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Abstract. In this paper, we introduce anti-invariant Riemannian submersions from nearly-K-cosymplectic
manifolds onto Riemannian manifolds. We study the integrability of horizontal distributions. And we
investigate the necessary and sufficient condition for an anti-invariant Riemannian submersion to be totally
geodesic and harmonic. Moreover, we give examples of anti-invariant Riemannian submersions such that
characteristic vector field ξ is vertical or horizontal.

1. Introduction

Let π be a C∞-submersion from a Riemannian manifold (M, 1M) onto a Riemannian manifold (N, 1N).
Then according to the different conditions on the map π : (M, 1M) −→ (N, 1N), we have the following
submersions: Lorentzian submersion and semi-Riemannian submersion [7], slant submersion ([4, 19]),
contact-complex submersion [8], almost h-slant submersion and h-slant submersion [16] quaternionic sub-
mersion [9], semi-invariant submersion [18], h-semi-invariant submersion [15], etc. In [17], Sahin introduced
anti-invariant Riemannian submersions from almost hermitian manifolds onto Riemannian manifolds. Re-
cently, C. Murathan and I. Küpeli Erken have investigated anti-invariant Riemannian submersions from
Sasakian manifolds onto Riemannian manifolds and from cosymplectic manifolds onto Riemannian man-
ifolds ([11, 12]). Furthermore, anti-invariant Riemannian submersions from Kenmotsu manifolds onto
Riemannian manifolds have also been studied in [2].

In this paper, we study anti-invariant Riemannian submersions from nearly-K-cosymplectic manifolds
onto Riemannian manifolds. The paper is organized as follows: In section 2, we present some basic facts
about Riemannian submersions. Nearly-K-cosymplectic manifolds are introduced in section 3. In section 4,
we give the definition of anti-invariant Riemannian submersions and introduce anti-invariant Riemannian
submersions from nearly-K-cosymplectic manifolds onto Riemannian manifolds. Moreover, we investigate
the geometry of leaves of the distributions. In addition, we give two examples of anti-invariant Riemannian
submersions such that characteristic vector field ξ is vertical and horizontal respectively.
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2. Preliminaries

Let (M, 1M) be an m-dimensional Riemannian manifold, Let (N, 1N) be an n-dimensional Riemannian
manifold. A smooth surjective mapping F : (M, 1M) −→ (N, 1N) is called a Riemannian submersion if the
following conditions are satisfied:

• F has maximal rank ,

• The differential F∗ preserves the lengths of horizontal vectors.

In ([13, 14]), O’Neil have defined the fundamental tensors of a submersion, which are (1, 2)-tensors on M
and are given by the following formulas:

T (E,F) = TEF = H∇VEVF +V∇VEHF, (1)
A(E,F) = AEF =V∇HEHF +H∇HEVF, (2)

for any vector field E and F on M. Here ∇ denotes the Levi-Civita connection of (M, 1M). Note that we
denote the projection morphism on the distributions kerF∗ and (kerF∗)⊥ byV andH , respectively. And we
have the following lemma ([13, 14]).

Lemma 2.1. For any U,W vertical and X,Y horizontal vector fields, the tensor fields T ,A satisfy :

T (U,W) = T (W,U), (3)

A(X,Y) = −A(Y,X) =
1
2
V[X,Y], (4)

Obviously, T is vertical, i.e. (TE = TVE) AndA is horizontal, i,e. (AE = AHE).

For each q ∈ N, F−1(q) is a submanifold of M of dimension dimM-dimN. The submanifolds F−1(q), q ∈ N
are called fibers, and a vector field on M is vertical if it is always tangent to fibers, horizontal if it is always
orthogonal to fibers. A vector field X on M is called basic if X is horizontal and F-related to a vector field X
on N, i,e. (∀P ∈M,F∗XP = X∗F(P))

From (2.1) and (2.2) we have the following basic equations:

∇VW = TVW +V∇VW, (5)
∇VX = H∇VX + TVX, (6)
∇XV = AXV +V∇XV, (7)
∇XY = H∇XY +AXY. (8)

where X,Y are horizontal vector fields and V,W are vertical vector fields.
From (2.1) and (2.2), we can also deduce the following formulas:

1(TEF,G) + 1(TEG,F) = 0, (9)
1(AEF,G) + 1(AEG,F) = 0, (10)

for any E,F,G ∈ Γ(TM). Moreover, TE,AE reverse the horizontal and the vertical distributions.
It is well-known that a Riemannia submersion has totally geodesic fiber if and only if T = 0; Horizontal

distributionH is totally geodesic if and only ifA = 0 (see [10]). Suppose e1, ..., em−n be an orthogonal frame

of Γ(kerF∗), then the horizontal vector field H = 1
m−n

m−n∑
i=1

Γei ei is called the mean curvature vector field of the

fiber. If H = 0 the Riemannian submersion is called minimal.
Mow, we recall the notion of harmonic maps between Riemannian manifolds. If F : M −→ N is a smooth

map between Riemannian manifolds. Then the differential F∗ of F can be viewed a section of the bundle
Hom(TM,F−1TN) −→ M, where F−1TN is the pullback bundle which has fibres (F−1TN)p = TF(p)N, p ∈ M.
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Hom(TM,F−1TN) has a connection ∇ induced from the pullback connection and the Levi-Civita connection
∇

M. Then the second fundamental form of F is given by

(∇F∗)(X,Y) = ∇F
XF∗(Y) − F∗(∇M

X Y), (11)

for any X,Y ∈ Γ(TM), where ∇F is the pullback connection. It is known that the second fundamental form
is symmetric. For a Riemannian submersion F, one can easily obtain:

(∇F∗)(X,Y) = 0, (12)

for any X,Y ∈ Γ((kerF∗)⊥). A smooth map F : M −→ N is said to be harmonic if trace(∇F∗) = 0. On the other
hand, the tension field of F is the section τ(F) of Γ(F−1TN) defined by

τ(F) = divF∗ =

m∑
i=1

(∇F∗)(ei, ei), (13)

where {e1, . . . , em} is the orthonormal frame on M. Then it follows that F is harmonic if and only if τ(F) = 0,
(for details, see [1]).

