by Nadirashvili.
For more generalizations and extensions involving VMO or small partially BMO coefficents can be found
in Dong, Kim and Krylov [10, 11, 17], Byun, Palagachev and Wang [2, 4], Ragusa and Tachikawa [22, 23],
Leonardi and Stará [18, 19], Guliyev, Omarova, Ragusa and Scapellato [13, 25, 26].

On the other hand, in recent years many analogous estimates with Morrey spaces replacing Lebesgue
spaces have been considered. Morrey estimates for elliptic and parabolic problems have usually been
attained by way of refining weighted Lp estimates by taking a special weight function. For instance,
in order to show Morrey regularity of the weak derivative for the zero Dirichlet boundary problem of
divergence linear elliptic equations, Byun-Palagachev [2] established the global weighted estimate in Lp

w(Ω)
with Muckenhoupt weight w ∈ Ap. Also, Tang [27] proved the weighted Lp solvability with w ∈ Ap for
divergence and nondivergence parabolic equations with small partially BMO coefficients by making use
of Dong-Kim-Krylov’s argument based on the pointwise estimates of Ap weighted sharp functions. Then,
with the weighted Lp

w(Ω) estimates, one may obtain the Morrey estimates of the derivatives of its weak
solution by way of taking a special weight, also see Di Fazio-Ragusa’s work [9].

Our motivation of this paper is to show that the Morrey estimates can be derived from the Lp estimates by
a direct method, which means that once we have suitable forms for the Lp estimates then Morrey estimates
is almost identical by Campanato’s argument. In fact, it was also done for elliptic and parabolic equations
with VMO coefficients by Lieberman in [20]. More precisely, our main consideration is to derive global
Morrey estimates of the weak derivatives to the Dirichlet problem (1) with partially VMO coefficients in
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accordance with the Lp estimates from Dong-Kim’s papers [10]. We here employ an elementary approach
in [20] rather than using the usual weighted Lp estimates.

Before stating our main theorem let us recall some notations and basic facts. A type point in Rd will be
denoted by x = (x1, · · · , xd) = (x1, x′) with x′ = (x2, · · · , xd) ∈ Rd−1. Set

Br(x) = {y ∈ Rd : |y − x| < r}, B′r(x
′) = {y′ ∈ Rd−1 : |y′ − x′| < r}

and

Qr(x) = B′r(x
′) × (xd − r, xd + r).

For convenience, in the context we write Br = Br(0), B′r = B′r(0′) and denote by |Br|, |B′r|, |Qr| the volume of
Br, B′r, Qr, respectively. We denote an average of f over the ball Br by

( f )Br =

?
Br

f (x) dx =
1
|Br|

∫
Br

f (x) dx,

and (d − 1)-dimensional average only with respect to x′ by

( f )B′r (x1) =

?
B′r

f (x1, x′) dx′ =
1
|B′r|

∫
B′r

f (x1, x′) dx′.

Now we are in a position to impose a partially BMO regular assumption on the leading coefficients
A(x) =

(
ai j(x)

)
in the neighborhood of an interior point and boundary point, respectively.

Assumption 1.1. Let δ ∈ (0, 1) be a constant specified later. There is a constant r0 ∈ (0, 1] such that for any x0 ∈ Rd
+

and any r ∈ (0, r0] so that Br(x0) ⊂ Rd
+, one has the coefficient matrices A(x) satisfying?

Br(x0)

∣∣∣∣A(x1, x′) − (A)B′r(x′0)(x1)
∣∣∣∣2 dx ≤ δ2;

while x0 ∈ ∂Rd
+ and any r ∈ (0, r0], one has the coefficient matrices A(x) satisfying?

B+
r (x0)

∣∣∣∣A(x1, x′) − (A)B′r(x′0)(x1)
∣∣∣∣2 dx ≤ δ2,

where B+
r (x0) = { (x1, x′) ∈ Br(x0) | x1 > 0 }.

