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Abstract. This paper focuses on revising a production scheduling that an unpredictable disruption happens
after a subset of jobs has been processed. Under these circumstances, continuing with the original schedule
will not be optimal. This paper combines prospect theory and fuzzy theory to present a recovery model
to handle the disruption. The proposed model is different from most rescheduling approaches in that the
difference between the original schedule and the recovery schedule is contained by taking human behavior
into consideration. The computational result demonstrates that due to the tradeoff between all participators
involved in production scheduling, our model is more effective than existing rescheduling approaches.

1. Introduction

How to provide consumers with the satisfactory service is the major consideration for modern produc-
tion firms. Nevertheless, because of the complication of processing circumstances, random or unpredictable
events constantly happen in production scheduling. Hence, following the original schedule may not be
feasible, resulting in the failure of order fulfillment and consequent negative effects in customer services.
In the paper, the jargon disruption is used to illustrate the reasons that cause a rescheduling process.

Disruption management tries to adjust the original schedule dynamically and generate a new schedule
that reflects the changed environment while minimizing the deviation (Yu and Qi, 2004). In order to solve
the disruption, Qi et al. (2006) put forward a recovery model where both the original objective and deviation
cost were considered. Wang et al. (2011) studied parallel-machine scheduling problems with a deteriorating
maintenance activity. They obtained the revised sequence of jobs by minimizing total completion time.
Khedlekar et al. (2014) decided the production stage before and after disruption by solving the disruption
analytically in production scheduling system. Paul et al. (2015) presented the rescheduling model and
dynamic solution method to handle the disruption for production-inventory system.

Another stream of study relevant to our paper is rescheduling. Kasperski et al. (2012) dealt with
the two machine permutation flow shop problem under the condition that job processing are uncertain.
Shamshirband et al. (2015) proposed an improved genetic algorithm to cope with open-shop scheduling
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problem by considering the machine maintenance. Hosseinabadi et al. (2015) presented a new local search
algorithm to solve the multi-objective dynamic job-shop scheduling problem. Fazayeli et al. (2016) put
forward a hybrid algorithm to handle flowshop scheduling problem under machine breakdown.

The above researchers coped with disruptions by different ways. However, they assumed that humans
were perfectly rational and emphasized on the optimization of material and financial resources. Since pro-
duction scheduling system includes many participants, the existing researches overlooked these facts that
people facing the changed condition have different perceptions and obtained solution may be unavailable.

In the paper, a recovery model by taking human behavior into consideration is demonstrated. The paper
is organized as follows. Section 2 analyzes the effect of disruption and presents an approach combining
prospect theory and fuzzy theory to measure the deviation. Sections 3 and 4 construct the model for original
and recovery schedule. Section 5 presents an improved ant colony optimization (IACO) to generate recovery
schedule effectively. Section 6 demonstrates the validity of our approach. Eventually, Section 7 provides
the conclusions.

2. Approach of measuring deviation based on prospect theory and fuzzy theory

2.1 Impact of disruption
For the purpose of obtaining a recovery schedule to minimize the negative impact, the effect of disruption

on different participators should be analyzed to measure the deviation.
As is known, the process of one schedule is as follows: 1©managers of production enterprises generate

an optimal schedule according to the requirements of customers, 2©workers execute the schedule to process
jobs, and then 3© customers receive their products within the required time. The impact of disruption on
the above three participators (i.e., customers, managers, and workers) is analyzed below.

(1) Customers. The completion time of unprocessed jobs will be affected by the disruption, and a number
of customers will not be served within the required time. Thus, the recovery schedule should reduce the
deviation of completion time to improve the satisfaction and loyalty of customers.

(2) Managers. After disruption occurs, the processing sequence of unprocessed jobs will be changed,
leading to the increase of makespan. Because the makespan is relevant to the operational cost, minimizing
the makespan of unprocessed jobs is the key objective of managers when generating the recovery schedule.

(3) Workers. The original schedule may no longer be feasible after disruption occurs. Considering that
many preparations have been made in advance, disruption leads to the increase of extra workload. There-
fore, the recovery schedule should minimize sequence deviation to reduce negative impact on workers.
2.2 Approach of measuring deviation

Determining how to generate the recovery schedule is relevant to human perception because production
scheduling is a typical human-machine system. Prospect theory is able to perfectly describe the decision
making based on bounded rationality under the uncertainty condition. Hence, prospect theory is used to
measure the subjective value of participators.