3. Nearly-K-cosymplectic manifolds

A (2n+1)-dimensional C∞ differential manifold M is said to have an almost contact structure or (φ, ξ, η)-
structure if there exist on M a tensor field φ of type (1, 1), a vector field ξ and 1-form η satifying:

η(ξ) = 1, φ2 = −I + η ⊗ ξ, (14)

here I denote the identity tensor, ξ is called characteristic vector field. And we have the following proposition
[3].

Proposition 3.1. Suppose M2n+1 has a (φ, ξ, η)-structure. Then φ · ξ = 0 and η · φ = 0. Furthermore, the
endomorphism φ has rank 2n.

M is said to have a (φ, ξ, η, 1)-structure or an almost contact metric structure if the manifold M with a
(φ, ξ, η)-structure admits a Riemannian metric g such that

1(φX, φY) = 1(X,Y) − η(X)η(Y), (15)

here X,Y are vector fields on M. Obviously, set Y = ξ, We get η(X) = 1(X, ξ).
We define an almost complex structure J on M × R:

J(X, f
d
dt

) = (φX − fξ, η(X)
d
dt

), (16)

here M × R is considered as the product manifold, And M have an almost contact structure (φ, ξ, η), f
denotes the C∞-function on M × R, X is tangent to M. Now we define a Riemannian metric on M × R by

h((X, f
d
dt

), (Y, 1
d
dt

)) = 1(X,Y) + f1.

From [7], We have the following proposition:

Proposition 3.2. M have an almost contact metric structure if and only if h is a Hermitian metric on (M × R, J);
An (φ, ξ, η, 1)-structure is called cosymplectic structure if and only if the structure (J, h) in M × R is Kählerian;
An (φ, ξ, η, 1)-structure is called a nearly-K-cosymplectic structure if (J, h) is nearly Kählerian.
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A manifold M endowed with a nearly-K-cosymplectic structure is called nearly-K-cosymplectic manifold.
And from [7], M is nearly-K-cosymplectic manifold if and only if it satisfies the following formula:

(∇Xφ)X = 0, (17)
∇Xξ = 0, (18)

here X is tangent to M. Obviously, the first equation is equivalent to

(∇Xφ)Y + (∇Yφ)X = 0. (19)

It is obvious that a cosymplectic manifold is nearly-K-cosymplectic manifold. The canonical example
of nearly-K-cosymplectic manifolds is given by the product S6

×R nearly Kähler manifold S6(J, 1) with real
R line [5]. Now we introduce a nearly-K-cosymplectic manifold example.

Example 3.3. Let L be a (2n + 1) dimensional Lie algebra, and choose a basis {e0, e1, . . . , e2n} of L. The non-vanishing
Lie bracket relations are following:

[e0, ei] = −aien+i,

[e0, en+i] = aiei.

for i = 1, . . . ,n, a2
1 + . . . + a2

n > 0.
Consider a connected Lie subgroup G of general linear group GL(k,R), for certain k, such that the Lie algebra 1

of G is isomorphic with L. Let σ : L → 1 be the isomorphism. Let {E0,E1, . . . ,E2n} be the basis of G formed by left
invariant vector fields on G such that E j = σ(e j) for j = 0, 1, . . . , 2n. Then, the non-vanishing Lie bracket relations
on Lie algebra 1 are following:

[E0,Ei] = −aiEn+i,

[E0,En+i] = aiEi.

Define a left invariant Riemannian metric 1 on G by 1(E j,Ek) = δ jk, j, k = 0, 1, . . . , 2n. Then the Levi-Civita
connection on G with respect to 1 is:

∇E0 Ei = −aiEn+i,

∇E0 En+i = aiEi.

Define a 1-form η and (1, 1)-tensor field φ on G by η(E j) = δ0 j, for j = 0, 1, . . . , 2n, and φE0 = 0, φEi = Ei,
φEn+i = −En+i, for i = 1, . . . ,n. Set ξ = E0. Then (φ, ξ, η, 1) is an almost contact metric structure on G. Notice
∇ξ = 0 and (∇Eiφ)Ei = 0, for i = 0, 1, . . . , 2n, So (φ, ξ, η, 1) is an nearly-K-cosymplectic structure. And

(∇E0φ)Ei = ∇E0 (φEi) − φ(∇E0 Ei)
= ∇E0 Ei + φ(aiEn+i)
= −2aiEn+i , 0.

Thus G is not a non-trivial nearly-K-cosymplectic manifold. Moreover, there is a global system of coordinates
(xi, yi, z), 1 ≤ i ≤ n on nearly-K-cosymplectic manifold G such that

Ei =
∂
∂xi

, En+i =
∂
∂yi

,

E0 =
∂
∂z

+

n∑
j=1

a jx j
∂
∂y j
−

n∑
j=1

a jy j
∂
∂x j

.
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4. Anti-invariant Riemannian Submersions

Definition 4.1. Let F is a Riemannian submersion from nearly-K-cosymplectic manifold M(φ, ξ, η, 1M) to Rieman-
nian manifold (N, 1N). We say F is an anti-invariant Riemannnian submersion if the following condition is satisfied:

φ(kerF∗) ⊆ (kerF∗)⊥

We denote the complementary orthogonal distribution to φ(kerF∗) in (kerF∗)⊥ by µ. Then it is easy to prove
that µ is an invariant distribution of (kerF∗)⊥, under the action of endomorphism φ.
Now we will give two examples.