Remark 1.2. From the above assumption, it is clear that there is no regular assumption on A(x) with respect to x1
variable, and so there maybe a big jumping of A(x) along the x1 variable while A(x) is a small BMO along the x′

variable. We here refer the reader to [11] for a similar assumption to A(x) in a half space.

We focus on the estimates in Morrey spaces to the weak derivatives of the Dirichlet problems (1) by way
of an elementary argument. Therefore, let us recall the definition of the Morrey spaces Lp,λ in a half space
Rd

+ as follows.

Definition 1.3. For p ≥ 1 and 0 ≤ λ < d, we say that u(x) ∈ Lp
loc(R

d
+) belongs to the Morrey space Lp,λ(Rd

+), iff

Lp,λ(Rd
+) :=

{
u(x) ∈ Lp

loc(Rd
+)

∣∣∣∣ ‖u‖Lp,λ(Rd
+) := sup

x∈Rd
+;ρ>0

( 1
ρλ

∫
Uρ(x)
|u(y)|pdy

) 1
p
< ∞

}
where Uρ(x) = Bρ(x) ∩Rd

+. Moreover, Lp,λ(Rd
+) is a Banach space with the norm ‖u‖Lp,λ(Rd

+).

Finally, we are ready to present the main result of this paper.
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Theorem 1.4. For 1 < p < ∞ and 0 ≤ λ < d, let u ∈ W1,2
0 (Rd

+) be any weak solution of the Dirichlet problems (1).
Assume that there exists a positive constant δ = δ(d, p, λ, ν,Λ) such that for coefficients ai j(x) satisfying Assumption
1.1,and f = ( f 1, f 2, · · · , f d) ∈ Lp,λ(Rd

+), then we have Du ∈ Lp,λ(Rd
+) with the estimate

‖Du‖Lp,λ(Rd
+) ≤ N ‖f‖Lp,λ(Rd

+), (4)

where constant N > 0 depends only on d, p, λ, ν,Λ, δ and r0.

An ingredient of our proof is based on Dong and Kim’s Lp estimates of the Dirichlet problems (1) for elliptic
equations with partially BMO coefficients. We also exploited it by using Lieberman’s elementary approach.
As he pointed out that the direct argument has the advantage that it is easily applied to any equations with
non-VMO coefficients which have Lp estimates.

The remainder of this paper is organized as follows. Section 2 is devoted to establishing a global Morrey
estimate to the Dirichlet problems (1) for linear elliptic equations with partially small BMO coefficients in
a half space.

2. Proof of main result

Throughout this paper, we by N(d, p, · · · ) denote a constant depending only on the prescribed quantities
d, p, · · · . Let us start this section with a well-known Lp solvability theory to linear elliptic operator L with
partially BMO coefficients from Dong and Kim’s papers [10, 11] with the Lp estimates in a particular form,
which the constant N is independent of R.

Lemma 2.1. Assume that there exists a positive constant δ = δ(d, p, λ, ν,Λ) such that for coefficients ai j(x) satisfying
Assumption 1.1 and f ∈ Lp(BR) with 1 < p < ∞. Then there is a unique solution u ∈W1,p

0 (BR) of

Lu :=
d∑

i, j=1

Dx j (a
i j(x)Dxi u) = div f(x) x ∈ BR;

with the estimate

‖Du‖Lp(BR) ≤ N ‖f‖Lp(BR), (1)

where the constant N > 0 depends only on d, p, ν,Λ, δ and r0.

Proof. The estimate (1) with N depending also on R is Theorem 8.6 in [11]. For convenience, we give brief
proof just as Lieberman showed. In fact, we make a scale argument by

ãi j(x) = ai j(Rx), ũ(x) = u(Rx)/R, f̃(x) = f(Rx),

then we check that ãi j(x) still satisfies Assumption 1.1 with the dilated scale 1/R for ũ ∈W1,p
0 (B1) and

L̃ũ =

d∑
i, j=1

Dx j (ã
i j(x)Dxi ũ) = div f̃(x) x ∈ B1

with the estimate

‖Dũ‖Lp(B1) ≤ N(d, p, ν,Λ, δ, r0) ‖f̃‖Lp(B1).

