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Abstract. Dimensionality reduction, including feature extraction and selection, is one of the key points for
text classification. In this paper, we propose a mixed method of dimensionality reduction constructed by
principal components analysis and the selection of components. Principal components analysis is a method
of feature extraction. Not all of the components in principal component analysis contribute to classification,
because PCA objective is not a form of discriminant analysis (see, e.g. Jolliffe, 2002). In this context,
we present a function of components selection, which returns the useful components for classification by
the indicators of the performances on the different subsets of the components. Compared to traditional
methods of feature selection, SVM classifiers trained on selected components show improved classification
performance and a reduction in computational overhead.

1. Introduction

In recent years, internet resources have seen rapid growth, and information available on the web is
increasingly rich. Information media have diversified and grown in recent years, including in the formats
of text, sound, animation, image, and video. Although multimedia information frequently appears on a
variety of websites, text will always be a main component of webpages (see, e.g. CNNIC, 2017).

Machine learning, described by Minsky (1969) and Christopher (2007), is the field of artificial intelligence
that solves the problems of effective learning by computer and information processing, which imitate
human learning processes and experiences.Machine learning endows computers with abilities in automatic
learning, rather than being indirectly programmed for a task. Alongside increases in training knowledge
and experience, computer programs have seen automatic improvements in information processing capacity.
Users are able to obtain insight and interpretation results that are closer to facts and objectives from learning
models and data based experiences (see, e.g. Mitchell, 2014).

Under the machine learning model (see, e.g. Rumelhart, 1986; Quinlan, 1993; Vapnik, 1998; Hinton,
2015; Sudderth, 2015), marked text is input into the model for training to obtain a stable classifier. Then one
category for unmarked text is determined on the trained machine learning model. Text auto-classification
technology is a process of text auto-classification based on the features of class-unknown text under a

2010 Mathematics Subject Classification. Primary 68U15; Secondary 68T05.
Keywords. Principal components analysis; Dimensionality reduction; Text classification.
Received: 28 August 2017; Accepted: 30 January 2018
Communicated by Hari M. Srivastava
Supported by Science Foundation of China University of Petroleum-Beijing At Karamay under Grant No. RCYJ2016B-03-001
Email addresses: yangwuzh@cupl.edu.cn (Yangwu Zhang), lgh1022@sina.com (Guohe Li), hengz@cupl.edu.cn (Heng Zong)



Y. Zhang et al. / Filomat 32:5 (2018), 1499–1506 1500

given classification system. It has wide application prospects in the fields of natural language processing,
information retrieval, mail classification, topic tracking, and digital libraries (see, e.g. Tan, 2006; Shang,
2007).

2. Text classification problems

Traditional manual text classification has great difficulties in scenarios where there is a large amount of
text. Manual text classification requires a great deal of manpower in the form of field experts and knowledge
engineers. This reliance on humans means that it is hard to guarantee the correctness and identity of rules.
Automatic text classification would address these issues. The Vector Space Model (VSM) expresses text as
a single vector in the space of high dimension feature words (see, e.g. Chen, 2016; Haddoud, 2016; Junejo,
2016). Each vector dimension represents the weight of the corresponding word that has been marked and
sorted in the dictionary in the text, i.e. the weight of the feature word. Originally the weight of the feature
word was expressed by term frequency (TF). Then term frequency and inverse document frequency were
used to indicate the weight of the feature word (TF-IDF). The vector space model was built by transforming
the problem of text classification into a calculation problem using the similarity of vectors in vector space
to express semantic similarity (see, e.g. Salton, 1975, 1983; Smith, 2015), which is simple, intuitive, and easy
to understand.

In text preprocessing, we find that text vector space is a sparse matrix of high dimensional features,
which causes long processing times for classification and curse of dimensionality. Therefore, it seems
important to reduce the feature dimension. There are currently two methods used to reduce the feature
dimension: feature selection and feature extraction (see, e.g. Kilic, 2015). Feature selection selects features
that have the best ability to distinguish categories based on certain rules to form a new subset in the original
feature space. Feature extraction maps the original high-dimensional feature space to low-dimensional
space. This change retains the information for distinguishing categories between the original feature space
and the low-dimensional space.