Example 4.2. Let G be a nearly-K-cosymplectic manifold with dimension seven as in Example 3.3. And set a1 =
1, a2 = 0, then ξ = E0 = ∂

∂z + x1E3 − y1E1. Let N = {(u, v,w)|u, v,w ∈ R,u > 0}. The Riemannian metric tensor
field 1N is defined by 1N = 1

u du2 + dv2 + dw2 on N.

Let F : G → N be a map defined by F(x1, x2, x3, y1, y2, y3, z) = (
x2

1+y2
1

2 ,
x2+y2
√

2
,

x3+y3
√

2
), (x1y1 = 0). Then by direct

calculation, we have

KerF∗ = span{V1 =
1
√

2
(E2 − E5),V2 =

1
√

2
(E3 − E6),V3 = E0 = ξ}

and

(KerF∗)⊥ = span{Hi =
1
√

2
(Ei+1 + Ei+4), i = 1, 2,H3 =

1
√

2
(E1 + E4),H4 =

1
√

2
(E1 − E4)}

Obviously, F is a Riemannian submersion. Furthermore, φV1 = H1, φV2 = H2 imply that (KerF∗)⊥ = φ(KerF∗) ⊕
span{H3,H4}. Thus F is an anti-invariant Riemannian submersion such that ξ is vertical.

Example 4.3. Let G be a nearly-K-cosymplectic manifold with dimension seven as in Example 3.3. And set a1 =
a2 = 0, a3 = 1, then ξ = E0 = ∂

∂z + x3E6 − y3E3. Let N = {(u1,u2,u3,u4,u5)|u2
3 + u2

4 < 1,ui ∈ R, i = 1, 2, 3, 4, 5}.

The Riemannian metric tensor field 1N is defined by 1N =
4∑

i=1
du2

i + (1 − u2
3 − u2

4)du2
5 on N.

Let F : G → N be a map defined by F(x1, x2, x3, y1, y2, y3, z) = ( x1+y1
√

2
,

x2+y2
√

2
,

x3+y3
√

2
,

x3−y3
√

2
, z). Then by direct

calculation, we have

KerF∗ = span{V1 =
1
√

2
(E1 − E4),V2 =

1
√

2
(E2 − E5)}

and

(KerF∗)⊥ = span{Hi =
1
√

2
(Ei + E3+i), i = 1, 2, 3,H4 =

1
√

2
(E3 − E6),H5 = ξ}

Obviously, F is a Riemannian submersion. Furthermore, φV1 = H1, φV2 = H2 imply that φ(KerF∗) ⊆ (KerF∗)⊥.
And F is an anti-invariant Riemannian submersion such that ξ is horizontal.

4.1. Anti-invariant submersions admitting vertical characteristic vector field
In this subsection, we will discuss anti-invariant submersions from a nearly-K-cosymplectic manifold

onto a Riemannian manifold such that the characteristic vector field ξ is vertical.
On the one hand, because of the invariance of µ under the action of φ, we can get

φX = BX + CX, (20)

here X ∈ Γ((kerF∗)⊥),BX ∈ Γ(kerF∗),CX ∈ Γ(µ). On the other hand, since F is a Riemannian submersion and
F∗((kerF∗)⊥) = TN, We get 1N(F∗φV,F∗CX) = 0, for X ∈ Γ((kerF∗)⊥),V ∈ Γ(kerF∗). And, we have

TN = F∗(φ(kerF∗)) ⊕ F∗(µ). (21)

By (3.14) and (4.20), it is easy to obtain the following proposition.
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Proposition 4.4. Let F be an anti-invariant Riemannian submersion from a nearly-K-cosymplectic manifold M(φ, ξ, η, 1M)
to a Riemannian manifold (N, 1N). Then we have

BCX = 0, η(BX) = 0, C2X = −X − φ(BX),
CφV = 0, C3X + CX = 0, BφV = −V + η(V)ξ,

where X ∈ Γ((kerF∗)⊥) and V ∈ Γ(kerF∗).

Lemma 4.5. Let ∇ be the connection of a nearly-K-cosymplectic manifold M(φ, ξ, η, 1M). Then we have

∇XY = −φ∇XφY + φ((∇Xφ)Y), (22)

∇XY + ∇YX = −φ∇XφY − φ∇YφX, (23)

here X,Y ∈ Γ((kerF∗)⊥).

Proof. Denote 1M(, ) by 〈, 〉. Since ξ is vertical and ∇Xξ = 0, by (2.7), (2.8) and (2.10), we have:

η(∇XY) = 〈H∇XY +AXY, ξ〉
= 〈AXY, ξ〉
= −〈Y,AXξ〉

= −〈Y,∇Xξ −V∇Xξ〉

= 0.

And

∇X(φY) = (∇Xφ)Y + φ(∇XY),

So

φ(∇XφY) = φ((∇Xφ)Y) + φ2(∇XY) = φ((∇Xφ)Y) − ∇XY + η(∇XY)ξ,

Thus we obtain (4.22). To see (4.23), By (3.19) and (4.22), we have

∇XY = −φ∇XφY − φ((∇Yφ)X)
= −φ∇XφY − φ(∇YφX) + φ2(∇YX)
= −φ∇XφY − φ(∇YφX) − ∇YX + η(∇YX)ξ.

Hence, we get

∇XY + ∇YX = −φ∇XφY − φ∇YφX.