Hence,re-scaling it by u and f immediately yields (1).

Next, we go back to focus on an interior Morrey estimate and the boundary Morrey estimate of the
gradients of weak solution to the problems (1), respectively.



H. Tian, S. Z. Zheng / Filomat 32:4 (2018), 1429–1437 1433

2.1. Interior estimates

We begin this subsection with recalling a locally estimate of homogeneous linear elliptic equations

Lw =
∑

i j

Dx j

(
ai j(x)Dxi w(x)

)
= 0 ∀x ∈ BR ⊂⊂ R

d
+, (2)

whose proof can be found from Dong-Kim’s paper [10], see Corollary 3 in Section 8.

Lemma 2.2. For 1 < p < q < ∞, there exists a positive constant δ = δ(d, p, q, ν,Λ) such that the leading coefficients
ai j(x) satisfy Assumption 1.1. If w ∈W1,p(BR) satisfies (2), then w ∈W1,q(BR/2) with the estimate(

|Dw|q
) 1

q

BR/2
≤ N

(
|Dw|p

) 1
p

BR
, (3)

where N = N(d, p, q, ν,Λ, δ, r0).

Furthermore, we can rewrite the above conclusion in a more useful form as follows.

Lemma 2.3. Under the same assumptions as Lemma 2.2 above, we have w ∈W1,q(BR/2) with the estimate

‖Dw‖Lq(BR/2) ≤ NR
d
q−

d
p ‖Dw‖Lp(BR), (4)

where N = N(d, p, q, ωd, ν,Λ, δ, r0) and ωd is the volume of unit ball in Rd.

Proof. Observe that(
|Dw|p

) 1
p

BR
=

( 1
|BR|

) 1
p
‖Dw‖Lp(BR) and

(
|Dw|q

) 1
q

BR/2
=

( 1
|BR/2|

) 1
q
‖Dw‖Lq(BR/2).

By Lemma 2.2 it yields( 1
|BR/2|

) 1
q
‖Dw‖Lq(BR/2) ≤ N1

( 1
|BR|

) 1
p
‖Dw‖Lp(BR),

which implies that

‖Dw‖Lq(BR/2) ≤ N1
|BR/2|

1
q

|BR|
1
p

‖Dw‖Lp(BR) ≤ NR
d
q−

d
p ‖Dw‖Lp(BR),

where N = N(d, p, q, ωd, ν,Λ, δ, r0).

To this aim, we need the following iterating Lemma, see [12].

Lemma 2.4. Let Φ(ρ) be a non-negative and non-decreasing function on (0,R). Suppose that

Φ(ρ) ≤ A
[(ρ

R

)α
+ ε

]
Φ(R) + BRβ ∀ 0 < ρ < R, (5)

with non-negative constants A, B, α and β such that α > β. Then there exist two constants ε0 = ε0(A, α, β) and
N = N(A, α, β) such that for any 0 < ε < ε0 we have

Φ(ρ) ≤ N
[(ρ

R

)β
Φ(R) + Bρβ

]
, (6)

for any 0 < ρ < R.
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To attain an interior Morrey estimate to the weak derivatives of solutions for the Dirichlet problems (1),
let us locally observe the following linear elliptic equations

Lu :=
d∑

i, j=1

Dx j (a
i j(x)Dxi u) = div f(x) ∀x ∈ BR ⊂⊂ R

d
+, (7)

with f(x) ∈ Lq,λ(BR).

Theorem 2.5. (Interior Morrey estimate) For 1 < p < ∞ and 0 ≤ λ < d, there exists a positive constant δ =
δ(d, p, λ, ν,Λ) such that the coefficients ai j(x) satisfying Assumption 1.1 and f ∈ Lp,λ(BR). Then any weak solution
u ∈W1,2(BR) of (7) satisfies Du ∈ Lp,λ(BR/2) with the estimate

‖Du‖Lp,λ(BR/2) ≤ N
(
R−

λ
p ‖Du‖Lp(BR) + ‖f‖Lp,λ(BR)

)
, (8)

where N = N(d, p, λ, ν,Λ, δ, r0).

