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Abstract. With the increase in demand of complex information modeling, object-oriented database mod-
els are put on the agenda. But information imperfection is inherent in the real-world applications. To
deal with these complex imprecise and uncertain information, fuzzy object-oriented database (FOOD) and
fuzzy OWL 2 ontology modeling are recently received more attention. But construction fuzzy ontology is
a time-consuming and laborious task from scratch, reusing existing fuzzy ontology is an effective method
of ontology construction. For the sake of reusing fuzzy OWL 2 ontologies, this paper proposes a reverse
engineering approach for transforming fuzzy OWL 2 Ontologies into FOOD models. And reverse engineer-
ing can shorten development cycles of ontology and various database models. On this basis, we propose
formal definition of FOOD models and fuzzy OWL 2 ontologies. Furthermore, we give transformation
rules and explain how to transform fuzzy OWL 2 ontologies into fuzzy FOOD models with an example in
detail. The correctness of this transformation approach is proved. The advantage of reengineering fuzzy
ontologies into FOOD models is the reusability of domain knowledge on the Web.

1. Introduction

Nowadays, ontologies have been widely used in many fields, e.g. computer science, e-commerce, intel-
ligent retrieval, data mining, and so on. But, constructing ontology has become the focus of recent research.
In view of this need, knowledge bases, XML and databases become the data sources for constructing ontolo-
gies (see [10] for surveys). It is considered that construction of ontologies is a laborious and time-consuming
task [13]. Reusing previous ontologies are considered as an effective approach of constructing ontologies.
Ontology reusing is defined as the process which constructs a new ontology by making full use of used
ontologies, ontological components and ontological knowledge.

A crucial issue in ontology reusing is to identify their components and interrelationships of the existing
ontologies, in which is a reverse engineering process of the ontology [9], [21]. The reverse engineering
[1], [2], [7], [15], which is referred to reengineering [12] also, is used to denote a development process
of researching an existing system and reconstructing it into a new form. The reverse engineering is to
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discover the underlying features of a system, to identify or recover one or more of the system requirements,
specifications, design and implementation that can aid in understanding and modifying the systems.
Meanwhile, for the purpose of modeling and manipulation of complex object and relation, object-oriented
databases have increasingly attracted considerable attention.

Due to the information and data in the real world is uncertainty and imperfect, FOOD models are
put forward. In order to process imperfect and complex objects, Ma et al. [16] extend an object-oriented
database model based on the semantic measure of fuzzy data and the possibility distribution. Yan et al.
[26] propose using fuzzy measure of probabilistic theory in modeling object-oriented databases. Shukla et
al. [23] present an overview of the different approaches to fuzzy techniques integration in object-oriented
databases. Ma et al. [17] provide an overview of the current main approaches of fuzzy extension of
object-oriented databases.

Meanwhile, to express and reason on fuzzy knowledge, fuzzy ontology definitions [5], [24], [25], [31]
have been proposed by incorporating fuzzy description logic and fuzzy set theory [27], [28]. W3C Web
Ontology Working Group recommends the Web Ontology language (OWL) 2 [18], [19], [20] to be the
standard for ontologies description in the Semantic Web [14]. Bobillo et al.[5] propose a method of using
OWL 2 annotation properties to represent fuzzy ontologies. Our work mainly investigates the fuzzy OWL
2 ontology reverse engineering. Fuzzy OWL 2 ontology is an extension of the classical OWL 2 ontology
based on Zadehs fuzzy set theory [27], [28]. The logical foundation of fuzzy OWL 2 is the fuzzy DL called
f-SROIQ(D) [6].

With the extensive application of ontology, numerous fuzzy ontologies were established. How to reuse
the existing fuzzy ontologies has been considered as an effective way of knowledge reusing. Benslimane
et al. [2] propose a reverse engineering approach of extracting domain ontology schema to construct
conceptual data model so that ontologies can be reused at a conceptual level. In particular, fuzzy object-
oriented database (FOOD) models have been considered as important tools of describing and storing fuzzy
information in real-world applications [17], [23]. Moreover, several work has established the relationships
between fuzzy ontologies and FOOD models. Zhang et al. [30] propose description logic approach of
indicating and inference fuzzy object-oriented database models. Then, they [31] propose a method of
constructing fuzzy ontologies using FOOD models, and establish reasoning mechanism on FOOD models.

However, above-mentioned existing works cannot achieve to transform fuzzy OWL 2 ontologies into
object-oriented database models utilizing reverse engineering. Based on Zadehs fuzzy set theory, we
develop FOOD models that addresses all types of fuzzy data and complex objects. Then, we develop a
methodology of transforming fuzzy OWL 2 ontologies into FOOD models. After that, we prove that the
transforming method is correct, and provide a transformed instance to explain the proposed approach.

The remainder of this paper is organized as follows. The FOOD models and fuzzy OWL 2 ontologies
are introduced in Section 2. In Section 3, an approach for reengineering fuzzy OWL 2 ontologies into FOOD
models is proposed. Section 4 concludes the paper.

2. Preliminaries

Zadeh [27] originally introduced the concept of fuzzy sets. Let U a universe of discourse and F be a
fuzzy set in U. The definition of F requires a membership function µF : U → [0, 1], where µF(u), for each
u ∈ U, the membership degree µ belonging to the fuzzy set F. For the case where U is a discrete domain,
the fuzzy set F is expressed as

F = u1/µF(u1),u2/µF(u2), ...,un/µF(un)
Here µF is used to represent the membership function of the fuzzy set F,µF(u) is used to represent

the membership degree u belonging to the fuzzy set F. In fact µF(u) can be interpreted as a possibility
measure that a variable X has value u, where X takes values in U, a fuzzy value is described by a possibility
distribution πX [28]:

πX = πX(u1)/u1, πX(u2)/u2, ..., πX(un)/un
Here, for any u1 ∈ U, πX(ui) indicates the possibility that ui is true. Let πX and F denote a fuzzy

possibility distribution and a fuzzy set, respectively, then πX and F can be equal, scilicet πX = F [22].
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2.1. FOOD model
The FOOD model [3], [4], [16], [17], [29], [30], [31] is a fuzzy extension of the traditional object-oriented

database model. The following introduces the basic notions of FOOD model, including object, class,
attribute, method and hierarchy of classes.
• Fuzzy object: An object is a real world entity or an abstract concept. An object has features that can be

the attribute of the object itself, or can be the relationship between the object and another object or multiple
objects. If an object at least has one fuzzy attribute the object is fuzzy.
• Fuzzy class: Objects with the same attributes make up classes. Comparing with the traditional classical

class, the boundary of a fuzzy class is not accurate. The class boundary imprecision is because of the
inaccurate attribute value.
• Fuzzy inheritance hierarchies: In a FOOD model, the class generated by a fuzzy class must be fuzzy.