Lemma 4.6. Let F be an anti-invariant Riemannian submersion from a nearly-K-cosymplectic manifold M(φ, ξ, η, 1M)
to a Riemannian manifold (N, 1N). Then we have

AXξ = 0, (24)

TUξ = 0, (25)

1M(CX, φU) = 0, (26)

1M(∇XCY, φU) = 1M(CY,∇UφX) − 21M(CY, φ(∇UX)), (27)

here X,Y ∈ Γ((kerF∗)⊥),U ∈ Γ(kerF∗).
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Proof. By (3.18) and (2.7), (2.5), and noticeAX,TU reverse the distributions, we get (4.24) and (4.25).
By (3.15) and (4.20), we have

1M(CX, φU) = 1M(φX − BX, φU)
= 1M(X,U) − η(X)η(U) + 1M(φBX, φ(φU)).

Since φBX ∈ Γ((kerF∗)⊥),U, ξ ∈ Γ(kerF∗), we get (4.26).
Since [X,U] ∈ Γ(kerF∗), We have 1M(CY, φ([X,U])) = 0 and 1M(CY, φ∇XU) = 1M(CY, φ∇UX). By (4.26) and

(3.19), we obtain

1M(∇XCY, φU) = −1M(CY,∇X(φU))
= 1M(CY, (∇Uφ)X) − 1M(CY, φ(∇XU))
= 1M(CY,∇UφX) − 21M(CY, φ(∇UX)).

Next, we study the integrability of the horizontal distribution and then we investigate the geometry of
leaves of KerF∗ and (KerF∗)⊥.

Theorem 4.7. Let F be an anti-invariant Riemannian submersion from a nearly-K-cosymplectic manifold M(φ, ξ, η, 1M)
to a Riemannian manifold (N, 1N). Then the following criteria are equivalent:

1. (kerF∗)⊥ is integrable,
2.

1N((∇F∗)(Y,BX),F∗φV) = 1N((∇F∗)(X,BY),F∗φV) − 1M(CY,∇VφX)
+1M(CX,∇VφY) − 21M((∇Yφ)X, φV)
+21M(CY, φ(∇VX)) − 21M(CX, φ(∇VY)),

3.

1M(AXBY −AYBX, φV) = −1M(CY,∇VφX)
+1M(CX,∇VφY) − 21M((∇Yφ)X, φV)
+21M(CY, φ(∇VX)) − 21M(CX, φ(∇VY)),

here X,Y ∈ Γ((kerF∗)⊥),V ∈ Γ(kerF∗).

Proof. For X,Y ∈ Γ((kerF∗)⊥),V ∈ Γ(kerF∗), we have

1M([X,Y],V) = 1M(∇XY,V) − 1M(∇YX,V)
= 1M(φ∇XY, φV) − 1M(φ∇YX, φV).

Then from (4.20), we have

1M([X,Y],V) = 1M(∇XφY, φV) − 1M(∇YφX, φV) + 1M((∇Yφ)X − (∇Xφ)Y, φV)
= 1M(∇XBY, φV) + 1M(∇XCY, φV) − 1M(∇YBX, φV)
−1M(∇YCX, φV) + 21M((∇Yφ)X, φV).

Since F is a Riemannian submersion and φV ∈ Γ((kerF∗)⊥, we get

1M(∇XBY, φV) = 1N(F∗∇XBY,F∗φV), 1M(∇YBX, φV) = 1N(F∗∇YBX,F∗φV).

From (2.11) and (4.27), we get

1M([X,Y],V) = −1N((∇F∗)(X,BY),F∗φV) + 1M(CY,∇VφX)
−1M(CX,∇VφY) + 21M((∇Yφ)X, φV)
−21M(CY, φ(∇VX)) + 21M(CX, φ(∇VY))
+1N((∇F∗)(Y,BX),F∗φV),
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which proves (1)⇔ (2). On the other hand, by (2.11), we have

(∇F∗)(Y,BX) − (∇F∗)(X,BY) = −F∗(∇YBX − ∇XBY)

Then, according to (2.7), we get

(∇F∗)(Y,BX) − (∇F∗)(X,BY) = −F∗(AYBX −AXBY).

NoticeAYBX −AXBY ∈ Γ((kerF∗)⊥, this implies that (2)⇔ (3).

If φ(kerF∗) = (kerF∗)⊥, then we can get C = 0 and TN = F∗(φ(kerF∗)). We have the following corollary.

Corollary 4.8. Let F be an anti-invariant Riemannian submersion from a nearly-K-cosymplectic manifold M(φ, ξ, η, 1M)
to a Riemannian manifold (N, 1N), and φ(kerF∗) = (kerF∗)⊥. Then the following assertions are equivalent to each
other:

1. (kerF∗)⊥ is integrable,
2. (∇F∗)(X, φY) − (∇F∗)(Y, φX) = 2F∗((∇Yφ)X),
3. AXφY −AYφX = −2H((∇Yφ)X) for X,Y ∈ Γ((kerF∗)⊥).

Theorem 4.9. Let F be an anti-invariant Riemannian submersion from a nearly-K-cosymplectic manifold M(φ, ξ, η, 1M)
to a Riemannian manifold (N, 1N) .Then the following criteria are equivalent:

1. (kerF∗)⊥ defines a totally geodesic foliation on M,
2. 1M(AXBY, φV) = 1M((∇Xφ)Y, φV) − 1M(CY,∇VφX)) + 21M(CY, φ(∇VX)),
3. 1N(∇F∗(X, φY),F∗φV) = −1M((∇Xφ)Y, φV) + 1M(CY,∇VφX)) − 21M(CY, φ(∇VX)),

for X,Y ∈ Γ((kerF∗)⊥),V ∈ Γ(kerF∗).

