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Abstract. The center and the periphery of a graph are the sets of vertices with minimum and maximum
eccentricity, respectively. A graph is called almost peripheral (AP) if all its vertices but one lie in the
periphery. The r-AP index APr(G) of a graph G is the smallest number of vertices needed to add to G to
obtain an r-AP graph in which G lies as an induced subgraph. In this paper new, simplified constructions
of AP graphs are presented. It is proved that if r ≥ 2 and n ≥ 2, then APr(Kn) ≤ 4r − 3. Moreover, if G is not
complete and has at least three vertices, then APr(G) ≤ 4r − 4. In this way the previously best know bound
APr(G) ≤ 4r − 2 is improved.

1. Introduction

Graphs considered in this paper are finite and contain no loops or multiple edges. The distance dG(u, v)
between vertices u and v of a graph G is the shortest path distance. The eccentricity eccG(u) of vertex u is
max{dG(u, v) : v ∈ V(G)}. The radius rad(G) of G and the diameter diam(G) of G are the minimum and the
maximum eccentricity of the vertices of G, respectively. The center C(G) and the periphery P(G) are the sets
of the vertices of G of minimum and maximum eccentricity, respectively.

Central and peripheral vertices of graphs are of great importance in location theory and in investigations
of (large) networks. Consequently, different classes of graphs and networks in which the center and the
periphery have a special structure were introduced. These classes include self-centered graphs (alias
eccentric graphs) [1, 3, 4, 15], their generalization to graphs whose center is a k-distance dominating set [5],
and almost self-centered graphs [2, 8, 10]. The latter graphs (as well as almost peripheral graphs) turned
out to be extremal graphs for a newly introduced measure of non-self-centrality introduced and studied
in [17]. Eccentricity in graphs has also been studied from many additional aspects, cf. [6, 11, 13, 14, 16].
Finally, different derived graphs have been proposed based on the eccentricity such as radial graphs [7]
or the recently introduced graphs with a bit unfortunate name “eccentric graphs” (which are not eccentric
graphs in the above sense) [12].

2010 Mathematics Subject Classification. 05C12; 90B80
Keywords. eccentricity; diameter; almost peripheral graph; induced embedding
Received: 12 December 2016; Accepted: 27 April 2018
Communicated by Francesco Belardo
Research of SK supported by the Slovenian Research Agency (research core funding Nos. N1-0043 and P1-0297). KN and DS

thank the Department of Science and Technology (SERB), Government of India, for support through SB/EMEQ-119/2013.
Email addresses: sandi.klavzar@fmf.uni-lj.si (Sandi Klavžar ), kishori_pn@yahoo.co.in (Kishori P. Narayankar ),
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In this paper we are interested in almost peripheral graphs that were introduced in [9] and in part
motivated by location problems in which it is required that most of the resources do not lie in the center.
A graph G is called almost-peripheral, AP for short, if all but one of its vertices lie in the periphery, that is, if
|P(G)| = |V(G)| − 1 holds. If G is an AP graph with rad(G) = r then we will say that G is an r-AP graph.

We proceed as follows. In the next section we first give a new construction that from a given r-AP graph
and an arbitrary graph produces a new r-AP graphs. Then we present, for any integer r ≥ 1, an r-AP graph
of order 4r − 1. The present construction is significantly simpler than a related construction given in [10].
Then, in Section 3, we prove that the complete graph Kn can be embedded as a subgraph into an r-AP graph
H of order n + 4r− 3, and that an arbitrary graph of order n ≥ 3 that is not complete can be embedded as an
induced subgraph into an r-AP graph of order n + 4r − 4. This improves the best earlier such embeddings
from [10], where the host graph is of order n+4r−2. We conclude the paper with a couple of open problems.

Before we start, let us recall some additional concepts and notations needed. If x is a vertex of G, then
its closed neighborhood is denoted with N[x]. A subgraph H of a graph G is isometric if dH(u, v) = dG(u, v)
holds for any u, v ∈ V(H). The vertex deleted d-cube Q−d , d ≥ 1, is obtained from the d-cube Qd by removing
one of its vertices.

2. New constructions of AP graphs

If G and H are disjoint graphs and S ⊆ V(G), then let G⊕S H denote the graph obtained from the disjoint
union of G and H by adding a join between S and V(H), that is, adding an edge xy for each x ∈ S and
y ∈ V(H). In [9, Theorem 2.3] it was proved that if u is the center vertex of an r-AP graph G, r ≥ 1, then
G⊕{u}H is an r-AP graph for any graph H. We now prove a variation of this result that yields a much larger
class of AP graphs.

Theorem 2.1. If u is a peripheral vertex of an r-AP graph G, r ≥ 1, and H is a graph, then G ⊕N[u] H is an r-AP
graph.

Proof. Let u be an arbitrary vertex of G that is not the center vertex, and set K = G ⊕N[u] H. Let x and x′ be
arbitrary vertices of K and consider the following cases.