In fuzzy inheritance relationship, one is called superclass, the other is called a subclass. Further, several
inheritances of subclasses can be combined to form a class hierarchy.
• Fuzzy attribute: The range of attribute values is called domain of the attribute. If the domain of an

attribute is fuzzy, the attribute is fuzzy.
•Method: Method is a series of operations on the object state.
We review the existing definitions of (fuzzy) object-oriented database models [29], [30], [31], and give a

formal definition of FOOD models. In this definition there is the structural and dynamic aspects of FOOD
models, which includes the major notions of fuzzy objects, fuzzy classes, fuzzy inheritance hierarchies,
and other constraints (e.g., the disjoint and complete constraints on class hierarchies and the cardinality
constraints on associations).

Definition 1 (Formal definition of FOOD model): A FOOD model is a tuple FOODFS = (FOFS,FDFS,FCFS,
FAFS,FPFS) consisting of a set of object identities, attribute domains, classes, attributes, and class declarations
[30],[31], where:

1) FOFS is a set of objects FO; each object has a unique object identity;
2) FDFS is a set of domains FD, which includes crisp and fuzzy domains.
3) FCFS is a set of classes FC;
4) FAFS is a set of attributes FA; each attribute FA is associated with a domain FD, and using the fuzzy

keyword FUZZY in front of an attribute denotes that this attribute is fuzzy;
5) FPFS is a set of class declarations. For each class FC ∈ FCFS,FPFS contains a declaration:
Class FC is-a FCsup/β type-is FT,
FT denotes a schema type expression built according to the following syntax:
FT→{FO1/µ1,FO2/µ2, ...,FOn/µn}End ; Union FC1, ...,FCk(disjoint, complete) End ; Record FA1 : FT1, ...,FAk :

FTk, µ : Real, f (P1, ...,Pm) : R End .
where FTi is one of the following cases (wherei ∈ {1...k}) : FTi → FDi ; Set − o f FCi/ηi[(m1,n1), (m2,n2)].
FOODFO is a set of object declarations to represent values of attributes of objects. For each object

FO ∈ FOFS, FO belong-to FC/µ , has-value [FA1 : FD1,FA2 : FD2, ...] End.
Where:
• The type-is part specifies the structure of a class FC by a type expression FT;
• The is-a part, which is optional, denotes inheritance relationship between fuzzy classes with a mem-

bership degree β ∈ [0, 1];
• The expression {FO1/µ1,FO2/µ2, ...,FOn/µn} denotes that FC is an extensional class which has a list of

object instances {FO1/µ1,FO2/µ2, ...,FOn/µn}, and each object FOi has a membership degree of µ ∈ [0, 1]
relative to the class FC;
• The Union...End part denotes a class hierarchy;
• The Record...End part denotes that a fuzzy class FC is defined by a set of attributes and their admissible

values, this class is called an intensional class; an additional attribute µ ∈ [0, 1] is used to represent the
membership degree of an object belonging to the class FC; f (P1, ...,Pm) : R represents a method, where f is
the name of the method, P1, ...,Pm are types of m parameters, and R is the type of the result;
• The Set-of part (i.e., Class FC type-is Record FAi: Set-of FCi/ηi[(m1,n1), (m2,n2)] End ) denotes an

association relationship between classes FC and FCi by an attribute FAi; etai ∈ [0, 1] the association occurs
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in classes FC and FCi with a membership degree of ηi; /, [(m1,n1), (m2,n2)] indicates that the association
involves at least mi and at most ni objects of a class;
• The belong-to part denotes that an object FO belongs to a fuzzy class FC with a membership degree of

µ ∈ [0, 1];
• The has-value part denotes the attribute values of an object FO, and the attributes belong to the fuzzy

class FC.
Then, we take advantage of fuzzy database states (e.g., sets of object instance) to describe semantics of

FOOD models [30]. The fuzzy database state (e.g., object information) ties in with the schema structure of
FOOD model (e.g., schema information).

Definition 2 (Semantics of FOOD models): The semantics of a FOOD model can be given by a fuzzy
database state FJ, which is defined by a fuzzy interpretation FJFD = (FVFJ, πFJ, ρFJ, •FJ)[30], [31]:

1) A set FVFJ = FDFJ
∪ FOFJ

∪ FRFJ
∪ FSFJ of fuzzy values is inductively defined as follows:

• FDFJ =
⋃n

i=1 FDFJ
i , where FDi is a crisp or fuzzy domain as mentioned in the previous sections;

• FOFJ = {FO1/µ1, ...,FOn/µn}, where FOi is an object associated with a membership degree µi;
• FRFJ is a set of record values. A record value is denoted by [FA1 : FV1, ...,FAk : FVk], where FAi is an

attribute, FVi ∈ FVFJ, i ∈ {1, ..., k} ;
• FSFJ is a set of set-values. A set-value is denoted by {FV1, ...,FVk} , where FVi ∈ FVFJ, i ∈ {1, ..., k}.
2) A function πFJ maps a class to a set of its objects.
3) A function ρFJ maps an object to values of its attributes.
4) A function •FJ maps each type expression FT into a set FTFJ such that:
• If FT is a class FC, then FTFJ = FCFJ = πFJ(FC);
• If FT is a record type Record ... End (resp. a set type Set-of ), then FTFJ is a set of record values FRFJ

(resp. a set of set-values FSFJ);
• If FT is a union type Union FC1, ...,FCq (disjoint, complete) End, then it follows FTFJ = FCFJ

1 ∪ ...∪ FCFJ
q

and FCFJ
i ∩ FCFJ

j = ∅, where i, j ∈ {1, ..., q}, and i , j.
If a fuzzy database state satisfies all of the constraints of a FOOD model, the fuzzy database state is

considered acceptable. The fuzziness may occur at three different levels in a FOOD model [8],[11],[16], i.e.,
the attribute level, the object/class level, and the subclass/superclass level.