Proof. For X,Y ∈ Γ((kerF∗)⊥),V ∈ Γ(kerF∗), by (3.15), we get

1M(∇XY,V) = 1M(∇XφY, φV) − 1M((∇Xφ)Y, φV).

And using (2.7), (4.20) and (4.27), we have

1M(∇XY,V) = 1M(AXBY +V∇XBY, φV) + 1M(∇XCY, φV) − 1M((∇Xφ)Y, φV)
= 1M(AXBY, φV) + 1M(CY,∇VφX) − 1M((∇Xφ)Y, φV) − 21M(CY, φ(∇VX)).

The above equation shows (1)⇔ (2).
Since F is a Riemannian submersion and φV ∈ Γ((kerF∗)⊥, we have

1M(AXBY, φV) = 1M(∇XBY, φV)
= 1N(F∗∇XBY,F∗φV).

Using (2.11) and (2.12), we get

1M(AXBY, φV) = −1N((∇F∗)(X,BY),F∗φV)
= −1N((∇F∗)(X, φY),F∗φV),

which shows that (2)⇔ (3).

Corollary 4.10. Let F be an anti-invariant Riemannian submersion from a nearly-K-cosymplectic manifold M(φ, ξ, η, 1M)
to a Riemannian manifold (N, 1N) such that φ(kerF∗) = (kerF∗)⊥. Then the following assertions are equivalent to each
other:

1. (kerF∗)⊥ defines a totally geodesic foliation on M,
2. AXφY = H((∇Xφ)Y),
3. (∇F∗)(X, φY) = −F∗((∇Xφ)Y) for X,Y ∈ Γ((kerF∗)⊥).
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Theorem 4.11. Let F be an anti-invariant Riemannian submersion from a nearly-K-cosymplectic manifold M(φ, ξ, η, 1M)
to a Riemannian manifold (N, 1N). Then the following criteria are equivalent:

1. (kerF∗) defines a totally geodesic foliation on M,
2. 1N((∇F∗)(V, φX),F∗φW) + 1M(φW, (∇Vφ)X) = 0,
3. H((∇Vφ)X) − TVBX −ACXV ∈ Γ(µ),

here X ∈ Γ((kerF∗)⊥),V,W ∈ Γ(kerF∗).

Proof. For X ∈ Γ((kerF∗)⊥),V,W ∈ Γ(kerF∗), since ξ ∈ Γ(kerF∗), by (2.6) and (4.25), it is easy to obtain
1M(∇VX, ξ) = 0. Then by (3.15) and (2.6), we have

1M(∇VW,X) = −1M(W,∇VX)
= −1M(φW, φ∇VX)
= −1M(φW,H∇VφX) + 1M(φW, (∇Vφ)X).

Since [V, φX] ∈ Γ(kerF∗), φW ∈ Γ((kerF∗)⊥), then 1M([V, φX], φW) = 0. By (2.11), we have

1M(∇VW,X) = −1N(F∗φW,F∗H∇VφX) + 1M(φW, (∇Vφ)X)
= 1N((∇F∗)(V, φX),F∗φW) + 1M(φW, (∇Vφ)X),

which shows (1)⇔ (2). Next, by some calculation, we get

1N((∇F∗)(V, φX),F∗φW) = −1M(φW,∇VφX).

Using (4.20), we have

1N((∇F∗)(V, φX),F∗φW) = −1M(φW,∇VBX + ∇VCX).

Hence, we have

1N((∇F∗)(V, φX),F∗φW) = −1M(φW,∇VBX + [V,CX] + ∇CXV).

Since [V,CX] ∈ Γ((kerF∗), using (2.5) and (2.7), we get

1N((∇F∗)(V, φX),F∗φW) = −1M(φW,TVBX +ACXV).

This shows (2)⇔ (3).

Corollary 4.12. Let F be an anti-invariant Riemannian submersion from a nearly-K-cosymplectic manifold M(φ, ξ, η, 1M)
to a Riemannian manifold (N, 1N) such that φ(kerF∗) = (kerF∗)⊥. Then the following assertions are equivalent to each
other:

1. (kerF∗) defines a totally geodesic foliation on M,
2. (∇F∗)(V, φX) + F∗((∇Vφ)X) = 0,
3. H((∇Vφ)X) = TVφX, for X ∈ Γ((kerF∗)⊥),V ∈ Γ(kerF∗).

We recall that a C∞ map F between two Riemannian manifolds is called totally geodesic if ∇F∗ = 0. For an
anti-invariant Riemannian submersion such that φ(kerF∗) = (kerF∗)⊥, we have the following theorem.

Theorem 4.13. Let F be an anti-invariant Riemannian submersion from a nearly-K-cosymplectic manifold M(φ, ξ, η, 1M)
to a Riemannian manifold (N, 1N) such that φ(kerF∗) = (kerF∗)⊥. Then F is a totally geodesic map if and only if

φTWφV +H((∇Wφ)φV) = 0, (28)

and

φAXφW +H((∇Xφ)φW) = 0, (29)

for V,W ∈ Γ(kerF∗),X ∈ Γ((kerF∗)⊥).
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Proof. For V,W ∈ Γ(kerF∗), X ∈ Γ((kerF∗)⊥), since φ(kerF∗) = (kerF∗)⊥ and ξ is vertical, by (2.6) and (3.18), it is
easy to obtain

(∇F∗)(W,V) = F∗(φTWφV) + F∗((∇Wφ)φV). (30)

One the other hand, by (3.14) and (2.11), we have

F∗(φ∇XφW) = (∇F∗)(X,W) − F∗((∇Xφ)φW).