Suppose first that x, x′ ∈ V(G). Let P be a shortest x, x′-path. If P lies completely in G, then clearly
dK(x, x′) = dG(x, x′). Otherwise P contains a vertex y of H. Let z be the last vertex of P that is still in G and
let z′ be the first vertex of P after y that lies in G. Then z, z′ ∈ N[u]. Since P is a shortest path, we necessarily
have dG(z, z′) = 2 and consequently P contains the subpath z − y − z′. Replacing this subpath of P with
z − u − z′, a shortest x, x′-path in G is obtained that has the same length as P. In conclusion,

dK(x, x′) = dG(x, x′), x, x′ ∈ V(G). (1)

Assume next that x ∈ V(G), x , u, and x′ ∈ V(H). Let Q be a shortest x,u-path in G. If u′ is the neighbor of
u on Q ((it is possible that u′ = x), then clearly u′ ∈ N[u]. Since u′x′ ∈ E(K) we conclude that

dK(x, x′) = dG(x,u), x ∈ V(G), x , u, x′ ∈ V(H). (2)

We also clearly have

dK(x, x′) ≤ 2, x, x′ ∈ V(H). (3)

Since u is adjacent to every vertex of H, we infer from (1) that eccK(u) = eccG(u) = r + 1. In addition, from (1)
and (2) we get that eccK(x) = eccG(x) holds for every vertex x ∈ V(G), x , u. In particular, if z is the center
vertex of G, then eccK(z) = eccG(z) = r. Finally, from (2) and (3) we obtain that eccK(x) = eccG(u) = r + 1
holds for every vertex x ∈ V(H). Hence K is an r-AP graph with C(K) = {z}.

In [9] a question was posed whether there exist r-AP graphs of order n < 4r + 1 for r ≥ 4. A positive
answer to this problem was given in [10] by demonstrating that for any r ≥ 1 there exists an r-AP graph of
order 4r − 1. We reprove here this answer with a significantly simpler construction.
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Proposition 2.2. For any integer r ≥ 1 there exists an r-AP graph of order 4r − 1.

Proof. For r = 1 the path on three vertices is such a graph. Hence assume in the rest of the proof that
r ≥ 2. Let Gr be the graph constructed as follows. Start with a cycle C of length 4r − 2 and label its vertices
consecutively with v1, v2, . . . , v4r−2. Add a new vertex x and finalize the construction by adding the edges
xv1, xv2r−1, and vrv3r−1. The construction is illustrated in Fig. 1 on the graph r = 6.

v1
v6 = vr v11 = v2r−1

v12 = v2rv3r−1
v22 = v4r−2

x

C′ C′′

C′′′

Figure 1: The graph G6

It is straightforward to check that Gr is an r-AP graph with C(Gr) = {vr}. To verify this, define the cycles:

C′ = v1 − v2 − · · · − vr − v3r−1 − v3r − · · · v4r−2 − v1 ,

C′′ = vr − vr+1 − · · · − v2r−1 − v2r − v2r+1 − · · · v3r−1 − vr ,

C′′′ = v1 − v2 − · · · − v2r−2 − v2r−1 − x − v1 ,

(cf. Fig. 1 again) and note that they are all isometric cycles of length 2r. Since vr lies in C′ ∩ C′′ ∩ C′′′ and
these three cycles cover Gr we already get that ecc(vr) = r. To compute the other eccentricity it is useful to
observe that also the cycle

x − v2r−1 − v2r − v2r+1 − · · · − v4r−3 − v4r−2 − v1 − x

is isometric and that it is of length 2r + 2. So we are left with considering the distances between the
vertices from C′ and the vertices from C′′. It is straightforward to verify that dGr (vi, v3r−1−i) = r + 1 holds for
i = 1, . . . , r − 1 and that dGr (vi,w) ≤ r for any other vertex. Hence

ecc(vi) = ecc(v3r−1−i) = r + 1

holds for i = 1, . . . , r − 1. By symmetry, the same conclusion holds also for the remaining vertices to be
considered.

Note that the graph G2 constructed in Proposition 2.2 is the vertex-deleted 3-cube Q−3 .

3. Embeddings into r-AP graphs

If G is a graph and r a positive integer, then the r-AP index APr(G) of G is

APr(G) = min{|V(H)| − |V(G)| : H is r-AP graph,G induced in H} .

Clearly, APr(G) = 0 if and only if G is an r-AP graph. Moreover, if a graph G does not contain a unique
universal vertex (equivalently AP1(G) > 0), then adding a new vertex and joining it to all vertices of G
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yields an 1-AP graph. Consequently AP1(G) ≤ 1 holds for every graph G. For r ≥ 2 it was proved in [9]
that if G is an arbitrary graph on at least two vertices, then

AP2(G) ≤ 5 , (4)

where equality holds if and only if G is a complete graph. It was further shown that for every r ≥ 2 and
every graph G we have APr(G) ≤ 4r + 1. This result was improved in [10] by proving that if G is an arbitrary
graph, then

APr(G) ≤ 4r − 2 . (5)

Based on (5) it was asked in [10, Problem 4.1] whether for r ≥ 3 there exists a graph G with APr(G) = 4r− 2.
In the following theorem we answer this problem in negative.

