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Abstract. In neighborhood rough set theory, traditional heuristic algorithm for computing reducts does not
take the stability of the selected attributes into account, it follows that the performances of the reducts may
not be good enough if the perturbations of data occur. To fill the gap, the mechanism of acquiring the most
significant attribute is realized by two steps in the reduction process: firstly, several important attributes are
derived in each iteration based on several radii which are close to the given radius for computing reduct;
secondly, the most significant attribute is selected from them by a voting strategy. The experiments verify
that such method can effectively improve the stabilities of the reducts, and it does not require too much
attributes for constructing the reducts.

1. Introduction

Neighborhood rough set firstly specifies a radius for each sample. Then for a given sample, those
samples within the scope determined by the radius are considered as its neighbors. By such distance
strategy, neighborhood rough set can deal with continuous data or even mixed data [8].

Similar to other generalized rough sets, attribute reduction [2, 10, 19, 23] plays a fundamental role in
neighborhood rough set. Recently, a great number of evaluation criteria such that neighborhood decision
error rate and conditional entropy, have been deeply explored in neighborhood rough set [7, 9, 24]; how
to accelerate the speeds of computations of the reducts was investigated in Refs. [3, 14]; some scholars
even managed to apply attribute reduction to other research domains or practical problems [12, 13, 22].
Nevertheless, to our best knowledge, the stabilities of the reducts in neighborhood rough set were rarely
studied. Based on the results shown in Refs. [1, 5, 11], such topic is important and should be carefully
addressed.

Up to now, the voting strategies in ensemble learning have been demonstrated useful for stable feature
selection [4, 15, 16, 18]. Since attribute reduction is a kind of feature selection, it is possible to introduce
ensemble voting into attribute reduction.
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2. Preliminary knowledge

2.1. Neighborhood rough set

Without loss of generality, a neighborhood information system can be represented as S =< U,A >, in
which U is samples’ set, and A is condition attributes’ set.

Given a neighborhood information system S, ∀B ⊆ A, a neighborhood binary relation is then defined
as δB = {(x, y) ∈ U × U : ∆B(x, y) ≤ δ}, where ∆B : U × U → [0, 1] is the distance function which returns
the normalized Euclidean distance [20] of two samples with respect to B and δ ∈ [0, 1] is the given radius.
Furthermore, if (x, y) ∈ δB, then δB(x, y) = 1; otherwise δB(x, y) = 0. It follows that δB satisfies reflexive and
symmetry and then δB can be used to characterize the similarity among samples. Specially, δB(x) = {y ∈ U :
δB(x, y) = 1} contains all the samples which are similar to x.

From the viewpoint of granular computing, δB(x) is not only regarded as an information granule,
but also can construct approximations. Therefore, ∀X ⊆ U, Hu et al. [8] defined the neighborhood
rough set of X as [δB(X), δB(X)] in which δB(X) = {x ∈ U : δB(x) ⊆ X} is lower approximation of X and

δB(X) = {x ∈ U : δB(x) ∩ X , ∅} is upper approximation of X.

2.2. Neighborhood decision system

To process data with classification information, the neighborhood information system needs to be
expanded such that NDS =< U,A,D > known as the neighborhood decision system. In NDS, D is one
decision attribute. It can partition U into some collections with respect to the classification information.
In rough set theory, each of these collections is called a decision class. Without loss of generality, the k-th
decision class is denoted by Xk.

Assume that there are p decision classes in NDS, then ∀B ⊆ A, the lower and upper approximations of
D with respect to B are δB(D) = ∪

p
k=1δB(Xk) and δB(D) = ∪

p
k=1δB(Xk), where δB(Xk) = {x ∈ U : δB(x) ⊆ Xk} and

δB(Xk) = {x ∈ U : δB(x) ∩ Xk , ∅}.

3. Attribute reduction

In this section, we will present the details of the traditional heuristic algorithm and our proposed
ensemble heuristic algorithm for computing reducts.