Then, by (2.8), we get

(∇F∗)(X,W) = F∗((∇Xφ)φW) + F∗(φAXφW). (31)

Hence, proof comes from (2.12) (4.30) and (4.31).

Finally, we study the necessary and sufficient condition for an anti-invariant Riemannian submersion such
that φ(kerF∗) = (kerF∗)⊥ to be harmonic.

Theorem 4.14. Let F be an anti-invariant Riemannian submersion from a nearly-K-cosymplectic manifold M(φ, ξ, η, 1M)
to a Riemannian manifold (N, 1N) such that φ(kerF∗) = (kerF∗)⊥. Then F is harmonic if and only if trace(φTV) = 0,
for V ∈ Γ(kerF∗).

Proof. From [6] we know that F is harmonic if and only if F has minimal fibres. Thus F is harmonic if and

only if
k∑

i=1
Tei ei = 0, where k denotes the dimension of kerF∗. On the other hand, by (3,15), we get

H(φ∇VW) = φ(V∇VW), (32)

for V,W ∈ Γ(kerF∗). By (4.32) and some calculations, we obtain

TVφW − φTVW = V((∇Vφ)W).

Then, by (3.17), we have

k∑
i=1

1M(Teiφei,V) =

k∑
i=1

1M(φTei ei,V) +

k∑
i=1

1M((∇eiφ)ei,V)

= −

k∑
i=1

1M(Tei ei, φV)

for any V ∈ Γ(kerF∗). And by (2.9), we get

k∑
i=1

1M(φei,Tei V) =

k∑
i=1

1M(Tei ei, φV).

By (2.3) and (3.14), we have

k∑
i=1

1M(ei, φTVei) = −

k∑
i=1

1M(Tei ei, φV).

This completes the proof.
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4.2. Anti-invariant submersions admitting horizontal characteristic vector field.
In this subsection,we will discuss anti-invariant submersions from a nearly-K-cosymplectic manifold

onto a Riemannian manifold such that the characteristic vector field ξ is horizontal. Since φµ ⊆ µ, by (3.14),
it is easy to obtain: µ = φµ ⊕ {ξ}. For any horizontal vector field X, we write

φX = BX + CX, (33)

where BX ∈ Γ(kerF∗),CX ∈ Γ(µ).
Now we suppose that X is horizontal and V is vertical vector field. From 1M(φV,CX) = 0,we can obtain

1N(F∗φV,F∗CX) = 0, which implies that

TN = F∗(φ(kerF∗)) ⊕ F∗(µ). (34)

By (3.14) and (4.33), we have the following proposition.

Proposition 4.15. Let F be an anti-invariant Riemannian submersion from a nearly-K-cosymplectic manifold
M(φ, ξ, η, 1M) to a Riemannian manifold (N, 1N). Then we have

BCX = 0, C2X = φ2X − φ(BX), CφV = 0,
C3X + CX = 0, BφV = −V,

where X ∈ Γ((kerF∗)⊥) and V ∈ Γ(kerF∗).

By (3.14), it is easy to get

∇XY = −φ(∇XφY) + φ((∇Xφ)Y) + η(∇XY)ξ, ∀X,Y ∈ Γ((kerF∗)⊥) (35)

Lemma 4.16. Let F be an anti-invariant Riemannian submersion from a nearly-K-cosymplectic manifold M(φ, ξ, η, 1M)
to a Riemannian manifold (N, 1N). Then we have

AXξ = 0, (36)

TUξ = 0, (37)

1M(CX, φU) = 0, (38)

1M(∇XCY, φU) = 1M(CY, (∇Uφ)X) − 1M(CY, φAXU), (39)

where X,Y ∈ Γ((kerF∗)⊥),U ∈ Γ(kerF∗).

Proof. Assume that X,Y ∈ Γ((kerF∗)⊥),U ∈ Γ(kerF∗). By (2.8), (2.6) and (3.18), we obtain (4.36) and (4.37).
Using (3.15) and (4.33), η · φ = 0, since φBX, ξ ∈ Γ((kerF∗)⊥),U ∈ Γ(kerF∗), we have

1M(CX, φU) = 1M(φX − BX, φU)
= 1M(X,U) − η(X)η(U) + 1M(φBX, φ(φU))
= 1M(φBX,−U + η(U)ξ)
= 0

For X,Y ∈ Γ((kerF∗)⊥),U ∈ Γ(kerF∗), by (3.19) we have

1M(∇XCY, φU) = −1M(CY,∇X(φU))
= −1M(CY, (∇Xφ)U + φ(∇XU))
= 1M(CY, (∇Uφ)X) − 1M(CY, φ(∇XU)).

Since φ(V∇XU) ∈ φ(kerF∗), by (2.7), we have

1M(∇XCY, φU) = 1M(CY, (∇Uφ)X) − 1M(CY, φAXU) − 1M(CY, φ(V∇XU))
= 1M(CY, (∇Uφ)X) − 1M(CY, φAXU).
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Next, we study the integrability of the horizontal distribution and then we investigate the geometry of
leaves of KerF∗ and (KerF∗)⊥.

Theorem 4.17. Let F be an anti-invariant Riemannian submersion from a nearly-K-cosymplectic manifold M(φ, ξ, η, 1M)
to a Riemannian manifold (N, 1N). Then the following assertions are equivalent to each other:

1. (kerF∗)⊥ is integrable,
2.

1N((∇F∗)(Y,BX),F∗φV) = 1N((∇F∗)(X,BY),F∗φV) − 1M(CY, (∇Vφ)X)
+1M(CX, (∇Vφ)Y) − 21M((∇Yφ)X, φV)
+1M(CY, φAXV) − 1M(CX, φAYV),

3.