2.2. Fuzzy OWL 2 Ontology

To define fuzzy OWL 2 ontology, it is necessary to introduce fuzzy OWL language [29], which is based
on the Zadehs fuzzy set theory [27]. The semantics for fuzzy OWL 2 are equivalent in the expressive
description logic f-SROIQ(D) [6]. After summarizing the fuzzy OWL in [29], [30], we provide Table 1 to
show the fuzzy OWL 2 abstract syntax, the corresponding description logics syntax, and the semantics.

In Table 1, FC indicates a fuzzy class; FCE indicates a fuzzy class expression; FDT indicates a fuzzy
datatype; FDR indicates a fuzzy data range; FDP indicates a fuzzy data property; FDPE indicates a fuzzy
data property expression; FOP indicates a fuzzy ObjectProperty; FOPE indicates a fuzzy ObjectProperty
expression; α indicates an individual (named or anonymous); lt indicates a literal; FA indicates a constraining
facet; ]S indicates the cardinality set S, and ./∈ {≥, >,≤, <}.

An ontology described by fuzzy OWL 2 language (e.g. [29], [31]) is called fuzzy OWL 2 ontology.
To represent fuzzy OWL 2 ontologies, we present a formal definition of fuzzy OWL 2 ontologies in the
following.

Definition 3 (Fuzzy OWL 2 ontology): A fuzzy OWL ontology is formally represented as 8-tuple
OF = (FOPO,FDPO,FDTO,FCO,FPC,FIO,FltO,FOAxiom), consisting of the following elements [31]:

1) FOPO is a set of object properties identifiers, containing at least the object properties owl:topObjectProperty
and owl:bottomObjectProperty. Each object properties links individuals to individuals, and each property
may have its characters and its restrictions;

2) FDPO is a set of datatype properties as defined in the OWL 2, the data properties link individuals to
data values, containing at least the data properties owl:topDataProperty and owl:bottomDataProperty ;

3) FDTO is a set of all datatype, containing the datatype rdfs:Literal and possibly other datatypes ;
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Table 1: Fuzzy Owl Abstract Syntax, Description Logic (DL) Syntax and Interpretation.
Fuzzy OWL abstract syntax Fuzzy DL syntax Interpretation
Fuzzy Class description
Class(FC) FC FCFI

⊆ 4
FI

owl : Thin1 > (owl : Thin1)FC = 4FI

owl : Nothin1 ⊥ (owl : Nothin1)FC = ∅
ObjectIntersectionO f (FCE1...FCEn) FCE1 u ... u FCEn (FCE1)FC

∩ ... ∩ (FCEn0FC

ObjectUnionO f (FCE1...FCEn) FCE1 t ... t FCEn (FCE1)FC
∪ ... ∪ (FCEn)FC

ObjectComplementO f (FCE) ⇁ FCE 4
FI
\ (FCE)FC

ObjectOneO f (a1...an) {a1} t ... t {an} {(a1)FI , ..., (an)FI
}

ObjectSomeValuesFrom(FOPE FCE) ∃FOPE · FCE {x | ∃y : (x, y) ∈ (FOPE)FOP and y ∈ (FCE)FC
}

ObjectAllValuesFrom(FOPE FCE) ∀ , FOPE · FCE {x | ∀y : (x, y) ∈ (FOPE)FOP implies y ∈ (FCE)FC
}

ObjectHasValue(FOPE a) ∃FOPE · {a} {x | (x, (a)I) ∈ (FOPE)FOP
}

ObjectHasSel f (FOPE) FOPE ≡ (FOPE)− {x | (x, x) ∈ (FOPE)FOP
}

ObjectMinCardinality(n FOPE) ≥ nFOPE {x | ]{y | (x, y) ∈ (FOPE)FOP
} ≥ n}

ObjectMaxCardinality(n FOPE) ≤ nFOPE {x | ]{y | (x, y) ∈ (FOPE)FOP
} ≤ n}

ObjectExactCardinality(n FOPE) ≡ nFOPE {x | ]{y | (x, y) ∈ (FOPE)FOP and y ∈ (FOPE)FOP
} = n}

DataSomeValuesFrom(FDPE1...FDPEn FDR) ∃FDR · {FDPE1...FDPEn} {x | ∃y1, ..., yn : (x, yk) ∈ (FDPEk)FDP for each 1 ≤ k ≤ n and
(y1, ..., yn) ∈ (FDR)FDT

}

DataAllValuesFrom(FDPE1...FDPEn FDR) ∀FDR · {FDPE1...FDPEn} {x | ∀y1, ..., yn : (x, yk) ∈ (FDPEk)FDP for each 1 ≤ k ≤ n imply
(y1, ..., yn) ∈ (FDR)FDT

}

DataHasValue(FDPE lt) ∃FDPE · {lt} {x | (x, (lt)LT) ∈ (FDPE)FDP
}

DataMinCardinality(n FDPE) ≥ nFDPE {x | ]{y | (x, y) ∈ (FDPE)FDP
} ≥ n}

DataMaxCardinality(n FDPE) ≤ nFDPE {x | ]{y | (x, y) ∈ (FDPE)FDP
} ≤ n}

DataExactCardinality(n FDPE) ≡ nFDPE {x | ]{y | (x, y) ∈ (FDPE)FDP
} = n}

DataMinCardinality(n FDPE FDR) ≥ nFDR · FDPE {x | ]{y | (x, y) ∈ (FDPE)FDP and y ∈ (FDR)FDT
} ≥ n}

DataMaxCardinality(n FDPE FDR) ≤ nFDR · FDPE {x | ]{y | (x, y) ∈ (FDPE)FDP and y ∈ (FDR)FDT
} ≤ n}