(1) Description of value function
The value function of the i-th participator is described as follows (Tversky and Kahneman, 1992):

Vi(x) =

xαi , x > 0

−λi(−x)βi , x < 0
i = 1, 2, · · · ,n (1)

Where αi, βi, and λi are the parameters related to gains and losses.
(2) Formulation of unsatisfied membership function
Given that humans are subjective, the perception facing the disruption is fuzzy. Hence, we need to

tackle the value function by fuzzy theory as follows.
Suppose the unsatisfied membership function of xi is µi(xi) and the reference point of the i-th participator

is Oi. In particular, gains or losses are confirmed relative to the reference point. If humans maintain the
status quo and do not make a decision facing a new situation, then the value will be zero. Therefore, the
status quo is regarded as the reference point. According to Formula (1):

µi(xi) = −Vi(−xi + Oi) = −[−λi(−(−xi + Oi))βi ] = λi(xi −Oi)βi (2)
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µi(xi) = 1 denotes losses for human. When µi(xi) = 1, xi = Oi + (1/λi)1/βi .
Suppose Ri = Oi + (1/λi)1/βi . µi(xi) can be expressed as follows:

µi(xi) =


1 , xi > Ri

λi(xi −Oi)βi , Oi 6 xi < Ri

0 , 0 6 xi < Oi

i = 1, 2, · · · ,n (3)

3. Model for original schedule

Considering its wide application in production and manufacturing industries, the Job-shop Scheduling
Problem (JSP) is chosen as an example in the paper.
3.1 Problem definition

The problem is confined to the following conditions. Given n jobs, each job includes m operations and
must be processed on m machines. The objective is to obtain a schedule of minimal time to complete all
jobs, where

(1) one job can only be processed on the machine each time;
(2) every job is feasible for processing at time 0; and
(3) once processing is initiated, the operation must be completed on the machine without interruption.

3.2 Notations
n: the number of jobs;
m: the number of machines;
V: the set of jobs, V={v1, v2, . . . , vn};
U: the set of machines, U={u1, u2, . . . , um};
cik: completion time of job i on machine k;
pik: processing time of job i on machine k;
di: due date of vi;
M: a large positive number;

aihk =

{
1, vi is processed in uh before uk

0, otherwise
;

xi jk =

{
1, vi is processed before v j in uk

0, otherwise
.

3.3 Mathematical model
The JSP model is constructed as follows:

min max
16k6m

{max
16i6n

cik} (4)

c jk − p jk + M(1 − xi jk) > cik i, j = 1, 2, · · · ,n; k = 1, 2, · · · ,m (5)

cik − pik + M(1 − aihk) > cih i = 1, 2, · · · ,n; h, k = 1, 2, · · · ,m (6)

di 6 max
16k6m

cik i = 1, 2, · · · ,n (7)

The objective function (4) aims to minimize the makespan. Formulas (5) and (6) are the technological
and processing constraints. Formula (7) ensures that all jobs are completed before their due date.
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4. Recovery model for production scheduling

4.1 Problem hypothesis
This study hypothesizes that when disruption occurs in JSP:
(1) the original schedule is known,
(2) the time at the end of disruption is regarded as 0, and
(3) the processing job when disruption occurs has to be reprocessed after the disruption ends. That is to

say, jobs are non-resumable.
4.2 Notations

w: the number of unprocessed jobs;
V′: a subset of unprocessed jobs, V′={v1, v2, . . . , vw};
A1

i j: the set of operations processed before operation j in the original schedule for machine i;
A2

i j: the set of operations processed after operation j in the recovery schedule for machine i;
Ai j: the intersection of A1

i j and A2
i j, Ai j = A1

i j

⋂
A2

i j;

Ai j: the cardinality of subset Ai j;

