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Abstract. Negative sequential patterns (NSP) are critical and sometimes much more informative than
positive sequential patterns (PSP) in many intelligent systems and applications. However, the existing NSP
algorithms do not allow negative items being contained in an element except the NegI-NSP algorithm,
which can obtain many meaningful sequences with negative items in an element. NegI-NSP, however,
hasn’t considered the following problems: (1) it uses a single minimum support to all size sequences, which
is unfair to a long size sequence; (2) it only mines NSP from PSP, not from infrequent positive sequences
(IPS), which also contain many useful NSP. So we propose an efficient algorithm, named MLMS-NSP, to
mine NSP based on multiple level minimum supports (MLMS) from PSP and IPS. Firstly, MLMS scheme
is proposed by assigning different minimum supports to sequences with different sizes. Secondly, IPS are
constrained by combining MLMS, and then the NSP is obtained from these IPS. Finally, experimental results
show that the MLMS-NSP algorithm can effectively mine NSP from IPS, and the time efficiency is higher
than using single minimum support.

1. Introduction

Behavioral research concerns all aspects of our lives and has attracted more and more attention. How
to understand behaviors, especially the non-occurring behaviors (NOB) is very important in behavioral
research [1][2]. Mining negative sequential patterns (NSP) is one of few methods that can well understand
NOB [3]. Different from only considering occurring (positive) behaviors in positive sequential patterns
(PSP)[4], NSP take into account both non-occurring (negative) and occurring behaviors. NSP play an
irreplaceable role in many intelligent systems and applications. For example, s =< xy¬zF > is a NSP, where
x, y and z stand for drug codes, and F stands for disease status. The NSP s shows that patients who usually
take drugs x and y but NOT z are likely to have disease status F. Such situation cannot be expressed by
using PSP alone.

However, most of the existing NSP algorithms do not allow negative items to be contained in elements
[5][6][7][8][9][10][11][12][13], which makes many meaningful sequences impossible to be obtained. For
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example, for customers’ purchase sequences database in a supermarket, a customer’s purchase behavior is
an element, and the item in the element is a commodity. In real life, we cannot ignore this purchase because
the customer has not bought certain goods at one time. NegI-NSP algorithm [14] was proposed for the
problem. Firstly, it formally introduced two loose constraints as much as possible. Secondly, it proposed
negative containment definition based on items. Finally, it proved equations for calculating the supports
of negative sequential candidates (NSC), so that the NSCs supports can be calculated only by searching the
information of NSCs corresponding PSP, which improves the efficiency of algorithm time effectively.

Although NegI-NSP can efficiently mine NSP based on items, it cannot consider the following problems.
(1) It uses a single minimum support to all size sequences, which is unfair to a long size sequence. For

a sequence that contains k elements (k = 1, 2, ,m), i.e., the size of the sequence is k, the bigger the k is, the
smaller its support is[15]. So using a single minimum support (ms) is unfair to the long size sequence. If
the support was too high, a small number of long frequent sequences would be discovered; if the support
was too low, a large number of short frequent sequences would be discovered, which would increase the
difficulties for users to choose actionable sequential patterns [16]. To solve the problem, Apriori−MLMS [15]
used the multiple level minimum supports (MLMS) to constrain infrequent itemsets and frequent itemsets
by giving different ms to itemsets with different lengths; E-msNSP [17] and CPNFSP [18] used multiple
minimum supports (MMS) to mine NSP by setting different ms to different items. However, these methods
are either not used for mining sequential patterns, or do not consider the influence of the sequences size.
So we use MLMS scheme, i.e., assign different minimum supports to sequences with different sizes to mine
NSP, which is different form the existing works.