DataExactCardinality(n FDPE FDR) ≡ nFDR · FDPE {x | ]{y | (x, y) ∈ (FDPE)FDP and y ∈ (FDR)FDT
} = n}

Fuzzy Data Ranges
DataIntersectionO f (FDR1...FDRn) FDR1 u ... u FDRn (FDR1)FDT

∩ ... ∩ FDRn)FDT

DataUnionO f (FDR1...FDRn) FDR1 t ... t FDRn (FDR1)FDT
∪ ... ∪ FDRn)FDT

DataComplementO f (FDR) ⇁ FDR (4n) \ (FDR)FDT where n is the arity of FDR
DataOneO f (lt1...ltn) {lt1} t ... t {ltn} {(lt1)LT ,... ,(ltn)LT

}

DatatypeRestriction(FDT F1 lt1...Fn ltn) (FDR)FDT
∩ (F1, lt1)FA

∩ ... ∩ (Fn, ltn)FA

Fuzzy Class axioms
Class(FC partial FCE1...FCEn) FC v FCE1 u ... u FCEn (FC)FC

⊆ (FCE1)FC
∩ ... ∩ (FCEn)FC

SubClassO f (FCE1 FCE2) FCE1 v FCE2 (FCE1)FC
⊆ (FCE2)FC

EquivalentClasses(FCE1...FCEn) FCE1 ≡ ... ≡ FCEn (FCE j)FC = (FCEk)FC for each 1 ≤ j < k ≤ n
DisjointClasses(FCE1...FCEn) FCE j , FCEk1 ≤ j < k ≤ n (FCE j)FC

∩ (FCEk)FC = ∅ for each 1 ≤ j < k ≤ n
DisjointUnion(FC FCE1...FCEn) FC ≡ (FCE1 t ... t FCEn),FCE j ,

FCEk, 1 ≤ j < k ≤ n
(FC)FC = (FCE1)FC

∪ ... ∪ (FCEn)FC and (FCE j)FC
∩ (FCEk)FC = ∅

for each 1 ≤ j < k ≤ n
Fuzzy Object property axioms
SubObjectPropertyO f (FOPE1 FOPE2) FOPE1 v FOPE2 (FOPE1)FOP

⊆ (FOPE2)FOP

EquivalentObjectProperties(FOPE1...FOPEn) FOPE1 ≡ ... ≡ FOPEn (FOPE j)FOP = (FOPEk)FOP for each 1 ≤ j < k ≤ n
DisjointObjectProperties(FOPE1...FOPEn) FOPE j , FOPEk , 1 ≤ j < k ≤ n (FOPE j)FOP

∩ (FOPEk)FOP = ∅ for each 1 ≤ j < k ≤ n
ObjectPropertyDomain(FOPE FCE) ∃FOPE · FCE ∀x, y : (x, y) ∈ (FOPE)FOP implies x ∈ (FCE)FC

ObjectPropertyRan1e(FOPE FCE) > v ∀FOPE · FCE ∀x, y : (x, y) ∈ (FOPE)FOP implies x ∈ (FCE)FC

InverseObjectProperties(FOPE1 FOPE2) FOPE1 ≡ (FOPE2)− (FOPE1)FOP = {(x, y) | (y, x) ∈ (FOPE2)FOP
}

FunctionalObjectProperty(FOPE) > v≤ 1FOPE ∀x, y1, y2 : (x, y1) ∈ (FOPE)FOP and (x, y2) ∈ (FOPE)FOP imply
y1 = y2

InverseFunctionalObjectProperty(FOPE) > v≤ 1(FOPE)− ∀x1, x2, y : (x1, y) ∈ (FOPE)FOP and (x2, y) ∈ (FOPE)FOP imply
x1 = x2

Re f lexiveObjectProperty(FOPE) FOPE ≡ (FOPE)− ∀x : x ∈ 4FI implies (x, x) ∈ (FOPE)FOP

Irre f lexiveObjectProperty(FOPE) FOPE , (FOPE)− ∀x : x ∈ 4FI implies (x, x) < (FOPE)FOP

SymmetricObjectProperty(FOPE) FOPE ≡ (FOPE)FT
∀x, y : (x, y) ∈ (FOPE)FOP implies (y, x) ∈ (FOPE)FOP

AsymmetricObjectProperty(FOPE) FOPE , (FOPE)FT
∀x, y : (x, y) ∈ (FOPE)FOP implies (y, x) < (FOPE)FOP

TransitiveObjectProperty(FOPE) (FOPE)2
v FOPE ∀x, y, z : (x, y) ∈ (FOPE)FOP and (y, z) ∈ (FOPE)FOP implies (x, z) ∈

(FOPE)FOP

Fuzzy Data property Axioms
SubDataPropertyO f (FDPE1 FDPE2) FDPE1 v FDPE2 (FDPE1)FDP

⊆ (FDPE2)FDP

EquivalentDataProperties(FDPE1...FDPEn) FDPE1 ≡ ... ≡ FDPEn (FDPEi)FDP = (FDPE j)FDP for each 1 ≤ j < k ≤ n
DisjointDataProperties(FDPE1...FDPEn) FDPE j , FDPEk , 1 ≤ j < k ≤ n (FDPEi)FDP

∩ (FDPE j)FDP = ∅, for each, 1 ≤ j < k ≤ n
DataPropertyDomain(FDPE FCE) ∃FDPE.> v FCE ∀x, y : (x, y) ∈ (FDPE)FDP implies x ∈ (FCE)FDP

DataPropertyRan1e(FDPE FDR) > v ∀FDPE.FCE ∀x, y : (x, y) ∈ (FDPE)FDP implies y ∈ (FDR)FDP

FunctionalDataProperty(FDPE) > v≤ 1FDPE ∀x, y1, y2 : (x, y1) ∈ (FDPE)FDP and (x, y2) ∈ (FDPE)FDP implies
y1 = y2

Fuzzy Assertions Axioms
SameIndividual(a1...an) {a j} ≡ ... ≡ {ak} (a j)FI = (ak)FI 1 ≤ j < k ≤ n
Di f f erentIndividuals(a1...an) {a j} , {ak}1 ≤ j < k ≤ n (a j)FI , (ak)FI 1 ≤ j < k ≤ n
ClassAssertion(FCE a) ∃FCE · {a} (a)FI