1M(AXBY −AYBX, φV) = −1M(CY, (∇Vφ)X)
+1M(CX, (∇Vφ)Y) − 21M((∇Yφ)X, φV)
+1M(CY, φAXV) − 1M(CX, φAYV),

for X,Y ∈ Γ((kerF∗)⊥),V ∈ Γ(kerF∗).

Proof. For X,Y ∈ Γ((kerF∗)⊥),V ∈ Γ(kerF∗), we have

1M([X,Y],V) = 1M(∇XY,V) − 1M(∇YX,V)
= 1M(φ∇XY, φV) − 1M(φ∇YX, φV).

Then from (4.20), we have

1M([X,Y],V) = 1M(∇XφY, φV) − 1M(∇YφX, φV) + 1M((∇Yφ)X − (∇Xφ)Y, φV)
= 1M(∇XBY, φV) + 1M(∇XCY, φV) − 1M(∇YBX, φV)
−1M(∇YCX, φV) + 21M((∇Yφ)X, φV).

Since F is a Riemannian submersion and φV ∈ Γ((kerF∗)⊥, we get

1M(∇XBY, φV) = 1N(F∗∇XBY,F∗φV), 1M(∇YBX, φV) = 1N(F∗∇YBX,F∗φV).

From (2.11) and (4.39), we get

1M([X,Y],V) = −1N((∇F∗)(BY,X),F∗φV) + 1M(CY, (∇Vφ)X)
−1M(CX, (∇Vφ)Y) + 21M((∇Yφ)X, φV)
−1M(CY, φAXV) + 1M(CX, φAYV)
+1N((∇F∗)(BX,Y),F∗φV)

which proves (1)⇔ (2). On the other hand, by (2.11), we have

(∇F∗)(Y,BX) − (∇F∗)(X,BY) = −F∗(∇YBX − ∇XBY)

Then, according to (2.7), we get

(∇F∗)(Y,BX) − (∇F∗)(X,BY) = −F∗(AYBX −AXBY).

NoticeAYBX −AXBY ∈ Γ((kerF∗)⊥, this implies that (2)⇔ (3).

Remark 4.18. If (kerF∗)⊥ = φ(kerF∗) ⊕ {ξ}, then we can get CX = 0 for X ∈ Γ((kerF∗)⊥).

Corollary 4.19. Let F be an anti-invariant Riemannian submersion from a nearly-K-cosymplectic manifold M(φ, ξ, η, 1M)
to a Riemannian manifold (N, 1N) such that (kerF∗)⊥ = φ(kerF∗) ⊕ {ξ}. Then the following assertions are equivalent
to each other:
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1. (kerF∗)⊥ is integrable,
2. (∇F∗)(Y, φX) − (∇F∗)(X, φY) = −2F∗((∇Yφ)X),
3. AXφY −AYφX = −2H((∇Yφ)X),

for X,Y ∈ Γ((kerF∗)⊥).

Theorem 4.20. Let F be an anti-invariant Riemannian submersion from a nearly-K-cosymplectic manifold M(φ, ξ, η, 1M)
to a Riemannian manifold (N, 1N). Then the following criteria are equivalent:

1. (kerF∗)⊥ defines a totally geodesic foliation on M,
2. 1M(AXBY, φV) = 1M((∇Xφ)Y, φV) − 1M(CY, (∇Vφ)X)) + 1M(CY, φAXV),
3. 1N(∇F∗(X, φY),F∗φV) = −1M((∇Xφ)Y, φV) + 1M(CY, (∇Vφ)X)) − 1M(CY, φAXV),

for X,Y ∈ Γ((kerF∗)⊥); V ∈ Γ(kerF∗).

Proof. For X,Y ∈ Γ((kerF∗)⊥),V ∈ Γ(kerF∗), by (3.15), we get

1M(∇XY,V) = 1M(∇XφY, φV) − 1M((∇Xφ)Y, φV).

And using (2.7), (4.33) and (4.39), we have

1M(∇XY,V) = 1M(AXBY +V∇XBY, φV) + 1M(∇XCY, φV) − 1M((∇Xφ)Y, φV)
= 1M(AXBY, φV) + 1M(CY, (∇Vφ)X) − 1M((∇Xφ)Y, φV) − 1M(CY, φAXV).

The above equation shows (1)⇔ (2). Since F is a Riemannian submersion and φV ∈ Γ((kerF∗)⊥, we have

1M(AXBY, φV) = 1M(∇XBY, φV)
= 1N(F∗∇XBY,F∗φV).

Using (2.11) and (2.12), we get

1M(AXBY, φV) = −1N((∇F∗)(X,BY),F∗φV)
= −1N((∇F∗)(X, φY),F∗φV),

which shows that (2)⇔ (3).

Corollary 4.21. Let F be an anti-invariant Riemannian submersion from a nearly-K-cosymplectic manifold M(φ, ξ, η, 1M)
to a Riemannian manifold (N, 1N) such that (kerF∗)⊥ = φ(kerF∗) ⊕ {ξ}. Then the following assertions are equivalent
to each other:

1. (kerF∗)⊥ defines a totally geodesic foliation on M,
2. AXφY = H((∇Xφ)Y),
3. (∇F∗)(X, φY) = −F∗((∇Xφ)Y),

for X,Y ∈ Γ((kerF∗)⊥).