(2) It only mines NSP from PSP, not from infrequent positive sequences (IPS), which also contain many
useful NSP. Just like many useful negative association rules or negative frequent itemsets can be mined
from infrequent itemsets (inFIS) [17][19][20][21][22], there are many useful NSP in IPS. However, how to
discover IPS is still an open problem [23]. E-NSPFI [13] is the only existing algorithm to mine NSP from IPS.
But its constraint is too strict to IPS because it requires the supports of all (k-1)-size subsequences of ips are
not less than minimum support threshold. For example, given ms=2, a dataset is as follows:{10 :< abcad >
; 20 :< acad >; 30 :< bcd >; 40 :< acb >; 50 :< adcd >}. According to the existing PSP mining algorithms,
s1 =< abc > and s2 =< abcd > are infrequent sequences because the supports of s1 and s2 are both 1, denoted
as sup(s1) = 1 and sup(s2) = 1. The sequence s1 is the 3-size subsequence of s2. So s2 does not satisfy the
infrequent constraint of e-NSPFI. But s2 can also generate NSP, such as < a¬bc¬d >. In fact, a large number
of IPS whose (k-1)-size subsequences are infrequent contains useful NSP.

To solve the two problems, we propose an efficient algorithm, named MLMS-NSP, to mine NSP from
PSP and IPS based on MLMS. We summarize the significant contributions of this paper as follows:

Firstly, MLMS scheme is proposed by assigning different ms to sequences with different sizes.
Secondly, IPS is constrained by combining MLMS, and then the NSP is obtained from these IPS.
Finally, the experimental results show that the MLMS-NSP algorithm can effectively mine NSP from

IPS, and the time efficiency is higher than using single minimum support.
The remainder of the paper is organized as follows. Section 2 discusses the related work. Section 3 is

preliminary. Section 4 proposes MLMS-NSP algorithm. Section 5 is experimental results. Conclusions and
future work are discussed in Section 6.
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2. Related work

This section consists of two main parts. Firstly, we summarize the status of NSP mining. Secondly, we
discuss the status of mining useful information from infrequent patterns.

2.1. The Status of NSP Mining
NegGSP [24] generates NSC by seed sets and calculates the NSC’s supports by re-scanning database.

This is very time consuming [25]. Furthermore, it generates NSP by comparing the supports of NSC with
single minimum support. PNSP is another algorithm to mine NSP in the form of < (abc)¬(de)(i jk) > [5].
It generates NSC by joining iteratively positive and negative itemsets. NSC’s supports are also calculated
by re-scanning database, and then NSP are generated by single minimum support. GA algorithm still
uses the single minimum support, and the difference is that it avoids generating NSC [12]. The method in
[26]only identifies three forms of NSP, i.e., (¬A,B), (A,¬B) and (¬A,¬B) and requires A ∩ B = ∅. Although
this requirement is common in association rules mining, it is very strict in NSP mining. NSPM only deals
with the last element in the NSP [27].

E-NSP is the most time efficient algorithm for mining NSP [3]. It generates NSC by using a conversion
strategy and calculates the supports of NSC only by equations, thus avoiding re-scanning database. This
effectively improves the efficiency of e-NSP. f-NSP use bitset structure to effectively improve the time
efficiency of e-NSP algorithm[28] and e-RNSP mine repetitive negative sequence patterns[29]. SAPNSP
[30], SAP[31], SAPSD [6] and SAPBN [6] first mine NSP by e-NSP algorithm, and then select actionable
NSP by different methods. E-msNSP [16] and CPNFSP [18] use multiple minimum supports to mine NSP.
E-msNSP uses the same idea of e-NSP to aviod re-scanning database and CPNFSP only identified three
forms of NSP. Furthermore, they use the actual frequencies of a single item sequence in the dataset as the
basis for minimum item support assignments.HUNSPM can mine high utility NSP[32]. NegI-NSP [14] is
the only existing algorithm to mine NSP based on items. In NegI-NSP, the smallest negative unit of NSC
is an item. NegI-NSP not only proposes the definition of negative containment based on items, but also
proves the formulas for the supports of NSC to avoid re-scanning database. This paper uses the definition
of negative containment and the formulas to calculate the NSC’s supports.