∈ (FCE)FC

ObjectPropertyAssertion(FOPE a1 a2) ∃FOPE · {a1, a2} ((a1)FI , (a2)FI) ∈ (FOPE)FOP

Ne1ativeObjectPropertyAssertion(FOPE a1 a2) @FOPE · {a1, a2} ((a1)FI , (a2)FI) < (FOPE)FOP

DataPropertyAssertion(FOPE a lt) ∃FOPE · {a, lt} (aFI , (lt)FI) ∈ (FOPE)FOP

Ne1ativeDataPropertyAssertion(FOPE a lt) @FOPE · {a, lt} (aFI , (lt)FI) < (FOPE)FOP
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4) FCO is a set of fuzzy class defined in the OWL. Each class can be an AbstractClass or a ConcreteClass;
5) FPC is a collection of property sets about fuzzy class;
6) FIO is a collection of fuzzy individuals (named and anonymous);
7) FltO is a literal containing each datatype FDTO and each lexical form of FltO;
8) FOAxiom is a set of finite fuzzy OWL 2 axioms.
Based on the above definition, we illustrate a fuzzy OWL 2 ontology of E-commerce in Figure 1. There

are several kinds of fuzziness in the E-commerce fuzzy ontology.
A fuzzy OWL 2 ontology structure of customers of E-commerce:
FOAxiom ={ Class(Customer complete UnionOf (Corporate-Customer, Personal-Customer)); DisjointClasses(Corporate-Customer, Personal-Customer) ;
Class(Order partial restriction(dataReceived allValuesFrom(xsd:String) cardinality(1)) restriction(isPrepaid allValuesFrom(xsd:Boolean) cardinal-
ity(1)) restriction(µ allValuesFrom(xsd:Real))); Class(Young-Customer partial Customer restriction(CustNo allValuesFrom(xsd:String) cardinality(1))
restriction(CustName allValuesFrom(xsd:String) cardinality(1)) restriction(Fuzzy age allValuesFrom(xsd:String) cardinality(1)));
SubClassOf (Young-Customer, Customer); Class(Corporate-Customer partial Customer restriction(ContactName allValuesFrom(xsd:String) cardi-
nality(1)) restriction(FUZZY creditRating allValuesFrom(xsd:String) cardinality(1)) restriction(FUZZY-discount allValuesFrom(xsd:Real) cardinal-
ity(1)) restriction( allValuesFrom(xsd:single) cardinality(1))); EnumeratedClass(Corporate-Customer (cc1, 1.0), (cc2, 0.7), (cc3, 0.8)); SubClassOf (Young-
Customer Corporate-customer 0.8);
Class(Serving partial restriction (Serveof allValuesFrom (Employee) cardinality(1)) restriction (Serveby allValuesFrom (Corporate-Customer) cardi-
nality(1))); Class(Employee partial restriction(invof Serveof allValuesFrom(Serving))); Class(Corporate-Customer partial restriction( invof Serveby
allValuesFrom(Serving))); Class(Employee partial restriction (invof Serveof minCardinality (1) maxCardinality (3))); Class(Corporate-Customer par-
tial restriction (invof Serveby minCardinality (3) maxCardinality ()));
ObjectProperty(Serveof domain(Serving) range(Employee)); ObjectProperty(Serveby domain(Serving) range (Corporate-Customer)); ObjectProp-
erty(invof Serveof domain (Employee) range (Serving) inverseOf Serveof); ObjectProperty(invof Serveby domain (Corporate-Customer) range (Tak-
ing) inverseOf Serveby);
Individual(yc1 type(Young-Customer) [./ 0.9] value(CustNo, 2013013) value(CustName, Lucy) value(FUZZY a1e, young) value(µ, 0.9)
value(invof Takof, o’) value(invof Supby, o”) [./′ 0.9]); Individual(o1,o2,o3 type(Student));}

Figure 1. A fuzzy OWL 2 ontology structure.
In Figure 1, there is fuzzy ontology E-commerce. If an element is fuzzy that there are membership degrees

after the element. The possibility of an element belonging to its parent element denotes the membership
degree associated with the element. The fuzziness in a class is represented by an attribute µ ∈ [0, 1]. For
example, in the E-commerce fuzzy ontology, the element Corporate-Customer may be fuzzy since we cannot
precisely describe the element. In this case, we can found that there is an attribute µ ∈ [0, 1] in the axiom
of the element Corporate-Customer. A fuzzy keyword FUZZY is used to represent fuzzy attribute values
of elements. For example, the attribute FUZZY-creditRating of the element Corporate-Customer may be
fuzzy. Moreover, there may be other fuzzy elements and attributes in the E-commerce fuzzy ontology in the
real-word applications.

3. Transforming Fuzzy Owl 2 Ontologies to FOOD Models

In this section, based on FOOD models and fuzzy OWL 2 ontologies, we propose a formal approach
to transform fuzzy OWL 2 ontologies into FOOD models. The correctness of the approach is proved in
Theorem 1. Moreover, an example helps to understand how to transform fuzzy OWL 2 ontologies to FOOD
models.

3.1. Transforming fuzzy OWL 2 ontology into FOOD model
Giving a fuzzy OWL 2 Ontology model OF = (FOPO,FDPO,FDTO,FCO,FPC,FIO,FltO,FOAxiom) , we

propose some rules to construction FOODFS, starting with the construction of FOOD objects, classes and
attributes from the fuzzy OWL 2 ontologies OF.

Rule 1: Each fuzzy individual ontology identifier FIO is mapped into an object of FOOD model FO, i.e.,
ϕ(FIO) ⊆ FO ∈ FOFS.

Rule 2: Each fuzzy ontology class identifier FCO is mapped into a class of FOOD model FC, i.e.,
ϕ(FCO) ⊆ FC ∈ FCFS.

Rule 3: Each fuzzy datatype property identifier FDPO is mapped into a simple fuzzy attribute of FOOD
model FA, i.e., ϕ(FDPO) ⊆ FA ∈ FAFS, where the domain of an attribute is a crisp or fuzzy domain.