3. Component selection in principal components analysis

3.1. Method of principal component analysis
In statistics, in order to solve problems objectively, various influential factors must be comprehensively

analyzed. These factors form high-dimensionality vectors. These high-dimensionality vectors reflect cer-
tain information for studying data in different degrees. When there is a certain level of correlation between
two space vectors, it can be assumed that the two vectors contain overlapping information. Principal com-
ponent analysis (PCA) (see, e.g. Jolliffe, 2002) is a mathematical method of converting a high-dimensionality
vector with correlation into a group of linear uncorrelated low-dimensionality vectors by orthogonal trans-
formation (see, e.g. Jonathon, 2014; Srivastava, 2011).

Principal component analysis uses an orthogonal transformation to convert related original high di-
mension space into new low dimension space. The orthogonal transformation transforms the covariance
matrix of the original random vector into a diagonal form matrix through algebra. xi represents the i − th
sample in the dataset. n is the dimensionality of the feature space. Text samples preprocessed on the basis
of the vector space model constitute a matrix X, whose entries of xi j are the feature values of corresponding
word j in the dictionary, i.e. the j − th dimension of the sample of i. Therefore, xi is denoted as:

xi = (xi1, xi2, · · ·, xin). (1)

X needs to perform a matrix transformation for its centered version. The standard transformation should
be performed on the data set. Therefore, the mean and the variance of the column vector of j are:

x̄ j =
∑m

i=1 xi j

m , (2)

s j
2 =

∑m
i=1(xi j−x̄ j)2

m−1 . (3)
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In which, m is the quantity of samples or row vectors in the matrix, x̄ j is the mean value of the j − th
dimension column vector, and s j

2 is the variance of this vector. Finally, the standardized data set is:

Zi j =
xi j−x̄ j

s j
, i = 1, 2, · · ·,m; j = 1, 2, · · ·,n. (4)

It should be noted that principal component analysis searches for the projected direction of the maximum
deviation. When v is assumed to be the unit column vector of the maximum deviation, the objective
function is:

ar1maxv
1
2

∑m
i=1

1
m−1 (Ziv)2, (5)

Which yields:

vTv = 1. (6)

The Lagrange multiplier is constructed from:

L(v) = 1
2

∑m
i=1

1
m−1 (Ziv)2 + λ(1 − vTv). (7)

We can solve the partial derivative and obtain the equation of the covariance matrix:

|Cov − λI| = ~0, (8)

where

Cov = 1
m−1 (ZT

× Z). (9)

From Eq. (8) and Eq. (9) we find that the maximum deviation direction corresponds to the eigenvector of
the maximum eigenvalue of covariance matrix. In fact, the covariance matrix Cov is the matrix of n × n,
whose rank is assumed as K:

Rank(Cov) = K. (10)

Thus, its quantity of eigenvectors is K, and eigenvalues fit:

λ1 ≥ λ2 ≥ · · · ≥ λK > 0, (11)

V = [v1 v2 · · · vK]. (12)

It is clear that the eigenvector of v1 corresponds to the eigenvalue ofλ1 and the variance of v1 is the maximum,
followed by that of v2, and so on. Therefore, v1 is called the first principal component while v2 is called
the second principal component. In view of the optimum classification intervals, small sample intervals
appear between the same class while large intervals emerge between the different classes. Therefore, the
maximum deviation of the first principal component reflects that information loss is at the minimum (see,
e.g. Louis, 1995; Nils, 2005; Liu, 2009). The first few Principal Components (PCs) of a set of components
are derived vectors with optimal properties in terms of approximating the original Vector Space Model.
Criteria for selecting components are often ill-defined, and may produce inappropriate subsets. Indications
of the performance of different subsets of the components are adopted as described below. These criteria
are used in a stepwise selection-type algorithms to choose good subsets (see, e.g. Jolliffe, 2002).