2.2. The Status of Mining Useful Information from Infrequent Patterns
Apriori MLMS [15] used the MLMS to mine inFIS and frequent itemsets (FIS). It assigned different ms to

itemsets with different lengths. Let ms(k) be the ms of k-itemsets (k = 1, 2, ,n), ms(1) ≥ ms(2) ≥, . . . ,≥ ms(n) ≥
ms > 0. For any k-itemset X, if sup(X) ≥ ms(k), then X is a FIS; and if ms(k) > sup(X) ≥ ms, then X is an
inFIS. Apriori IMLMS [23] algorithm is an extended version of Apriori XMMS. It used MLMS model and
interesting metric to select inFIS and FIS. Apriori XMMS [33] extended the MMS model to adapt to mining
inFIS by adding a constraint to inFIS. The literature [34] used correlation coefficient instead of interest to
improve the performance of IMLMS model.

PNAR−MLMS [35] is a corresponding algorithm to mine positive and negative association rules from
inFIS and FIS discovered by MLMS model. The algorithm in literature [36] proposed the concept of 2-
level supports model to discover inFIS and FIS. 2-level supports model uses two level supports ms−FIS
and ms inFIS (ms−FIS ≥ ms inFIS > 0) to constrain the inFIS and FIS respectively. For any itemset A, if
sup(A) ≥ ms−FIS, then A is a FIS; and if ms FIS > sup(A) ≥ ms inFIS, then A is an inFIS. The literature
[37] proposed 2-level XMMS model, which is based on MMS model, to improve the efficiency of 2-level
supports model. E-NSPFI [13] uses the idea of e-NSP to avoid re-scanning database for mining NSP from
IPS. But it requires that any subsequence of IPS should be frequent. This is very strict for IPS.

3. Preliminary

3.1. Positive Sequential Patterns-PSP
Let I = {i1, i2, ..., in} be a set of items. An itemset is a subset of I. A sequence is an ordered list of itemsets.

An itemset does not allow repeated items, and sequences allow repeated items in different elements. A
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sequence s is denoted by < e1e2...el >, where e j is an element of s, e j ⊆ I(1 ≤ j ≤ l). The element e j can
be denoted as (i1i2...im), where ik is an item, ik ∈ I (1 ≤ k ≤ m). For simplicity, the bracket is omitted if an
element only contains one item, i.e., element (i) is coded i.

The total number of elements in s is the size of sequence s, denoted as size(s). When size(s) = l, s is called
a l-size sequence. The total number of items in s is the length of sequence s, denoted as len1th(s). When
len1th(s) = m, s is a m-length sequence. For example, a sequence s =< (ab)(cd)(e f ) > is composed of three
elements (ab), (cd) and (e f ). Therefore, s is a 3-size and 6-length sequence, i.e., size(s) = 3 and len1th(s) = 6.

Sequence sα =< α1α2...αn > is a sub-sequence of sequence sβ =< β1β2...βm > and sβ is a super-sequence
of sα, if 1 ≤ j1 < j2 < . . . < jn ≤ m, α1 ⊆ β j1, α2 ⊆ β j2, . . . , αn ⊆ β jn, denoted as sα ⊆ sβ. We also say that sβ
contains sα. For example, the sequence < b f > is subsequences of < (ab)(cd)(e f ) >. The element b of < b f >
is contained the first element (ab) of < (ab)(cd)(e f ) >,i.e., j1 = 1; the element f of < b f > is contained the third
element (e f ) of < (ab)(cd)(e f ) >,i.e., j2 = 3.

A sequence database D is a set of tuples < sid, ds >, where sid is the sequence id and ds is the data sequence.
The number of tuples in D is denoted as |D|. The set of tuples containing sequence s is denoted as {< s >}.
The support of s, denoted as sup(s), is the number of {< s >}, i.e.,sup(s) = |{< s >}| = |{< sid, ds >,< sid, ds >∈
D ∧ (s ⊆ ds)}|.