3.1. Heuristic algorithm

Definition 1. Given a neighborhood decision system NDS =< U,A,D >, ∀B ⊆ A, the approximate quality of NDS
with respect to B is

γδB(D) =
|δB(D)|

|U|
, (1)

where δ is the radius employed by the neighborhood rough set and |X| is the cardinality of the set X.

Definition 2. Given a neighborhood decision system NDS =< U,A,D >, ∀B ⊆ A, B is an approximate quality
reduct of A iff
(1) γδA(D) = γδB(D);
(2) ∀C ⊂ B, γδC(D) , γδB(D).

Definition 3. Given a neighborhood decision system NDS =< U,A,D >, if B ⊂ A, then ∀a ∈ A\B, its significance
is

Sigδ(a,B,D) = γδB∪{a}(D) − γδB(D), (2)
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where δ is the radius employed by the neighborhood rough set.
The Eq. (2) reflects the variation of the approximate quality when attribute a is added into B. Obviously,

a higher value of Sigδ(a,B,D) indicates that the attribute a is more significant for B, because the approximate
quality witnesses a remarkable increase. By Sigδ(a,B,D), a forward heuristic attribute reduction algorithm
[6, 8] is designed:

Algorithm 1. Heuristic Algorithm (HA)

Inputs: NDS =< U,A,D >, radius δ, and approximate quality threshold ε;
Outputs: An approximate quality reduct B.
1. B← ∅;
2. Compute γδA(D);
3. Do

1) ∀a ∈ A\B, compute Sigδ(a,B,D); // γδ
∅
(D) = 0

2) Select b such that Sigδ(b,B,D) = max {Sigδ(a,B,D) : ∀a ∈ A\B};
3) B← B ∪ {b};
4) Compute γδB(D);

Until γδA(D) − γδB(D) ≤ ε · γδA(D);
4. Return B.

In Algorithm 1, step 3 selects the most significant attribute b in each iteration. Then it checks whether the
set of the selected attributes satisfies the definition of the approximate quality reduct. Since the definition
is too strict, an approximate quality threshold ε ∈ [0, 1] is employed in the algorithm.

3.2. Ensemble heuristic algorithm
As a whole, the key step of Algorithm 1 is to select the most significant attribute. Nevertheless, the

changing of data is inevitable in real world applications [21], e.g., the condition attribute values of some
samples are updated. Then, the most significant attribute may no longer be the one obtained before the
variation of data, and it follows that a completely different reduct occurs. For such reason, an algorithm
that can generate a more stable reduct is desired.

The reason why Algorithm 1 fails to obtain a stable reduct is that the factor of the variation of data is
not considered in its steps of searching the most significant attribute, so we firstly need to simulate the
variation of data and then attempt to take such factor into account.

Although it is impossible to predict how data will change, it is known that neighborhood rough set can
adjust its radius δ to deal with different data. Therefore, a slight variation of the radius δ employed by
neighborhood rough set can simulate the variation of data.

The next step is to concentrate on the computation of the most significant attribute. By Eq. (2), we can
obtain several important attributes when different radii are respectively adopted. Then inspired by the
voting strategy in ensemble learning, an ensemble heuristic algorithm is proposed. The detailed steps of it
are presented as follows.

Algorithm 2. Ensemble Heuristic Algorithm (EHA)

Inputs: NDS =< U,A,D >, radius δ, approximate quality threshold ε, stepsize ω and a positive integer
α;

Outputs: An approximate quality reduct B.
1. B← ∅;
2. Compute γδA(D);
3. Do

1) Temporary pool T← ∅;
2) For j = −α; j ≤ α; j = j + ω

δ′ ← δ + ω · j;
∀a ∈ A\B, compute Sigδ

′

(a,B,D); // γδ
′

∅
(D) = 0
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Select b such that Sigδ
′

(b,B,D) = max {Sigδ
′

(a,B,D) : ∀a ∈ A\B};
Add b into T;

End For
3) Select attribute c by ensemble voting in T;
4) B← B ∪ {c};
5) Compute γδB(D);

Until γδA(D) − γδB(D) ≤ ε · γδA(D);
4. Return B.