3.2. Method of principle components selection

Normally, there are tens of thousands of feature words in text classification. As mentioned above, the
number of all principal components is K, which is far less than N of N-dimensions and also less than or



Y. Zhang et al. / Filomat 32:5 (2018), 1499–1506 1502

equal to m of the sum of all samples. Then, the calculation of the accumulative contribution rate of the top
components can be performed using Eq. (11) and the accumulative contribution rate (ACR) is defined as:

ACR(p) =
∑p

i=1 λi∑k
i=1 λi

, p = 1, 2, · · ·,K. (13)

Since the monotonicity of the ACR function is increasing, the independent variable p should be assigned
appropriate values to make sure the accumulative contribution rate reaches a higher level. Two factors
determine which components are chosen. It should be guaranteed that the component is beneficial for
classification, and the component should not introduce noise. When the accumulative contribution rate
reaches a certain level, the classification interval information in the selected principal components maintains
the most important information of the original feature space. Further, there might be an introduction of
noise which misleads samples.

The method mentioned above consists of two steps. In the first step, from the original Vector Space
Model, we divide the dataset into three parts: train set, validation set, and test set, and then we project
N-dimensional original space onto K-dimensional extracted space, which follows as Eq. (14). Generally, it
is assumed that the sample size of the train set is K1, the sample size of the validation set is K2, and the
sample size of the test set is K3. Here, the sum of K1,K2,and K3 is equal to m. The dataset is defined as:

Ytrainset = XtrainsetV = [Xtrainset v1 Xtrainset v2 · · · Xtrainset vi · · · Xtrainset vK1NZ],
Yvalidationset = XvalidationsetV = [Xvalidationset v1 Xvalidationset v2 · · · Xvalidationset vi · · · Xvalidationset vK2NZ],

Ytestset = XtestsetV = [Xtestset v1 Xtestset v2 · · · Xtestset vi · · · Xtestset vK3NZ]. (14)

Xtrainset means that the dataset is the original word vector space model for training. Ytrainset denotes that
the dataset is a mapping space by PCs(principal components selection), and used for training. Xvalidationset
means that the dataset is the original word vector space model for validating. Yvalidationset denotes that the
dataset is a mapping space by PCs for validating. Xtestset means that the dataset is the original word vector
space model for testing. Ytestset denotes that the dataset is a mapping space by PCs for testing. vK1NZ means
that its eigenvalue is minimum but greater than zero in the train set, and vK2NZ validation set, vK3NZ test
set. Then, the classifier is trained on the matrix of Ytrainset. Next, samples from the validation dataset are
classified by the classifier. We obtain classification performance of the classifier on all of the components.

The second step depends on the evaluation of classification performance to determine whether or not
to choose a specific component. The selection of the principal component adopts indices of classification
performance to evaluate the contribution of the component for classification in top K dimensions overall.
The components remain which can promote the classification performance of the classifier and the principal
components that will disturb the classification are deleted. The result of selection of principal components
is one subset of original dataset, i.e. the samples matrix of K-dimensional space. In fact, the corresponding
column vectors are reduced for the negative principal components.

Usually the interpretation of principal components is more or less fuzzy, unlike the original vector
interpretation, which is clear and exact. However, it is hard to seek an optimal solution in a large original
feature space. In order to obtain the best results, we need to create a list of useful classification components.
Enumeration and heuristic strategies are useful for this. The enumerable range lies in combinations
of selecting components from all of the components. Taking into consideration that the corresponding
eigenvalues of all of the components are decreasing, we sort all the components by their eigenvalues. The
value of enumeration is one of the Yp train subset when p is assigned from one to K. Yp train and Yp validation are
defined as:

Yp train = XtrainsetVp = [Xtrainset v1 Xtrainset v2 · · · Xtrainset vi · · · Xtrainset vp],
Yp validation = XvalidationsetVp = [Xvalidationset v1 Xvalidationset v2 · · · Xvalidationset vi · · · Xvalidationset vp]. (15)

Here, Yp train means that K1 samples of the train set are projected on the top p components. Yp validation means
that K2 samples of the validation set are projected on the top p components. Yp train is the p-dimensional
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subspace in K-dimensional total space of all the components when p = 1, 2, · · ·,K. Yp train is the union:

Y1 train = [Xtrainset v1],
Y2 train = [Xtrainset v1 Xtrainset v2],

...

YK train = [Xtrainset v1 Xtrainset v2 · · · Xtrainset vi · · · Xtrainset vK],
Y1 validation = [Xvalidationset v1],
Y2 validation = [Xvalidationset v1 Xvalidationset v2],

...