3.2. Negative Sequential Patterns-NSP

This section introduces the negative containment definition of NegI-NSP algorithm. The definition will
be used in this paper. Let’s introduce an advance definition.

Definition 1. Positive Partner. The positive partner of a negative element(¬ab) is (ab), which is denoted
as p(¬ab), i.e., p(¬ab) = (ab); the positive partner of positive element (ab) is (ab) itself, i.e., p(ab) = (ab). The
positive partner of a negative sequence ns =< s1...sk > can be obtained by converting all negative elements
to their positive partners, which is denoted as p(ns), i.e., p(ns) = {< s′1...s

′

k > |s
′

i = p(si), si ∈ ns}. For instance,
p(< (¬(abc)¬c(¬de) >) =< (bc)e >.

To determine whether the ds contains ns, we first need to determine whether the ordered sequence of
all the positive items in ns (MPS(ns)) is a subsequence of ds. Only ds contains MPS(ns), ds may contains
ns. Secondly, we need to determine whether the ordered sequence of any negative item’s partner and all
positive items in ns is a subsequence of ds. The ordered sequence of any negative item’s partner and all
positive items in ns is called the 1 − ne1 − len1thMaximumSub − sequence denoted as 1 − ne1lMSns. For any
1 − ne1lMSns, only ds does not contain 1 − ne1lMSns, ds contains ns. Hence we propose the Definition 3 and
Definition 4.

Definition 2. Maximum Positive Subsequence. The sequence of all positive items in ns is called the Maximum
Positive Subsequence devoted as MPS(ns).

Definition 3. 1-neg-size Maximum Sub element. For a negative element si, its sub element includes all
positive items and one negative item e (∀e ∈ si) is called a 1-neg-size maximum sub element, denoted as
1 − ne1MPSE.

Definition 4. 1-neg-length Maximum Subsequence. For a negative sequence ns, its subsequence that
includes MPS(ns) and 1 − ne1MPSE is called a 1 − ne1 − len1thmaximumsubsequence, which is denoted as
1 − ne1lMSns. The subsequence set that includes all 1-neg-length maximum subsequences of ns is called
1 − ne1 − len1thmaximumsubsequenceset, which is denoted as 1 − ne1lMSSns.

Definition 5. Negative Containment Definition. Let ds =< d1d2 . . . dt >be a data sequence, ns =< s1s2 . . . sm >
be an m-size and n-neg-size negative sequence (1) if m > 2t + 1, then ds does not contain ns; (2) if m ≥ 1
and n=1, then ds contains ns when ∀p(1 − ne1lMS) * ds and MPS(ns) ⊆ ds; (3) otherwise, ds contains ns if,
∀1 − ne1lMSi ∈ 1 − ne1lMSSns, p(1 − ne1lMSi) * ds and MPS(ns) ⊆ ds(1 < i ≤ n).

4. MLMS-NSP Algorithm

This section consists of three parts. First, the definition of multiple level minimum supports (MLMS),
including the scope of infrequent sequential patterns (IPS) and frequent sequential patterns, is proposed.
Second, the steps of MLMS-NSP algorithm are given. Final, the pseudo code is given.
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4.1. Multiple Level Minimum Supports-MLMS
Constraint 1 (1-length-neg element format constraint). NSC only does not allow continuous 1-length

negative elements.
For instance, a sequence < (¬xy)¬z > satisfies the constraint, but a sequence < ¬x¬y > does not. This is

because we are unable to determine the order in which the elements, i.e., ¬x and ¬y, occur.
Definition 6. Multiple Level Minimum Supports Definition. Let ms(k)(k = 0, 1, 2, . . . ,m) indicates the

minimum support of a k-size sequence, ms(1) ≥ ms(2) ≥, . . . ,≥ ms(m) ≥ ms(0) > 0,for k-size sequence s,
(1) if sup(s) ≥ ms(k), then s is a frequent sequential pattern;
(2) if sup(s) < ms(k) and sup(s) ≥ ms(0), the s is an infrequent sequential pattern.
Both ms(0) and ms(k) are specified by users or researchers. Among them, ms(0) is the minimum support

threshold for mining IPS.