Proof. Suppose that u(x) ∈ W1,2(BR) is a weak solution of linear elliptic equations (7), and w ∈ W1,2(BR) is
a weak solution of the following homogeneous Dirichlet problems{

Lw = 0 in BR,
w = u on ∂BR.

Let ū = u − w. Then ū ∈ W1,2
0 (BR) is a unique solution of linear elliptic equations Lū = divf(x). Thanks to

the Lp theory of any weak solution ū ∈W1,2
0 (BR) in Lemma 2.1, it yields

‖Dū‖Lp(BσR) ≤ ‖Dū‖Lp(BR) ≤ N‖f‖Lp(BR) = NR
λ
p ‖f‖Lp,λ(BR) (9)

for any σ ∈ (0, 1
2 ). In addition, Lemma 2.3 deduces

‖Dw‖Lq(BR/2) ≤ NR
d
q−

d
p ‖Dw‖Lp(BR). (10)

Therefore, by Hölder inequality it follows that

‖Dw‖Lp(BσR) ≤ N(σR)
d
p−

d
q ‖Dw‖Lq(BσR)

≤ N(σR)
d
p−

d
q ‖Dw‖Lq(BR/2)

≤ N(σR)
d
p−

d
q R

d
q−

d
p ‖Dw‖Lp(BR)

= Nσ
d
p−

d
q ‖Dw‖Lp(BR) (11)

for the σ mentioned in (9).
Since u = ū + w, then by (9) and (11) we deduce that

‖Du‖Lp(BσR) ≤ ‖Dw‖Lp(BσR) + ‖Dū‖Lp(BσR)

≤ N
(
σ

d
p−

d
q ‖Dw‖Lp(BR) + R

λ
p ‖f‖Lp,λ(BR)

)
≤ N

(
σ

d
p−

d
q
(
‖Du‖Lp(BR) + ‖Dū‖Lp(BR)

)
+ R

λ
p ‖f‖Lp,λ(BR)

)
≤ N

(
σ

d
p−

d
q ‖Du‖Lp(BR) + R

λ
p ‖f‖Lp,λ(BR

)
,

which implies

‖Du‖Lp(Br) ≤ N
( r
R

) d
p−

d
q
‖Du‖Lp(BR) + NR

λ
p ‖f‖Lp,λ(BR). (12)
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We now take q > p
1−( λd )

so that λ
p <

d
p −

d
q . The iteration argument in Lemma 2.4 yields

‖Du‖Lp(Br) ≤ Nr
λ
p
(
R−

λ
p ‖Du‖Lp(BR) + ‖f‖Lp,λ(BR)

)
,

which implies (8).

2.2. Boundary estimates

With Lemma 2.2 in hand, by using an argument of odd extension with respect to x′-hyperplane, one has
easily the following conclusion over a half ball, see Theorem 2 in [10].

Lemma 2.6. Let 1 < p < q < ∞, there exists a positive constant δ = δ(d, p, q, ν,Λ,R0) such that the coefficients
ai j(x) satisfying Assumption 1.1. If w ∈W1,p(B+

R) is any weak solution of
∑d

i, j=1 Dx j

(
ai j(x)Dxi w

)
= 0 in B+

R,

w = 0 on BR ∩ {x1 = 0}.
(13)

Then w ∈W1,q(B+
R/2) with the estimate

(|Dw|q)
1
q

B+
R/2
≤ N(|Dw|p)

1
p

B+
R
, (14)

where N = N(d, p, q, ν,Λ, r0, δ).

By using the same argument as Lemma 2.3, we can also rewrite the above conclusion in a more convenient
version.