Theorem 3.1. If r ≥ 2 and n ≥ 2 then APr(Kn) ≤ 4r − 3. Moreover, if G is not complete and has at least three
vertices, then APr(G) ≤ 4r − 4.

Proof. In our construction we will essentially use the graphs Gr, r ≥ 2, constructed in the proof of Proposi-
tion 2.2 (cf. Fig. 1). Let G be a graph and distinguish the following cases.

Case 1: G = Kn, n ≥ 2.
In this case let Hr,n be the graph obtained from Gr and (a disjoint copy of) Kn by identifying two vertices of
Kn with v3r−1 and v3r, respectively. Note that Hr,2 = Gr. The graph H6,5 is drawn in Fig. 2.

Figure 2: The graph H6,5

We claim that Hr,n is an r-AP graph. Clearly, the vertices of the complete subgraph Kn of Hr,n do not
decrease the eccentricities of the vertices from the subgraph Gr of Hr,n. Moreover, since each vertex of this
subgraph is at distance at most r from at least one of the vertices v3r−1 and v3r (for instance, dHr,n (x, v3r) = r),
we have eccHr,n (u) = eccGr (u) holds for any vertex u from the subgraph Gr of Hr,n. Finally, if v ∈ V(Kn)\V(Gr),
then dHr,n (v, x) = r + 1, so that eccHr,n (v) = r + 1. Hence Hr,n is an r-AP graph, where C(Hr,n) = {vr}. Since
|V(Gr)| = 4r − 1 it follows that APr(Kn) ≤ 4r − 3 holds for any r ≥ 2 and n ≥ 2.

Case 2: G contains an induced P3.
Let u, v, and w be the vertices of G that induce P3, where uw < E(G). Let X(r,G) be the graph obtained from
Gr and G by identifying the path u − v −w of G with the path v3r − v3r−1 − v3r−2 and joining vr by an edge to
every vertex of V(G) \ {u, v,w}. The graph X(r,G) is schematically shown in Fig. 3.

The eccentricities of the vertices of Gr do not change in Gr ◦G(uvw). Moreover, if z ∈ V(G) \ {u, v,w}, then
eccX(r,G)(z) = eccGr (vr) + 1 = r + 1. It follows that Hence X(r,G) is an r-AP graph and since |V(Gr)| = 4r − 1
we conclude that APr(G) ≤ (4r − 1) − 3 = 4r − 4.
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u v w

G

v6 = vr

Figure 3: The graph X(r,G)

The remaining case to consider is:

Case 3: G is a disjoint union of complete graphs.
Let G be the disjoint union of Kn1 , . . . ,Knk , where n1 ≤ · · · ≤ nk. Then we distinguish the following subcases.

Suppose first that nk = 1, that is, G is edge-less. Since |V(G)| ≥ 3, identify three vertices of G with three
independent vertices of Gr pairwise different from vr, and connect all the other isolated vertices of G with
vr. In this way G is embedded into an r-AP graph and hence APr(G) ≤ 4r − 4.

If nk = 2 and nk−1 = 1 (or if nk = 2 and nk−1 = 2), then identify the K2 and one independent vertex (or two
K2’s, respectively) of G with a corresponding induced subgraph of Gr and connect all the other vertices of
G with vr to reach the same conclusion.

Finally let nk ≥ 3. In this subcase construct first the graph Hr,n1 as in Case 1. Further, if nk−1 ≥ 2,
then identify one vertex of the component Knk−1 with v, and connect all the vertices of the other k − 2
components with v. Otherwise we have nk−1 = 1, in which case identify one isolated vertex with a vertex
of Gr independent from the vertices vr, v3r−1, and v3r, and connect all the other isolated vertices with vr.

The proof is completed by observing that in all the cases we have constructed r-AP graphs and conse-
quently APr(G) ≤ 4r − 4.

4. Concluding remarks

Note that the inequality (4) and its equality case imply that Theorem 3.1 is best possible for r = 2. Hence
we pose:

Problem 4.1. Is Theorem 3.1 best possible for r ≥ 3? More precisely:

(i) Is it true that APr(Kn) = 4r − 3 for r ≥ 3 and n ≥ 2?
(ii) Let r ≥ 3. Does there exist a non complete graph Xr such that APr(Xr) = 4r − 4?

The constructions from Theorem 3.1 in many cases yield graphs AP graphs with cut vertices. It would
be interesting to see if there exist related embeddings into 2-connected AP graphs.
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