Rule 4: Each fuzzy class identifier FCO contains four fuzzy object property identifiers ϕ(FU1) ∈ FA,
FW1 = invof ϕ(FU1) ∈ FA, FW2 = invof ϕ(FU2) ∈ FA, where FW1 and FW2 denote inverse properties of
ϕ(FU1) and ϕ(FU2), respectively. This fuzzy class is mapped into complex fuzzy attribute of FOOD model
ϕ(FCO) ⊆ FA ∈ FAFS, this attribute denotes an association relationship between classes.
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Rule 5: Each fuzzy datatype FDTO is mapped into fuzzy domain of FOOD model FD, i.e., ϕ(FDTO) ⊆
FD ∈ FDFS.

Rule 6: Each fuzzy object properties identifier FOPO is mapped into an object of FOOD model FO, i.e.,
ϕ(FOPO) ⊆ FO ∈ FOFS.

Rule 7: Each fuzzy class properties set FPC is mapped into an attribute of FOOD model FA, i.e.,
ϕ(FPC) ⊆ FA ∈ FAFS.

Rule 8: Each cardinality (mi and ni) of the fuzzy object property maps the object instance of a FOOD
model class to participate at least mi times and most ni times to the association.

Rule 9: Each enumerated class of the fuzzy ontology EnumeratedClass(FCO(FCO1, µ1)...(FCOn, µn)) is
mapped into FOOD class declaration Class ϕ(FCO) type-is {ϕ(FCO1)/µ1, ..., ϕ(FCOn)/µn} End , where ϕ(FCO),
ϕ(FCOi) ∈ FCFS , µi ∈ [0, 1], i ∈ {1, ...,n} .

Rule 10: A taxonomic or hierarchy relationship between fuzzy ontology classes SubClassOf (FCOi,FCOj, β)
is mapped into FOOD class declaration

Class ϕ(FCOi) is-a ϕ(FCOj)/β, where ϕ(FCOi), ϕ(FCOj) ∈ FCFS, β ∈ [0, 1], i, j ∈ {1, ...,n}.
Rule 11: A relationship axiom of fuzzy ontology Class (FCO complete UnionOf (FCO1...FCOq) ), Disjoint-

Classes (FCOi,FCOj) ,i , j, i, j ∈ {1, ..., q} is mapped into FOOD class declaration
Class ϕ(FCO) type-is Union ϕ(FCO1), ..., ϕ(FCOq) (disjoint, complete) End, where ϕ(FCO), ϕ(FCOi) ∈ FCFS.
Rule 12: A fuzzy class description Class (FCO partial ... restriction(FDPOi allValuesFrom ( FDTOi ) cardinality

(1))...) is mapped into fuzzy class declaration of FOOD model
Class ϕ(FCO) type is
Record..., ϕ(FDPOi) : ϕ(FDTOi) , ... End , where ϕ(FCO) ∈ FCFS , ϕ(FDPOi) ∈ FAFS, ϕ(FDTOi) ∈ FDFS.
Rule 13: A fuzzy complex class description Class (FCO partial restriction ( FOPO1 allValuesFrom ( FDTO1 )

cardinality (1))... restriction ( FOPOk allValuesFrom ( FDTOk ) cardinality (1))); DatatypeProperty ( FOPOi domain
( FCO ) range ( FDTOi ) [Functional]) is mapped into fuzzy class declaration of FOOD model

Class ϕ(FCO) type is Record ϕ(FOPO1) : ϕ(FDTO1), ..., ϕ(FOPOk) : ϕ(FDTOk), ... End, where ϕ(FCO) ∈
FCFS, ϕ(FOPOi) ∈ FAFS, ϕ(FDTOi) ∈ FDFS .

Rule 14: Fuzzy complex class axiom Class (FCO partial restriction ( FW1 allValuesFrom( FCO1 ) Cardinal-
ity(1)) restriction (FW2 allValuesFrom ( FCO2 ) Cardinality(1))); Class( FCOi partial restriction ( FWi allValuesFrom
( FCO ))); Class( FCOi partial restriction ( FWi minCardinality ( mi ))); Class( FCOi partial restriction ( FWi
maxCardinality ( ni ))); ObjectProperty ( FUi domain ( FCO ) range ( FCOi)); ObjectProperty ( FWi domain ( FCOi
) range ( FCO ) inverseOf ( FUi)), where FUi,FWi ∈ FOPO and FW1 = invof (FUi ), FWi denote inverse properties
of FUi , respectively, i ∈ {1, 2} is mapped into fuzzy class declaration of FOOD model

Classϕ(FCO1) type-is Recordϕ(FCO): Set-ofϕ(FCO2)/η[(m1,n1), (m2,n2)],where FT→Set-ofϕ(FCO2)/η[(m1,n1),
(m2,n2)], where ϕ(FCO1) , ϕ(FCO2) ∈ FCFS , ϕ(FCO) ∈ FAFS , η ∈ [0, 1].

Rule 15: Fuzzy complex class axiom Class (FCO partial restriction (f allValuesFrom(R) maxCardinality(1)))
is mapped into method of FOOD model

ϕ( f ) : R, the method ϕ( f ) of parameter is null.
Rule 16: Fuzzy complex class axiom a fuzzy class identifier FC f (P1,...,Pm) ∈ FCO ; m fuzzy data range identifiers

P1, ...,Pm ∈ FDPO ; a fuzzy data range identifier R ∈ FDTO can be mapped into method of FOOD model
ϕ( f (P1, ...,Pm)) : R , the method ϕ( f ) of parameter is P1, ...,Pm , ϕ(R) ∈ FDFS .
Rule 17: Fuzzy ontology datatype property DatatypeProperty(FDPOi, domain(FCO) range(FDTOi)) is mapped

into fuzzy class declaration of FOOD model
Class ϕ(FCO) type is
Record ϕ(FDPOi) : ϕ(FDTOi) End, where ϕ(FCO) ∈ FCFS, ϕ(FDPOi) ∈ FAFS, ϕ(FDTOi) ∈ FDFS.
Rule 18: Fuzzy ontology object property ObjectProperty (FOPO hasop FOPOi(FCOi) range (FCO)) is mapped

into fuzzy class declaration of FOOD model
Object ϕ(FOPO) belong to ϕ(FCO) has-value ϕ(FOPOi) : ϕ(FCOi) End, here ϕ(FCO), ϕ(FCOi) ∈ FCFS,