YK validation = [Xvalidationset v1 Xvalidationset v2 · · · Xvalidationset vi · · · Xvalidationset vK]. (16)

Here, Y1 train means that K1 samples of the train set are projected on the top 1 component. Y2 train means
that K1 samples of the train set are projected on the top 2 components. Then, the classifier is trained on
Y1 train. We now classify Y1 validation. Therefore, we can obtain corresponding classification performance CPt1,
which means the classification performance on the model of the top component. CPtp means classification
of performance on the model of the top p components. The remaining can be deduced in the same way,
accordingly, the list of CPt1,CPt2, · · ·,CPtp, · · ·, CPtK is output from the model on different combinations of
top components sorted by eigenvalues. ACR(p) is calculated by Eq. (13) when p = 1, 2, · · ·,K. If we choose
it as a horizontal coordinate, the performance CPtp on the top p components is a longitudinal coordinate. If
the trend of this curve is at its lowest at a point whose horizontal coordinate is equal to ACR(p), then the
p − th component has disrupted the classification. The p − th component should be deleted from the list of
sorted components. Therefore, the function of selecting the components is constructed as:

fpcs(l) = {1, 2, · · ·,L} −
∑L

i=2{i|CPi−1 − CPi ≥ threshold}. (17)

Here, fpcs(l) is the function whose return value is the list of the index of components by Eq. (17). In other
words, fpcs(l) means that the i − th component is removed from the top L components when the i − th
component satisfies CPi−1 −CPi ≥ threshold. CPi refers to the classification performance on the model of top
i components. U is the set of two-tuples whose elements are two-tuples, which is defined as :

U = {(p,E(p))|p ∈ 1, 2, · · ·,K}. (18)

E(p) represents the list of components by selection on the top p components, and identifies the subset of
components which best approximate the full top p set of components (see, e.g. Jolliffe, 2002).

4. Experiments

4.1. Text data set

The 20 Newsgroups collection is the standard data set for experiments in text applications of machine
learning techniques, including text classification and text clustering. In order to make the experimental
results universal and repeatable, the 20 Newsgroups data set is adopted in the experiments. The 20
Newsgroups data set contains 18,828 pieces of documents from 20 different news groups. The directory
of the dataset includes one metadata set and three subdirectories, i.e. test, train, and raw, in which, the
proportion of test data stands at 60% and that of train data is 40% (see, e.g. Jrennie, 2008). We selected
2,189 pieces of documents as the data set for experiments. The documents consist of a total of 14,257 words
after text segmentation. According to the English dictionary in the natural language processing toolkit in
python, there are 9,974 words remaining after the non-English words are removed by python.
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4.2. Experimental results
Support Vector Machine (SVM) is chosen as the classifier for the experiments. SVM obtains the minimum

structural risk to improve the ability of model learning and generalization by searching for the maximum
margin hyperplane (see, e.g., Vapnik, 2006; Tsochantaridis, 2005; Joachims, 2006, 2009; Chapelle, 2012;
Swaminathan, 2015;Tanveer, 2017). Performance evaluation of the classifier on the dataset includes the
precision, recall, and F-measure using the confusion matrix given in Table 1.

Table 1: Confusion matrix
Confusion matrix Predicted As

Positive Negative
Actual result True TP FN

False FP TN

Here, precision is the portion of correctly classified positives (true positives) out of all instances classified as
positive, reflecting the probability of success when one sample is predicted as positive. Recall (also called
the true positive rate or sensitivity) is the percentage of true positives of all actual positives. Precision and
Recall are individually defined as:

Precision = TP
TP+FP , (19)

Recall = TP
TP+FN . (20)

The traditional F-measure or balanced F-score (F1 score) is the harmonic mean of precision and recall, which
gives the precision and the recall equal weight, such as:

F1 =
2×p×r

p+r . (21)