1: the sequence deviation between the original schedule and the recovery schedule, 1 =
m∑

i=1

w∑
j=1

Ai j;

c0
i : completion time of vi in the original schedule, c0

i = max
16k6m

cik ;

ci: completion time of vi in the recovery schedule;
f 0: the makespan in the original schedule;
f : the makespan in the recovery schedule;
µi

1: unsatisfied degree of customer i for completion time deviation;
µ2: unsatisfied degree of managers for operational cost deviation;
µ3: unsatisfied degree of workers for sequence deviation;
α1, α2, α3: parameters related to gains for customers, managers, and workers, respectively;
β1, β2, β3: parameters related to losses for customers, managers, and workers, respectively;
λ1, λ2, λ3: loss aversion coefficient for customers, managers, and workers, respectively.
The other notations are the same as the ones in above sections.

4.3 Function of measuring deviation
(1) Measuring the deviation of customers
As discussed in Section 3, the value function of customer i can be described as follows:

Vi
1(x) =

xα1 , x > 0

−λ1(−x)β1 , x < 0
i = 1, 2, · · · ,w (8)

Where the reference point is c0
i . ci > c0

i means losses (x < 0) for customer i; otherwise, it means gains (x > 0)
for customer i.

According to Formula (3), the unsatisfied membership function of customers for completion time
deviation can be given as follows:

µi
1(ci) =


1 , ci > R1i

λ1(ci − c0
i )β1 , c0

i 6 ci < R1i

0 , 0 6 ci < c0
i

i = 1, 2, · · · ,w (9)

Where R1i = [c0
i + (1/λ1)1/β1 ](i = 1, 2, · · · ,w).

(2) Measuring the deviation of managers
As discussed in Section 3, the value function of managers can be constructed as follows:

V2(x) =

xα2 , x > 0

−λ2(−x)β2 , x < 0
(10)
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Where the reference point is f 0. f > f 0 means losses (x < 0) for managers; otherwise, it means gains (x > 0)
for managers.

According to Formula (3), the unsatisfied membership function of managers for operational cost devia-
tion can be given as follows:

µ2( f ) =


1 , f > R2

λ2( f − f 0)β2 , f 0 6 f < R2

0 , 0 6 f < f 0

(11)

Where R2 = f 0 + (1/λ2)1/β2 .
(3) Measuring the deviation of workers
As discussed in Section 3, the value function of workers can be constructed as follows:

V3(x) = −λ3(−x)β3 , x < 0 (12)

Where the reference point is 0 because the sequence deviation does not exist in the original schedule. 1 > 0
means losses (x < 0) for workers.

According to Formula (3), the unsatisfied membership function of workers for sequence deviation can
be given as follows:

µ3(1) =

1 , 1 > R3

λ31
β3 , 0 6 1 < R3

(13)

Where R3 = (1/λ3)1/β3 .
4.4 Recovery model

Lexicographic goal programming (LGP) is one of the important ways to handle multi-objective opti-
mization problems (Farahani et al., 2010). The approach is suited for coping with the recovery model since
the decision maker need to prioritize the objectives under different circumstances.

On the basis of the above functions of measuring deviation, the objective function of the recovery model
is constructed through LGP as follows:

min Lex = P1 :
w∑

i=1

µi
1(ci) P2 : µ2( f ) P3 : µ3(1) (14)

Formula (14) aims to minimize the sum of the unsatisfied degrees of customers, managers, and workers.
P1, P2, and P3 represent the different priorities, which can be adjusted under different circumstances.

5. IACO for the recovery model

The proposed model is NP-hard, which has an optimal solution that is difficult to obtain. Ant colony
optimization (ACO) is an efficient algorithm to solve NP-hard problems (Dorigo and Blum, 2005). However,
the algorithm still has the weaknesses of premature convergence and low search speed. In this study, we
illustrate an IACO to solve the recovery model.
5.1 Introduction of adjusting the pheromone trail

(1) In ACO, pheromone trails left by ants do not always show the evolutionary direction, and the
pheromone deviating from the optimal solution has the probability of increasing, which leads to premature
convergence. This study proposes an approach to enhance the global search capability of ACO by adjusting
the pheromone trail adaptively with the evolutionary process. The proposed approach can search the
solution space further when the search gets trapped in the local optimum.