ϕ(FOPO), ϕ(FOPOi) ∈ FAFS.
Rule 19: Fuzzy ontology axioms Class (FCO f (P1,...,Pm) partial restriction (r1 someValuesFrom (owl:Thing) Car-

dinality(1)) ... restriction (rm someValuesFrom (owl:Thing) Cardinality(1))); Class (FCO f (P1,...,Pm) partial restriction
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(r1 allValuesFrom (P1)) ... restriction (rm allValuesFrom (Pm))); Class (FCO partial restriction (inverseO f (r1) all-
ValuesFrom(unionOf (complementOf (FC f (P1,...,Pm) ) restriction (rm+1 allValuesFrom (R)))))), is mapped into fuzzy
class declaration of FOOD model

Classϕ(FCO) type is Recordϕ( f (P1, ...,Pm)) : R End, here,ϕ( f (P1, ...,Pm)) is a method with m parameters
P1, ...,Pm , ϕ(FCO) ∈ FCFS, R ∈ {r1, ..., rm} ∈ FAFS .

Rule 20: Fuzzy individual axiom SameIndividual (FIO1...FIOn) or DifferentIndividuals(FIO1...FIOn) is mapped
into fuzzy objects of FOOD model

n objects ϕ(FIOi) are equivalent or different, here ϕ(FIOi) ∈ FOFS, i ∈ {1, ...,n}.
Rule 21: With a membership fuzzy individual Individual (FIO type (FCO) ./ µ) is mapped into fuzzy

objects of FOOD model
Objects ϕ(FIO) belong-to ϕ(FIO)/µ End ,where ./∈ {≥,≤}, µ ∈ [0, 1], ϕ(FIO) ∈ FOFS, ϕ(FCO) ∈ FCFS.

3.2. The correctness of the transformation approach
The Sections A specify some mapping rules that can transform fuzzy OWL 2 ontology to FOOD model.

How to prove the correctness of the transforming rules is an important and challenge task. This part, we
prove correctness of the approach which can be established mapping instance of fuzzy OWL 2 ontology
and FOOD model.

Theorem 1. For every fuzzy OWL 2 ontology OF and its transformed FOOD model ϕ(OF), there exist
two mappings δ from fuzzy OWL 2 ontologies structure to modelsϕ(OF), and ζ from modelsϕ(OF) to fuzzy
OWL 2 ontology structure, such that:
• For each fuzzy OWL 2 ontology model FI conforming to OF, δ(FI) is a FOOD model ϕ(OF).
• For each database state FJ of ϕ(OF), ζ(FJ) is a fuzzy OWL 2 ontology model conforming to OF.
Proof. The following first proves the first part of Theorem 1. Let FI = (4FI, •FI)) be a fuzzy interpretation

of fuzzy OWL 2 ontology OF, and o ∈ 4FI be an ontology instance, an instance model δ(o) is conforming to
the FOOD ϕ(OF).

Given a given a fuzzy ontology model FI, each symbol X ∈ FOPO ∪ FDPO ∪ FCO ∪ FDTO ∪ FPC, a fuzzy
database state δ(FI) of ϕ(OF) can be defined as follows:

The domain elements 4δ(FI) of a database state δ(FI) of ϕ(OF) are constituted by the values of the fuzzy
OWL 2 ontology semantic interpretation FI.

The fuzzy database state FJ of ϕ(OF) in Section A is defined as follows:
• (ϕ(X))δ(FI) = XFI, where X ∈ ϕ(FCO) ;
• For each fuzzy class declaration (ϕ(FDPOi))δ(FI) = {< FPC, di >∈ 4δ(FI)

×4
δ(FI)
|FPC ∈ FCFI

O ∧ di ∈ FDTFI
Oi},

where i ∈ {1, ..., k}, we have Classϕ(FCO) type-is Recordϕ(FDPO1) : ϕ(FDTO1), ..., ϕ(FDPOk) : ϕ(FDTOk) End;

• For each fuzzy class declaration (ϕ(FU j))δ(FI) = {< r,FOPOj >∈ 4δ(FI)
× 4

δ(FI)
| r ∈ FPFI

C ∧ FOPOj ∈ FCFI
Oj} ,

j ∈ {1, 2} , we have Class ϕ(FCO1) type-is Record ϕ(FPC): Set-of ϕ(FCO2) End.
Further, we prove δ(FI) is a model of ϕ(OF), i.e., prove δ(FI) satisfies the definition of ϕ(OF) in Definition

2. Note that, the semantics of ϕ(OF) models can be partitioned into several main cases:
• for a fuzzy OWL 2 ontologies interpretation FI. If there are (FOPO)FOP

∈ 4
FI
× 4

FI and FOOD fuzzy
class ϕ(FCO) such that Class ϕ(FCO) is-a ϕ(FCOsup)/β, then ϕ(FCO)δ(FI)(FOPO) ⊆ ϕ(FCOsup)δ(FI)(FOPO), i.e.,
FCFI

O ⊆ FCFI
Osup. That is, δ(FI) satisfies the corresponding fuzzy semantic of FOOD model in Definition 2.