Figure 1: The PSP and IPS are mined by using MLMS.

4.2. Steps of MLMS-NSP Algorithm
Step1: improve the GSP algorithm to mine PSP and IPS based on MLMS.
First, we use different ms to mine PSP and output the number of PSP of different sizes. In particular, the

supports of sequences are obtained by re-scanning the database. Second, we compare the results of each
ms to set MLMS. How to set the MLMS is introduced in section 5.2. Finally, we use the MLMS and ms(0) to
select PSP and IPS.

Step2: use the method in NegI-NSP algorithm to generate NSC from the above PSP and IPS as follows.
For a k-size PSP, its NSC are generated by changing any m elements to their negative ones, 1 ≤ m ≤ k, for
each element that contains h items, change any w, 1 ≤ w < h. In particular, if there are continuous single
elements h = 1, they cannot be changed continuously.

For instance, the NSC based on < (xy)zx > include:
m=1, < (¬xy)zx >,< (x¬y)zx >,< (xy)¬zx >,< (xy)z¬x >;
m=2, < (¬xy)¬zx >,< (x¬y)¬zx >,< (¬xy)z¬x >,< (x¬y)z¬x >.
Step3: use the formulas in NegI-NSP algorithm to calculate the NSC’s supports.
Given an m-size and n-neg-size negative sequence ns, among the n negative elements, for ∀1−ne1lMSi ∈

1 − ne1sMSSns(1 ≤ i ≤ n), the support of ns is:

sup(ns) = |{ns}| = |{(MPS(ns)} − ∪n
i=1{p(1 − ne1lMSi)}| (1)

Because ∪n
i=1{p(1 − ne1lMSi)} ⊆ {MPS(ns)}, equation (1) can be converted to:

sup(ns) = |{(MPS(ns)}| − | ∪n
i=1 {p(1 − ne1lMSi)}|sup(MPS(ns)) − | ∪n

i=1 {p(1 − ne1lMSi)}| (2)

In particular, for negative sequence < ¬e >,

sup(< ¬e >) = |D| − sup(< e >) (3)

Step4: compare the NSC’s supports with MLMS to generate NSP.
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Table 1: The Pseudo Code of MLMS-NSP Algorithm

Algorithm: MLMS-NSP Algorithm.

Input: Sequence dataset D and Parameter ms(k);

Output:IPS, PSP and NSP;

(1) C=imporGSP() Re-scanning(D);

(2) For(c: C){

(3) If (c.support ≥ ms(0)){

(4) IPS.add(c);

(5) L.add(c);

(6) If(c.support ≥ ms(k)){

(7) PSP.add(c);

(8) }}

(9) while (L.size() > 0){

(10) C = 1enCandidate(L);

(11) For(inti = 0; i < C.size(); i + +){

(12) c = C.1et(i); (13) If (sup(c) ≥ ms(0)){

(14) IPS.add(c);

(15) L.add(c);}

(16) If(c.support ≥ ms(k)){

(17) PSP.add(c); (18) }}}}

(19) For (eachspinPSP ∪ IPS){

(20) NSC = Ne1I −NSP Candidate Generation(psp);

(21) For(nsc : NSC){

(22) Calculate the support of nsc by using the formulas(1),(2) and (3);

(23) If (sup(nsc).support ≥ ms(k)){

(24) NSP.add(nsc);

(25) }}

(26) Return PSP, IPSandNSP;

4.3. Pseudo Code of MLMS-NSP Algorithm

Line (1) to (18) is the improving GSP algorithm to mine PSP and IPS;
Line (1) to (7) generate the 1 size PSP and IPS;
line (9) to (18) generate the size of PSP and IPS larger than 1;
Line (18) to (26) generate the NSP from the PSP and IPS;
Line (20) generates NSC by step2;
Line (22) calculates the supports of NSC by step3;
Line (23) to line (25) compare the supports of NSC with ms(k) to generate NSP;
Line (26) returns the results and ends the program.
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5. Experiment and Results