Algorithm 2 firstly adopts a set of radii which are close to the given radius δ. Then the important
attributes separately derived from different radii are stored in the temporary pool T. Subsequently, in each
looping, voting strategy regards the attribute c that has maximal frequency of occurrences in T as the most
significant attribute. In this way, a reduct is finally generated.

Note that the radius utilized by the terminal condition of the iteration in step 3 is δ. It implies that
the reduct generated by our proposed algorithm also maintains the change of approximate quality of
the neighborhood decision system in a small range determined by ε, while the difference compared to
Algorithm 1 lies in how to select the most significant attribute.

4. Experiment

In this section, we will analyze whether Algorithm 2 is effective by the stabilities and lengths of reducts.

4.1. Data sets
To test the performance of our proposed algorithm, several UCI data sets are employed to conduct the

experiment. Their information is displayed in Table 1. Note that the “Attributes” column in Table 1 refers
to the condition attributes.

Table 1: Data sets description
ID Data set name Samples Attributes Decision classes
1 Climate Model Simulation Crashes 540 20 2
2 Connectionist Bench (Sonar, Mines vs. Rocks) 208 60 2
3 Forest Type Mapping 523 27 4
4 Ionosphere 351 34 2
5 Parkinsons 195 23 7
6 Wine 178 13 3

4.2. Experimental configurations
For both Algorithm 1 and Algorithm 2, the approximate quality threshold is set by ε = 0.05 and the

radius of neighborhood rough set is set by δ = 0.18, 0.21, . . . , 0.30. In Algorithm 2, the stepsize is set by
ω = 0.03 and the positive integer is set by α = 2.

4.3. Experimental results and experimental analyses
To describe the stability of the reduct, all samples in U are firstly divided into t groups of equal sizes.

Then, in each time, t−1 groups of them are combined and used to compute a reduct. Therefore, t reducts
are finally obtained.

If these groups are respectively denoted by U1,U2, . . . ,Ut, the reduct derived from U2,U3, . . . ,Ut is
denoted by red1, the reduct derived from U1,U3, . . . ,Ut is denoted by red2, . . ., and the reduct derived from
U1,U2, . . . ,Ut−1 is denoted by redt, then the stability of the reduct [17] can be defined as:

ReductStability =
2

t · (t − 1)

t−1∑
i=1

t∑
j=i+1

|redi ∩ red j|

|redi ∪ red j|
. (3)
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Obviously, a higher value of ReductStability indicates a better stability. Moreover, in our experiment, t is
set to 5.

The stabilities of reducts separately generated from Algorithm 1 and Algorithm 2 on all the data sets
are displayed in Tables 2-7. In these tables, the better performances between the two algorithms are
highlighted in boldface. In addition, the average lengths of reducts separately generated from Algorithm
1 and Algorithm 2 on all the data sets can be observed in Tables 8-13. Note that each value in these tables
refers to the average length of the t reducts.

Table 2: Stability of reduct on Climate Model Simulation Crashes
Radius δ 0.18 0.21 0.24 0.27 0.30

Algorithm 1 0.5487 0.4057 0.3996 0.4057 0.3637
Algorithm 2 0.4456 0.4435 0.4322 0.4206 0.5744

Table 3: Stability of reduct on Connectionist Bench (Sonar, Mines vs. Rocks)
Radius δ 0.18 0.21 0.24 0.27 0.30

Algorithm 1 0.1874 0.2111 0.2468 0.3001 0.3383
Algorithm 2 0.1802 0.2722 0.3642 0.4262 0.4710

Table 4: Stability of reduct on Forest Type Mapping
Radius δ 0.18 0.21 0.24 0.27 0.30

Algorithm 1 0.8248 0.8843 0.8865 0.9184 0.9333
Algorithm 2 0.8608 0.9444 0.9229 0.9259 0.9407