• for a fuzzy OWL 2 ontologies class FCO such that DisjointUnion(FCOFCO1FCO2...FCOn). According to
Definition 3, if FI is a fuzzy interpretation, we have FCFI

O = FCFI
O1 ∪ ... ∪ FCFI

Oq and FCFI
Oi ∩ FCFI

Oj = ∅, where

i, j ∈ {1, ..., q} and i , j. By definition of δ(FI) above, it follows ϕ(FCO)δ(FI) = ϕ(FCO1)δ(FI)
∪ ... ∪ ϕ(FCOq)δ(FI)

andϕ(FCOi)δ(FI)
∩ϕ(FCOj)δ(FI) = ∅, such as Classϕ(FCO) type-is Unionϕ(FCO1), ..., ϕ(FCOq) (disjoint, complete)

End. That is, δ(FI) satisfies the corresponding fuzzy semantic of FOOD model in Definition 2.
• for a fuzzy OWL 2 ontology class FCO such that (FCO)FC = 4FI

×4
FI and fuzzy class of FOOD model such

that Class ϕ(FCO) type-is Record ϕ(FDPO1) : ϕ(FDTO1), ..., ϕ(FDPOk) : ϕ(FDTOk) End, where ϕ(FCO) ∈ FC,
ϕ(FDPOi) ∈ FA, ϕ(FDTOi) ∈ FV, i ∈ {1, ..., k}. For an instance FIO ∈ [FDPO1 : FDTO1, ...,FDPOk : FDTOk],
according to Definition 3, if FI is a fuzzy interpretation, then (FDPO)FDP = 4FI

× 4
FD . By definition of

δ(FI) above, there is exactly one element di ∈ FDTFI
Oi = ϕ(FDTOi)δ(FI) such that (FCO, di) ∈ ϕ(FDPOi)δ(FI), i.e.,
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ϕ(FIO)δ(FI)
⊆
⋂k

i=1{FCO|∀di. < FCO, di >∈ (ϕ(FAi))ζ(FJ)
→ di ∈ (ϕ(FDi))ζ(FJ)

∧ ]{di| < FO, di >∈ ϕ(FDTOi)δ(FI)
} =

1}. That is, δ(FI) satisfies the semantics of Definition 2.
• for fuzzy classes of OWL 2 ontology FCO1,FCO2 and fuzzy class of FOOD model such that Class

ϕ(FCO1) type-is Record ϕ(FOPO) : Set − o fϕ(FCO2)/η[(m1,n1), (m2,n2)], where ϕ(FCOi) ∈ FC, ϕ(FOPO) ∈ FA,

i ∈ {1, 2}. For an instance r ∈ ϕ(FOPO)δ(FI), it follows r ∈ {FCO1, ...,FCOk}. By definition of δ(FI) above,
there is exactly one example FIOj ∈ FCFI

Oj = ϕ(FCOj)δ(FI) such that (r,FIOj) ∈ ϕ(FCOj)δ(FI), i.e., ϕ(FPC)δ(FI)
⊆⋂2

j=1{r | ∀FIOj < r,FIOj >∈ ϕ(FU j)δ(FI)
→ FIOj ∈ ϕ(FCOj)δ(FI)

∧ ]{FO j | < r,FIOj >∈ ϕ(FU j)δ(FI)
} = 1}. Moreover,

according to the semantics of cardinality constraints on associations, we have cardmin(FCOj,FPC,FOPOj) ≤
] {r ∈ FPFI

C |FPC[FU j] = FIOj} ≤ cardmax(FCOj,FPC,FOPOj), which denotes the minimum and maximum
times of an object instance of a fuzzy class participating in an association. Further, by definition of
δ(FI) above, it follows ϕ(FCOj)δ(FI)

⊆ {FIOj | cardmin(FCOj,FPC,FOPOj) ≤ ]{r ∈ FPFI
C | < r,FIOj >∈ FPFI

C } ≤

cardmax(FCOj,FPC,FOPOj)}. In addition, we know that FW1=invof ϕ(FU1) and FW2=invof ϕ(FU2), are the
inverse object property identifiers of FU1 and FU2, respectively, and thus we haveϕ(FW j)δ(FI) = {< FIOj, r >∈
4

FI
× 4

FI
|FIOj ∈ FCOFI

j ∧ r ∈ FPFI
C }, j ∈ {1, 2}, i.e., ϕ(FW j)δ(FI) = ϕ(FU j)δ(FI)−

⊆ ϕ(FCOj)δ(FI)
× ϕ(FPC)δ(FI). That

is, δ(FI) satisfies the corresponding semantics of this case in Definition 2.
It is shown that the translation FOODFS = ϕ(OF) is semantic preservation since that for each fuzzy

interpretation FI of fuzzy OWL 2 ontology, there is a mapping δ : FI → FJ so that FJ = δ(FI) is a model of
ϕ(OF). Thus the first part of Theorem 1 is proved. The second part of Theorem 1 is an inverse process of the
first part of Theorem 1. The proof of the second part of Theorem 1 is analogous to the first part.

3.3. A transforming example from fuzzy OWL 2 ontology to a FOOD model
In this section, we provide a fuzzy OWL 2 ontology instance in Figure 1, and the corresponding FOOD

model derived from the instance applying these rules in part A is shown in Figure 2.
Class Order type-is Record OrderID: String dateReceived: String isPrepaid:Boolean End
Class Young-Customer is-a Corporate-Customer/0.8 type-is Record CardNo: String CustName: String FUZZY-age: String Making: Set-ofOrder
[(0,∞),(1,1)] µ : Real End
Class Corporate-Customer is-a Customer type-is Record ContactName: String FUZZY-CreditRating: String FUZZY-Discount: Real µ : Real End
Class Employee type-is Record FUZZY Serving: Set-of Corporate-Customer /η [(1, 3), (3,∞)] End
Class Customer type-is Union Corporate-Customer, Personal-Customer (disjoint, complete) End
Object y1 belong-to Young Customer/0.9 has-value CustNo: 2013013, CustName: Lucy, FUZZY-age: young, Making: {o1, o2, o3}, µ : 0.9 End
Object e1 belong-to Employee has-value FUZZYServing: {y1/0.96, y2/0.6} End
Object cc1 belong-to Corporate-Customer;
Object o1, o2, o3 belong-to Order
Object s2 belong-to Staff/0.9...

Figure 2. A FOOD model derived from fuzzy OWL 2 ontology in Figure. 1

4. Conclusions

In this paper, we mainly investigate fuzzy OWL 2 ontology and FOOD model. Firstly, their formal defi-
nitions are proposed. Then, we present a methodology of transforming fuzzy OWL 2 ontology into FOOD
model on structure and instance levels. The correctness of the approach is proved, and a transformation
example is described to explain the transforming approach.

In the future, we intend to test and evaluate the reusing fuzzy OWL 2 ontologies approach with more
complex example based on FOOD models. Moreover, extending existing database system has reasoning
capabilities for FOOD models.
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