(2) The updated pheromone trail in the path may reach the maximum value τmax or minimum value τmin
after every search process is completed. τmax will become trapped in the local optimal solution, and τmin
will increase the computational time. Thus, IACO limits the pheromone trail τi j in the interval (τmin, τmax).
After the pheromone trails are updated, τi j is replaced by τmax when τi j > τmax, or by (τmin + τmax)/2 when
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τi j < τmin. Moreover, the pheromone trail at the initial search is deliberately set to τmax, which is subject to
finding a better solution.

(3) ACO has difficulty obtaining the optimal solution because the trail persistence ρ is fixed. The smaller
the ρ is, the better the global optimization will be. However, the computational time to search the solution
space will increase. In contrast, increasing ρ can improve the computational time, but the probability of
selecting unsearched paths will decrease, which is easily trapped in local optimum. Therefore, IACO uses
a dynamic ρ rather than a fixed value.
5.2 Approach of the crossover and mutation

Crossover and mutation operations can increase the variance of the population and search the solution
space completely in genetic algorithm (GA). Thus, they are adopted to avoid premature convergence.

(1) Crossover operation
In the paper, a schedule s is represented as follows:

s = {s1, s2, · · · , sw} = {(solu1, · · · , solum), (solum+1, · · · , solu2m), · · · , (solu(w−1)m+1, · · · , soluwm)} (15)

Where si denotes the sequence of operations of job i = 1, 2, · · · ,w. Each solu in si is an unrepeated integer
number in the interval [1,w].

When the search is trapped in the local optimal solution, crossover operation is conducted as follows.
1© Assume that encoding of schedule a is {a1, a2, · · · , aw} and encoding of schedule b is {b1, b2, · · · , bw}.
2© Randomly generate an integer number j in the interval [1,w]. Then, exchange a j and b j, and generate

two new encodings, that is {a1, a2, · · · , b j, · · · , aw} and {b1, b2, · · · , a j, · · · , bw}.
3© Update the encoding of optimal solution.
(2) Mutation operation
Mutation plays a significant part in improving the diversity of the population. Similar to GA, IACO

is designed to avoid local optimization and obtain a better result by significantly decreasing pheromone
trails in any path of the local optimization routing. These paths will also be selected by small probabilities
because too many mutation operations can damage the distribution of pheromone trails in the previous
solutions. Consequently, the search will be led to the wrong direction.
5.3 Combination with other heuristics

Exchange mechanism is originally applied in vehicle scheduling problem. It can obtain a new solu-
tion from the current solution by exchanging the nodes. We demonstrate that a neighborhood exchange
mechanism based on the exchange mechanism can significantly improve the convergence speed of ACO.

(1) Operators of the neighborhood exchange mechanism
Two operators are included as follows.
1© Random swaps of subsequences. The operator randomly selects i and j with i , j and swaps si and

s j in the solution sequence.
2© Random insertions of subsequences. The operator randomly selects i and j with i , j and puts s j in

front of si.
(2) Rule of the neighborhood exchange mechanism
To avoid destroying the distribution of the previous pheromone trails, one neighborhood operator is

chosen randomly from the above two operators and applied once to the current solution.

6. Numerical examples

We carry out experiments to illustrate the effectiveness of IACO and recovery model presented in the
previous sections.
6.1 Computational experiment for IACO

(1) Computational results
The IACO is tested using the classical sets of JSP, which are TA (Taillard, 1994) and DMU (Demirkol et

al., 1997). Five instances are selected randomly from each set. For each instance, the proposed algorithm is
independently executed 10 times to compute the average value. We then conduct a performance comparison
between IACO and other heuristics, including i-TSAB (Nowick and Smutnicki, 2005), GES (Pardalos and
Shylo, 2006), and AlgFix (Pardalos et al., 2010). Table 1 shows the computational results.
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Table 1 Computational results for different instances
Algorithm TA05 TA11 TA20 TA37 TA43 DMU12 DMU26 DMU45 DMU61 DMU77

i-TSAB 1224 1361 1351 1778 1859 3519 4679 3321 5294 6930
GES 1224 1357 1348 1779 1870 3518 4667 3273 5293 7006

AlgFix 1224 1358 1348 1784 1869 3522 4688 3273 5310 6949
IACO 1224 1357 1348 1779 1858 3520 4665 3275 5277 6908