Lemma 2.7. Under the same assumptions as Lemma 2.6 above, we have w ∈W1,q(B+
R/2) with the estimate

‖Dw‖Lq(B+
R/2) ≤ NR

d
q−

d
p ‖Dw‖Lp(B+

R), (15)

where N = N(d, p, q, ν,Λ, γ, δ).

According to Lemma 2.1 with an argument of odd extension and Lemma 2.7, a local version of the
Morrey estimate on the boundary point is immediate.

Theorem 2.8. (Boundary Morrey estimate) For 1 < p < ∞, 0 ≤ λ < d, there exists a positive constant δ =
δ(d, p, λ, ν,Λ) such that the coefficients ai j(x) satisfying Assumption 1.1 and f ∈ Lp,λ(B+

R), then for any weak solution
u ∈W1,2(B+

R) of Lu :=
∑d

i, j=1 Dx j

(
ai j(x)Dxi u

)
= div f(x) in B+

R,

u = 0 on BR ∩ {x1 = 0};
(16)

we have Du ∈ Lp,λ(B+
R/2) with the estimate

‖Du‖Lp,λ(B+
R/2) ≤ N

(
R−

λ
p ‖Du‖Lp(B+

R) + ‖f‖Lp,λ(B+
R)

)
, (17)

where N = N(d, p, λ, ν,Λ, δ, r0).
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2.3. Proof of Theorem 1.4
With an interior Morrey estimate in Theorem 2.5 and the boundary Morrey estimate in Theorem 2.8 in

hand, now we could complete the proof of our main result.
Proof of Theorem 1.4 Let R > 0, BR(x0) ⊂⊂ Rd

+. We note that Lu = divf(x) a.e. x ∈ BR(x0), by interior
Morrey estimates (8) we get

‖Du‖Lp,λ(BR/2(x0)) ≤ N
(
R−

λ
p ‖Du‖Lp(Rd

+) + ‖f‖Lp,λ(Rd
+)

)
. (18)

By using the Lp estimate of the gradient of any weak solution for the Dirichlet problems (1) over above
half-space, and the embedding Lp,λ(Rd

+) ⊂ Lp(Rd
+) for 0 ≤ λ < d, it yields

‖Du|Lp(Rd
+) ≤ N ‖f(x)‖Lp(Rd

+) ≤ N ‖f(x)‖Lp,λ(Rd
+),

where constant N is independent of R. Putting it into (18) deduces

‖Du‖Lp,λ(BR/2(x0)) ≤ N(R−
λ
p + 1) ‖f‖Lp,λ(Rd

+). (19)

We also handle Morrey estimates on the boundary setting in the same way, and get

‖Du‖Lp,λ(B+
R/2(x0)) ≤ N(R−

λ
p + 1) ‖f‖Lp,λ(Rd

+). (20)

Putting estimates (19) and (20) together, then we take R→ +∞, which implies (4).

Remark 2.9. Similar to Lieberman’s argument in [20], we consider the following nonzero boundary data ϕ ∈
W1

p,λ(Rd
+) of the Dirichlet problem or the conormal derivative problem to Equations (1){
Lu = div f(x) x ∈ Rd

+,
u = ϕ(x) or ai j(x)Dxi u · n j = ϕ(x) x ∈ ∂Rd

+; (21)

then we have
‖Du‖Lp,λ(Rd

+) ≤ N
(
‖f‖Lp,λ(Rd

+) + ‖∇ϕ‖Lp,λ(Rd
+)

)
,

with N = N(d, p, λ, ν,Λ, δ, r0).

3. Conclusions

In this paper, we provide another proof to global Morrey estimate for the Dirichlet problems of linear
elliptic equations with small partially BMO coefficients in a half space. Instead of the weighted Lp estimate
with a special weight, we mainly realize the global Morrey estimates by a direct argument based on the
given Lp estimate of their derivatives. This is a flexible approach, as Lieberman indicates in his paper [20],
which has the advantage that it is easily applied to any equations with non-VMO coefficients which have
Lp estimates.
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