For the vertical distribution kerF∗, we have:

Theorem 4.22. Let F be an anti-invariant Riemannian submersion from a nearly-K-cosymplectic manifold M(φ, ξ, η, 1M)
to a Riemannian manifold (N, 1N). Then the following assertions are equivalent to each other:

1. (kerF∗) defines a totally geodesic foliation on M,
2. 1N((∇F∗)(V, φX),F∗φW) + 1M(φW, (∇Vφ)X) = 0,
3. H((∇Vφ)X) − TVBX −ACXV ∈ Γ(µ),

for X ∈ Γ((kerF∗)⊥); V,W ∈ Γ(kerF∗).
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Proof. For X ∈ Γ((kerF∗)⊥),V,W ∈ Γ(kerF∗), since ξ ∈ Γ((kerF∗)⊥), we have 1M(W, ξ) = 0. Then by 1M(W,X) = 0,
we have 1M(∇VW,X) = −1M(W,∇VX). By (2.6) and (3.15), we obtain

1M(∇VW,X) = −1M(W,∇VX)
= −1M(φW, φ∇VX)
= −1M(φW,H∇VφX) + 1M(φW, (∇Vφ)X).

Since [V, φX] ∈ Γ(kerF∗), φW ∈ Γ((kerF∗)⊥), then 1M([V, φX], φW) = 0. By (2.11), we have

1M(∇VW,X) = −1N(F∗φW,F∗H∇VφX) + 1M(φW, (∇Vφ)X)
= 1N((∇F∗)(V, φX),F∗φW) + 1M(φW, (∇Vφ)X),

which shows (1)⇔ (2). Next, by some calculation, we get

1N((∇F∗)(V, φX),F∗φW) = −1M(φW,∇VφX).

Using (4.33), we have

1N((∇F∗)(V, φX),F∗φW) = −1M(φW,∇VBX + ∇VCX).

Hence, we have

1N((∇F∗)(V, φX),F∗φW) = −1M(φW,∇VBX + [V,CX] + ∇CXV).

Since [V,CX] ∈ Γ((kerF∗), using (2.5) and (2.7), we get

1N((∇F∗)(V, φX),F∗φW) = −1M(φW,TVBX +ACXV).

This shows (2)⇔ (3).

Corollary 4.23. Let F be an anti-invariant Riemannian submersion from a nearly-K-cosymplectic manifold M(φ, ξ, η, 1M)
to a Riemannian manifold (N, 1N) such that (kerF∗)⊥ = φ(kerF∗) ⊕ {ξ}. Then the following assertions are equivalent
to each other:

1. (kerF∗) defines a totally geodesic foliation on M,
2. (∇F∗)(V, φX) + F∗((∇Vφ)X) = 0,
3. H((∇Vφ)X) = TVφX,

for X ∈ Γ((kerF∗)⊥),V ∈ Γ(kerF∗).

Theorem 4.24. Let F be an anti-invariant Riemannian submersion from a nearly-K-cosymplectic manifold M(φ, ξ, η, 1M)
to a Riemannian manifold (N, 1N) such that (kerF∗)⊥ = φ(kerF∗) ⊕ {ξ}. Then F is a totally geodesic map if and only if

φTWφV +H((∇Wφ)φV) = 0, (40)

and

φAXφW +H((∇Xφ)φW) = 0, (41)

for V,W ∈ Γ(kerF∗),X ∈ Γ((kerF∗)⊥).

Proof. ∀X ∈ Γ((kerF∗)⊥), put X = φX1 + aξ,X1 ∈ kerF∗, a ∈ R, then we have

F∗φ(X) = F∗φ(φX1 + aξ) = F∗(X1 − η(X1)ξ) = 0.

Thus

F∗φ(X) = 0,∀X ∈ Γ((kerF∗)⊥). (42)
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For V,W ∈ Γ(kerF∗),X ∈ Γ((kerF∗)⊥), by (2.6) and (3.18), it is easy to obtain

(∇F∗)(W,V) = F∗(φTWφV) + F∗((∇Wφ)φV). (43)

One the other hand, by (3.14) and (2.11), we have

F∗(φ∇XφW) = (∇F∗)(X,W) − F∗((∇Xφ)φW).

Then, by (2.8) and (4.42), we get

(∇F∗)(X,W) = F∗((∇Xφ)φW) + F∗(φAXφW). (44)

Hence, proof comes from (2.12) (4.43) and (4.44).

Finally,we study the necessary and sufficient condition for anti-invariant Riemannian submersion such that
(kerF∗)⊥ = φ(kerF∗) ⊕ {ξ} to be harmonic.

Theorem 4.25. Let F is an anti-invariant Riemannian submersion from a nearly-K-cosymplectic manifold M(φ, ξ, η, 1M)
to a Riemannian manifold (N, 1N) such that (kerF∗)⊥ = φ(kerF∗)⊕{ξ}.Then F is harmonic if and only if trace(φTV) = 0,
for V ∈ Γ(kerF∗).

Proof. From [6] we know that F is harmonic if and only if F has minimal fibres. Thus F is harmonic if and

only if
k∑

i=1
Tei ei = 0, where k denotes the dimension of kerF∗. On the other hand, by (3,15), we get

H(φ∇VW) = φ(V∇VW), (45)

for V,W ∈ Γ(kerF∗). By (4.45) and some calculations, we obtain

TVφW − φTVW = V((∇Vφ)W).

Then, by (3.17), we have

k∑
i=1

1M(Teiφei,V) =

k∑
i=1

1M(φTei ei,V) +

k∑
i=1

1M((∇eiφ)ei,V)

= −

k∑
i=1

1M(Tei ei, φV)

for any V ∈ Γ(kerF∗). And by (2.9), we get

k∑
i=1

1M(φei,Tei V) =

k∑
i=1

1M(Tei ei, φV).

By (2.3) and (3.14), we have

k∑
i=1

1M(ei, φTVei) = −

k∑
i=1

1M(Tei ei, φV).

This completes the proof.
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