Table 5: Stability of reduct on Ionosphere
Radius δ 0.18 0.21 0.24 0.27 0.30

Algorithm 1 0.5820 0.6897 0.6977 0.8223 0.8290
Algorithm 2 0.7329 0.8066 0.7519 0.7992 0.8263

Table 6: Stability of reduct on Parkinsons
Radius δ 0.18 0.21 0.24 0.27 0.30

Algorithm 1 0.8382 0.7280 0.7718 0.7766 0.8191
Algorithm 2 0.8032 0.7760 0.7845 0.8978 0.8748

Table 7: Stability of reduct on Wine
Radius δ 0.18 0.21 0.24 0.27 0.30

Algorithm 1 0.6102 0.7361 0.7968 0.9692 0.9692
Algorithm 2 0.7091 0.8083 0.8615 1.0000 0.9692

Table 8: Length of reduct on Climate Model Simulation Crashes
Radius δ 0.18 0.21 0.24 0.27 0.30

Algorithm 1 6.2000 7.0000 7.0000 8.0000 8.0000
Algorithm 2 6.8000 7.0000 7.8000 8.0000 8.4000

Table 9: Length of reduct on Connectionist Bench (Sonar, Mines vs. Rocks)
Radius δ 0.18 0.21 0.24 0.27 0.30

Algorithm 1 10.6000 12.0000 14.0000 17.6000 22.2000
Algorithm 2 10.6000 13.4000 16.6000 19.0000 24.2000

Table 10: Length of reduct on Forest Type Mapping
Radius δ 0.18 0.21 0.24 0.27 0.30

Algorithm 1 22.6000 24.2000 24.8000 25.8000 25.8000
Algorithm 2 23.8000 24.4000 24.8000 25.8000 26.0000
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Table 11: Length of reduct on Ionosphere
Radius δ 0.18 0.21 0.24 0.27 0.30

Algorithm 1 23.0000 24.8000 23.8000 28.4000 27.6000
Algorithm 2 24.0000 27.8000 26.8000 28.6000 28.2000

Table 12: Length of reduct on Parkinsons
Radius δ 0.18 0.21 0.24 0.27 0.30

Algorithm 1 15.8000 15.8000 17.0000 19.0000 18.0000
Algorithm 2 16.4000 15.8000 17.4000 18.2000 19.4000

Table 13: Length of reduct on Wine
Radius δ 0.18 0.21 0.24 0.27 0.30

Algorithm 1 9.0000 10.4000 11.4000 12.8000 12.8000
Algorithm 2 9.2000 10.2000 12.0000 13.0000 12.8000

With a careful observation, the following conclusions can be drawn.

1. In most cases, the reducts generated from our proposed algorithm are much more stable than the
reducts generated from Algorithm 1. Take Climate Model Simulation Crashes data set as an example,
when the radius δ = 0.30, ReductStability = 0.3637 in Algorithm 1. By contrast, ReductStability = 0.5744
in Algorithm 2.

2. The reducts generated from our proposed algorithm are only slightly longer than the reducts generated
from Algorithm 1. Take Ionosphere data set as an example, when the radius δ = 0.18, the average
length of the reducts generated from Algorithm 1 is 23.0000. By contrast, the average length of the
reducts generated from Algorithm 2 is 24.0000.

5. Conclusion

In this paper, we firstly developed an ensemble heuristic algorithm for neighborhood rough set to obtain
a stable reduct. Then, a novel approach to the selection of the most significant attribute was presented in
detail. Finally, its remarkable advantages over the traditional heuristic algorithm were demonstrated
through experiments.

Our future research will concentrate on the following two aspects:
1. Only the stability of approximate quality reduct is explored in this paper. Whether classification

based reducts such that neighborhood decision error rate reduct derived from our proposed algorithm are
stable remains obscure.

2. Classification performance of the classifier based on the reduct generated from our proposed algorithm
will be further investigated.
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