We conduct experiments to verify the performance of MLMS-NSP, including the effect of IPS on NSP
and the effect of MLMS on NSP. For the first experiment, we change ms(0) to mine PSP and IPS based on
the same MLMS by applying the improved GSP algorithm, and then mine NSP from these PSP and IPS.
For the second experiment, we compare the efficiency of MLMS-NSP with NegI-NSP. All experiments are

Table 2: Summary of datasets

Dataset sequence Numbers distinct item Numbers file size

DS1 5,269 Around 4K 5.1M

DS2 10K 100 12.8M

DS3 1K 100 1.9M

DS4 100 100 52.6M

performed on Windows 7 PC with 16GB memory, Inter Core i5 2.5GHz CPU, all the programs are written in
Java. In this section, all supports (ms and MLMS) are calculated in terms of the percentage of the frequency
| < s > | of a pattern s compared to |D|.

Table 3: PSP and IPS are generated by MLMS on DS1
DS1 PSP k=1 k=2 k=3 k=4 k=5 k=6 k=7

ms(*)=0.09 PSP 51 243 383 165 50 3 2
ms(*)=0.1 PSP 47 209 270 121 26 3 2

ms(*)=0.11 PSP 44 178 180 90 6 2 0
ms(*)=0.12 PSP 40 156 122 68 3 0 0
ms(*)=0.13 PSP 37 127 89 50 1 0 0
ms(*)=0.14 PSP 36 105 63 38 0 0 0
ms(*)=0.15 PSP 31 94 46 24 0 0 0
ms(*)=0.16 PSP 28 73 42 16 0 0 0
ms(*)=0.17 PSP 27 60 36 10 0 0 0

ms(1)=0.17,. . ., PSP 27 73 46 38
ms(4)=0.14,ms(0)=0.09 IPS 24 170 337 127

ms(1)=0.17,. . ., PSP 27 73 46 38
ms(4)=0.14,ms(0)=0.13 IPS 10 54 43 12

5.1. Datasets
We use one real-life and three synthetic datasets for the experiments. The synthetic datasets are generated

by IBM data generator.
Dataset 1 (DS1) is a dataset of health insurance claim sequences. The dataset contains 5269 sequences.

The average number of elements in per sequence is 21. The maximum number of elements in a sequence
is 144, and the minimum number is 1.

Dataset 2 (DS2), C6 T16 S8 I10 DB10k N100.
Dataset 3 (DS3), C13 T8 S14 I8 DB1k N100.
Dataset 4 (DS4), C6 T6 S8 I6 DB100k N100.

5.2. Assign MLMS
Tables 2, 3, 4 and 5 represent the number of PSP that can be mined from DS1 to DS4 by using single

minimum support, where ms(*) represents any minimum support threshold and k is the size of PSP. From
table 2, when ms(∗) ≥ 0.14 and k ≥ 5, the number of PSP is 0. That is when ms(0)=0.13 and k=5, the number
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Table 4: PSP and IPS are generated by MLMS on DS2
DS1 PSP k=1 k=2 k=3 k=4 k=5 k=6 k=7

ms(*)=0.19 PSP 820 9953 14408 2712 19 0 0
ms(*)=0.2 PSP 709 8043 10704 1752 7 0 0

ms(*)=0.21 PSP 645 6560 7949 1152 3 0 0
ms(*)=0.22 PSP 570 5379 5988 747 0 0 0
ms(*)=0.23 PSP 502 4519 4576 503 0 0 0
ms(*)=0.25 PSP 397 3076 2675 217 0 0 0
ms(*)=0.26 PSP 354 2586 2054 135 0 0 0
ms(*)=0.27 PSP 320 2167 1574 94 0 0 0
ms(*)=0.28 PSP 291 1868 1243 58 0 0 0

ms(1)=0.28,. . ., PSP 291 2167 2054 217
ms(4)=0.25,ms(0)=0.19 IPS 529 7786 12354 2495

ms(1)=0.28,. . ., PSP 291 2167 2054 217
ms(4)=0.25,ms(0)=0.23 IPS 211 2352 3422 286