According to the text vector space model, samples from the 20 newsgroups dataset are mapped into a feature
space using python, which is denoted as X to show the m×n sample data matrix in Eq.(1). X includes three
parts: train set Xtrainset, validation set Xvalidationset, and test set Xtestset. If SVM is trained directly on Xtrainset and
the validation set of Xvalidationset is performed by SVM, the precision is 85%. Using PCA transformation from
high-dimensional space to low-dimensional space, i.e. [coefftrainset, score, latent]=princomp(Xtrainset) in
MATLAB, N-dimensional feature space is transformed to K-dimensional space in Eq.(12). Here, coe f ftrainset
is the matrix of full components of Xtrainset. A coeff matrix column is a component which is a unit column
vector. All the columns in coeff matrix are ordered by corresponding eigenvalues. coe f ftrainset(:, 1 : p)
means the subset of the top p column in coe f ftrainset. We train the support vector machine classifier on
Xtrainset × coe f ftrainset(:, 1 : p) when p ranges from 1 to K, where K ≥ min(K1NZ,K2NZ,K3NZ). We achieve
K classifiers denoted by Classi f ier1,Classi f ier2, ...,Classi f ierp, ...,Classi f ierK (see Eq.(14) and (15) ). Then, the
validation set of Xvalidationset × coe f ftrainset(:, 1 : p) is performed by Classifierp when p ranges from 1 to K. The
classification performance is shown in Table2.

Table 2: Relationship between classification performance and top components
Top 1 2 3 4 5 6 7 8 9 10 26 35 65 78 100 131 132

Precision 0.53 0.55 0.56 0.57 0.66 0.67 0.67 0.64 0.64 0.70 0.90 0.81 0.93 0.85 0.94 0.93 0.66
Recall 0.22 0.29 0.32 0.32 0.32 0.35 0.33 0.28 0.28 0.39 0.81 0.66 0.88 0.71 0.91 0.88 0.33

F1 0.31 0.38 0.41 0.41 0.43 0.46 0.44 0.39 0.39 0.50 0.85 0.73 0.90 0.77 0.92 0.90 0.45

According to Table 2, the precision curves are plotted for different top components, which are shown as
Figure 1. X coordinates are all defined as the corresponding accumulative contribution rate of different top
components (see Eq. (13)), while Y coordinates are defined as Precision. In Figure 1, when the number of
principal components is the top 35, 78, 132 and the accumulative contribution rate reaches 0.1886, 0.3363,
and 0.4762, the precision will reach a downtrend where CPi−1 − CPi ≥ 0.08. Xtestset is used for model
assessment, and Xtestset × coe f ftrainset(:, 1 : p) are projected on the top p components in the Xtrainset matrix.
When p is equal to 40, the 35th component is removed from coe f ftrainset(:, 1 : 40) in order to optimize model
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selection, i. e. fpcs(40) by Eq. (17) or coe f ftrainset(:, 35) = [] in MATLAB. In other words, when principal
components selection is performed Ytestset by PCs is equal to:

Ytestset × fpcs(40) = [Xtestsetv1 Xtestsetv2 · · · Xtestsetv34 Xtestsetv36 · · · Xtestsetv40]. (22)

When p is equal to 90, the 78th component is removed from the top 90, i.e. fpcs(90). When p is equal to 140,
the 132th component is removed from top 140, i.e. fpcs(140).

Figure 1: Curve of ACR-Precision

We retrain SVM on Xtrainset × coe f fpcs(40), which refers to the top 40 column vectors from which the 35th
column vector is removed in the matrix of coe f f by principal components selection. Then the test set of
Xtestset × coe f fpcs(40) is performed, Xtrainset × coe f fpcs(90) versus Xtestset × coe f fpcs(90), Xtrainset × coe f fpcs(140)
versus Xtestset × coe f fpcs(140), and so on. The boosted results are shown on Table 3.

Table 3: Precision on top components by PCs
Top components 40 90 140

Precision 0.84 0.87 0.89
Precision by PCs 0.87 0.89 0.91

5. Conclusion

One of the main problems in the field of text classification has been dimensionality reduction. In
this paper, we have presented a method for dimensionality reduction by component selection in principal
component analysis. The function of component selection is constructed from the evaluation of classification
performance on different sub datasets from combinations of certain components. We train the SVM classifier
on selected components after negative components to the classification were removed. The experimental
results show that the method of components selection can help improve the classification precision and
reduce dimensionality from N-K dimensions to K-R dimensions.
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