(2) Comparison among different heuristics
The comparisons obtained from the above results are demonstrated as follows.
1© Compared with i-TSAB, IACO obtains better or close solutions in 8 out of 10 problems (80%).
2© Compared with GES, IACO obtains better or close solutions in 8 out of 10 problems (80%).
3© Compared with AlgFix, IACO obtains better or close solutions in 9 out of 10 problems (90%).
The comparison shows that the IACO is competitive with the existing heuristics. Moreover, it can

improve the best solutions known for a number of examples, especially for large size problems, such as
DMU61 and DMU77.
6.2 Computational experiment for the recovery model

(1) Case description
In the given job shop, n = 6 and m = 6. The parameters of each job are shown in Table 2. The makespan

of original schedule is 55h.

Table 2 Parameters of each job
Job 1 Job 2 Job 3 Job 4 Job 5 Job 6

Operation 1 M4:T1 M5:T8 M4:T5 M5:T5 M4:T9 M5:T3
Operation 2 M6:T3 M4:T5 M3:T4 M6:T5 M5:T3 M3:T3
Operation 3 M5:T6 M2:T10 M1:T8 M4:T5 M2:T5 M1:T9
Operation 4 M3:T7 M1:T10 M6:T9 M3:T3 M1:T4 M6:T10
Operation 5 M1:T3 M6:T10 M5:T1 M2:T8 M6:T3 M2:T4
Operation 6 M2:T6 M3:T4 M2:T7 M1:T9 M3:T1 M4:T1

Due date 60h 56h 60h 65h 55h 50h
Note: Mi:T j means that the process time of the job’s operation is j hours on machine i.

(2) Computational results
After 10h, the disruption suddenly occurs and the duration time is 3h. The remaining jobs, including

the processing job when disruption occurs, must be reprocessed after the disruption ends.
Following Tversky and Kahneman (1992), we set β = 0.88 and λ = 2.25. Table 3 shows the results

obtained by our model, total rescheduling, and right-shift rescheduling (Abumaizar and Svestka, 1997).

Table 3 Results from different approaches
Customers’ deviation Managers’ deviation Workers’ deviation

Our model 2 1 5
Total rescheduling 3 1 4

Right-shift rescheduling 6 1 0

(3) Comparison among different approaches
The results obtained from Table 3 can be demonstrated as follows.
1© From the aspect of the deviation of customers, the result of our model is much better than the results

of the other two approaches. In other words, our model plays an obvious role in reducing the unsatisfied
degree of customers.

2© From the aspect of the deviation of managers, our model, total rescheduling, and right-shift reschedul-
ing obtain the same result. This is a valuable result, because our approach removes the perceived main
advantage of total rescheduling.
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3© From the aspect of the deviation of workers, right-shift rescheduling obtains the best result. This is
because of the fact that it is a simple global shifting for original schedule. The results from our model and
total rescheduling are relatively poor.

In summary, compared with the other two rescheduling approaches, our model increases the deviation
of workers. By contrast, our model decreases the deviation of customers, and thus significantly improves
customer satisfaction. Furthermore, the production enterprise is subject to improving the loyalty of cus-
tomers to expand the influence and attract more new customers. Such improvement helps enhance the
potential profit and promote the development of enterprise in the long run. Therefore, our model is more
reasonable than the other two approaches.

7. Conclusions

Situations that cause deviation in human behavior may occur in production scheduling, which may fail
to cope with the situation using the existing approach. This study provides a recovery model by combining
prospect theory with fuzzy theory to effectively find a new schedule to minimize the negative impact of
the disruption on the participators (customers, managers, and workers). Meanwhile, an IACO is presented
to solve the above model. From a theoretical perspective, this study provides a useful tool to obtain the
schedule that minimizes the negative impact by considering human behavior. From a practical perspective,
the proposed model can be used in many other fields, such as flight scheduling and berth planning.

A limitation of this research is that we conducted the computational experiment for the recovery model
by adopting the values of β and λ provided by Tversky and Kahneman (1992). Further research will
concentrate on deriving the actual values of those parameters in production scheduling.
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