Table 5: PSP and IPS are generated by MLMS on DS3
DS1 PSP k=1 k=2 k=3 k=4 k=5 k=6 k=7

ms(*)=0.2 PSP 609 14855 83032 131104 63232 8134 98
ms(*)=0.21 PSP 550 12641 66586 97577 43364 4870 41
ms(*)=0.22 PSP 511 11025 55269 76183 31534 3158 76
ms(*)=0.23 PSP 467 9471 44691 57635 21774 1905 5
ms(*)=0.24 PSP 422 8373 37430 45283 16064 1251 3
ms(*)=0.25 PSP 388 7217 30408 34616 11276 738 0
ms(*)=0.26 PSP 357 6398 25605 27474 8301 477 0
ms(*)=0.27 PSP 320 5621 21063 21076 5941 276 0
ms(*)=0.28 PSP 303 5010 17804 16872 4380 167 0
ms(*)=0.29 PSP 340 7307 23840 18408 3024 14 0
ms(*)=0.3 PSP 257 3980 12613 10472 2317 68 0

ms(1)=0.30,. . ., PSP 257 7307 17804 21076 8301 738
ms(6)=0.25,ms(0)=0.2 IPS 352 7548 65228 110028 54931 7396

ms(1)=0.30,. . ., PSP 257 7307 17804 21076 8301 738
ms(6)=0.25,ms(0)=0.24 IPS 165 1066 19626 24207 7763 513

Table 6: PSP and IPS are generated by MLMS on DS4
DS1 PSP k=1 k=2 k=3 k=4 k=5 k=6 k=7

ms(*)=0.07 PSP 332 1635 778 16 0 0 0
ms(*)=0.08 PSP 269 1160 446 31 0 0 0
ms(*)=0.09 PSP 221 872 275 1 0 0 0
ms(*)=0.1 PSP 180 679 181 0 0 0 0

ms(*)=0.11 PSP 148 524 118 0 0 0 0
ms(*)=0.12 PSP 125 414 72 0 0 0 0
ms(*)=0.13 PSP 113 321 48 0 0 0 0
ms(*)=0.14 PSP 104 250 33 0 0 0 0

ms(1)=0.14,ms(2)=0.13, PSP 104 321 72
ms(3)=0.12,ms(0)=0.07 IPS 228 1314 706
ms(1)=0.14,ms(2)=0.13, PSP 104 321 72
ms(3)=0.12,ms(0)=0.11 IPS 44 203 46
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of 5-size IPS is 0. This is meaningless. Therefore, when testing the effect of IPS on NSP mining, we do
not consider the sequences (size>4). Furthermore, in order for easy set MLMS, for a few sequences with
great size, we set the same minimum support, like using single minimum support to mine NSP. Therefore,
when testing the effect of MLMS on NSP mining, we do not consider the sequences (size>4) either. In
summary, for DS1, we can set the minimum support of the 1-size PSP is 0.17, denoted as ms(1)=0.17,
ms(2)=0.16, ms(3)=0.15 and ms(4)=0.14, the number of PSP corresponding to the shadowed portions are
(27 + 73 + 46 + 38 =)184, and the number of IPS is (24 + 170 + 337 + 127 =)658 when ms(0)=0.09 and the
number of IPS is (10 + 54 + 43 + 12 =)119 when ms(0)=0.13. This is the MLMS for DS1.

Similar to set MLMS for DS1, we can set MLMS from DS2 to DS4 by analyzing tables 3 to 5. The
shadowed part represents the number of PSP. For DS2, we set ms(1)=0.28, ms(2)=0.27, ms(3)=0.26 and
ms(4)=0.25; For DS3, we set ms(1)=0.30, ms(2)=0.29, ms(3)=0.28, ms(4)=0.27, ms(5)=0.26 and ms(6)=0.25; For
DS4, we set ms(1)=0.14, ms(2)=0.13 and ms(3)=0.12.

5.3. Experimental Results
In section 4.2, we can obtain the number of PSP with different MLMS from DS1 to DS4. All the

experiments are based on section 4.2.

Figure 2: The count of IPS and NSP.

(1)The Effect of IPS on NSP Mining
From Figure 2, we can see that the number of IPS and NSP both decrease, and the number of NSP

decreases faster than IPS as ms(0) increase. For each dataset, under the same ms(0), the number of NSP is
consistently more than IPS. This is because with ms(0) increasing, the number of long PSP are generated
lower than before and long PSP can generate more NSC according to section 3.2.

From figure 3, for DS1, DS2 and DS4, the running time of NSP is longer than IPS and the running time
of NSP decreases faster than IPS as ms(0) continues to increase. This is proportional to the number of NSP
and IPS. For DS3, the running time of NSP is shorter than IPS because the file size of DS3 is around 1.9M
and contains only 1000 the data sequences. This is smaller than other datasets. Therefore, when mining
IPS, the number of re-scanning data sequences is greatly reduced compared to other datasets.

(2)The Effect of MLMS on NSP Mining
From Figure 4 and 5, ms(1) represents the minimum support of a sequence with 1 size in MLMS-NSP, and

also represents the minimum support threshold of NegI-NSP. For DS1, the MLMS of ms(1)=0.09 corresponds
to ms(1)=0.12, ms(2)=0.11, ms(3)=0.1 and ms(4)=0.09. For DS2, the MLMS of ms(1)=0.17 corresponds
to ms(1)=0.2, ms(2)=0.19, ms(3)=0.18 and ms(4)=0.17. For DS3, the MLMS of ms(1)=0.2 corresponds to
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Figure 3: Running time(s).

ms(1)=0.25, ms(2)=0.24, ms(3)=0.23, ms(4)=0.22, ms(5)=0.21 and ms(6)=0.2. For DS4, the MLMS of ms(1)=0.07
corresponds to ms(1)=0.09, ms(2)=0.08 and ms(3)=0.07. For the same dataset, the interval between multiple
minimum supports remains unchanged.

From figure 4, although the number of NSP by MLMS-NSP is less than NegI-NSP, the number of long size
sequences is not reduced. The MLMS-NSP reduces the number of short size sequences with lower support.
This shows that MLMS can not only mine NSP from different levels, but also select NSP more accurately.
From figure 5, we can see that the runtime of MLMS-NSP is less than NegI-NSP. This is proportional to

Figure 4: The comparisons of NSP count.

the number of NSP in figure 4. Two algorithms are used for mining NSP based on items. The difference
is that MLMS-NSP uses MLMS to select NSP instead of ms. The reduction of the number of NSP leads to
the enhancement of MLMS-NSP algorithm mining efficiency. Therefore, the MLMS-NSP algorithm is more
effective in mining NSP.
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Figure 5: The comparisons of running time.

6. Conclusions and Future Work

NSP provides a special perspective for analysts to capture more valuable information. Although NegI-
NSP can efficiently mine NSP based on items, it cannot solve many crucial problems, such as (1) it uses
a single minimum support to all size sequences, which is unfair to long size sequence; (2) it only mines
NSP from PSP, not from infrequent positive sequences (IPS), which also contained many useful NSP. To
solve the problems, we first proposed MLMS scheme, i.e., assign different ms to sequences with different
sizes. Secondly, we combine MLMS to constrain IPS and successfully mine NSP from these IPS. Finally,
we propose an efficient algorithm, named MLMS-NSP, to mine NSP based on MLMS from PSP and IPS.
Experimental results show that the MLMS-NSP can effectively mine NSP from PSP and IPS, and the time
efficiency is higher than using single ms.

In the future, we will focus on selecting actionable NSP and improving the efficiency of NSP mining.
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