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Abstract. This paper presents transporting algorithm for multiple robots to transport a concave or convex
object. The object transporting includes three processes: calculating proper points process; approaching
proper points process; and transporting an object process. Using fuzzy sliding mode control algorithm,
we design a kinematic velocity controller. We also propose a dynamic torque controller by adaptive
sliding mode control algorithm. Finally, simulations and experiment show good performance of proposed
methods.

1. Introduction

Object transportation has received considerable attention, over the past decade [1]. In [2], an object
is pushed from a single rotational contact point. In [3], a robot pushes a disk shaped object. It allows
compliance of the manipulated object against the obstacle. Kube et al. [4] presents swarm robots push a
large box, and the system could be emergency. A great number of robots are applied to move an object [5].
Suarod et al. [6] described a heuristic method to calculate formation. Since the system should first calculate
a series of candidate points, it increases computation time within the system. Considering pros and cons
of above object transportation methods, this paper combines object pushing and object caging to transport
concave and convex objects. In this paper, multiple robots transport a concave or convex object.

There are some method for robot motion control, such as EKF [7], optimal feedback control [8], robust
control [9], intelligent control [10], decentralized control [11], and Sliding mode control. EKF requires a long
time to update the desired states. Intelligent control requires high computation power. In robust control, a
priori information about the bounds of the uncertain or time-varying parameters is necessary. About the
drawback of decentralized control, it is difficult to coordinate overall system. Using fuzzy sliding mode
control algorithm, the kinematic velocity controller is designed. Since it is difficult to produce the perfect
velocity for robot dynamics as the kinematic controller, the torque controller is proposed, based on adaptive
integral sliding mode control algorithm.

2010 Mathematics Subject Classification. 68T40.
Keywords. Mobile robots; Kinematic velocity controller; Dynamic torque controller; Fuzzy adaptive sliding mode control.
Received: 11 September 2017; Accepted: 11 November 2017
Communicated by Hari M. Srivastava
Email addresses: guangyanyan1129@hotmail.com (Yanyan Dai), dianwei.qian@ncepu.edu.cn (Dianwei Qian), sglee@ynu.ac.kr

(SukGyu Lee*)



Y. Y. Dai et al. / Filomat 32:5 (2018), 1547–1558 1548

Figure 1: Model of nonholonomic mobile robot.

2. Robot model

In Fig. 1, robot Ri has a passive wheel and two actuated wheels to achieve the motion and orientation.
ri is the radius of wheels. 2bi is the distance between two wheels. The mass center of the robot is Mi, and
Oi is located in the middle point between two wheels. o, x, y is a global reference frame, and Oi,X,Y is the
local reference frame. The motion of robot Ri is as qi = (xi, yi, θi)T, where xi, yi, and θi are xi coordinate, yi
coordinate, and the bearing angle, respectively. The constraint of the robot is as:

ẏi cosθi − ẋi sinθi = 0 (1)

Vi = (vi, ωi)T is defined as linear and angular velocity of robot . The surface friction is ignored. The
model of the nonholonomic robot is defined as:

q̇i = S(qi)Vi(t) (2)
M̄(qi)V̇i + C̄(qi, q̇i)Vi + τ̄id = B̄τi (3)

where s(qi) =

 cosθi 0
sinθi 0

0 1

, M̄ =

[
Mi 0
0 Ii

]
, C̄ =

[
0 0
0 0

]
, and B̄ = 1

r

[
1 0
b −b

]
.

τi = (τi1, τi2)T is the torque on left and right wheels. mi is the mass of the robot. Ii is the moment of
inertia of the robot.

3. Object transporting

3.1. Calculating proper points process
In this section, robots calculate their proper points, based on the shape of an object. All robots are

assumed to be the same size and model. Rrobot is the radius of the robot. The robot can measure the distance
and the direction toward the object. Then, the object corner vectors is calculated as X j = (x j, y j), where
j( j = 1, 2, ...,n) is the number of the corners of the object counter-clockwise, X1 = Xn+1. The center vector
C j(xc

j, y
c
j) for the object edge between X jX j+1 can be given by Eqs. (4) and (5).The height from center point

C j of the object is defined as d j.

xc
j = 1

2 (x j + x j+1) (4)

yc
j = 1

2 (y j + y j+1) (5)

The angle α j is calculated as

α j = a tan 2((y j+1 − y j), (x j+1 − x j)) (6)
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Figure 2: Three robots form a triangle transportation formation, where two follower robots contact the same edge of the object.

In Fig. 2, concave point is X j+2, and the concave angle λ j+2 can be calculated as

λ j+2 = α j+2 − (α j+2 + α j+1 − π)/2 (7)

The distance connecting the corner point X j+2 and the center point of the robot can be calculated as

dXR
j+2 = Rrobot/sin((α j+2 + α j+1 − π)/2) (8)

If one edge is much longer than the other edges, two follower robots contact with the same long edge
of the object. Three robots form an isosceles triangle formation as in Fig. 2. q0 describes the proper point of
leader robot. q1 and q2 denote proper points for follower robots 1 and 2.

Two follower robots are symmetrically located by the center point of the edge. The Euclidean distance
between two follower robots’ centers is defined as k + 2Rrobot, where k is a positive constant. χ(m)(m = 1, 2)
is the Euclidean distance between the contact point of one follower robot and edge center point. χ(m) is

χ(m) =

{
−

1
2 drr m = 1

1
2 drr m = 2

(9)

Based on (4)-(6), the contact point vector Pm(xp
m, y

p
m) ( m = 1, 2) for the follower robot is:

xp
m = xc

j + χ(m) cosα j (10)

yp
m = yc

j + χ(m) sinα j (11)

The angle β j is as Eq. (12). If the direction of β j is obtained from the direction of α j in counter-clock wise,
β j = α j + π/2; otherwise, β j = α j − π/2.

β j = α j ± π/2 (12)

The proper points qm (m = 1, 2) for two follower robots can be calculated as

xm = xp
m + Rrobot cos β j (13)

ym = yp
m + Rrobot sin β j (14)

Three robots form an isosceles triangle transportation formation. The height of the transportation
formation d f is calculated as Eq. (15), where δ is a compensation constant.

d f = d j + 2Rrobot + δ (15)
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The proper point q0 for the leader robot is:

x0 = 1
2 (x1 + x2) + d f cos(α j + π/2) (16)

y0 = 1
2 (y1 + y2) + d f sin(α j + π/2) (17)

To extend the object transportation direction range, two follower robots contact with different edges of
the object. If the concave object is a triangle shape object, two follower robots contact two centers of two
adjacent edges of the object; otherwise, two follower robots contact two centers (C j and C j+2) of non-adjacent
edges to form an isosceles triangle formation as in Fig. 3. q0 describes the proper point of leader robot.
q1 and q2 are proper points for follower robot 1 and 2, respectively. Two follower robots are positioned
symmetrically the center of two different edges. In Fig. 3, two follower robots contact with C j and C j+2.
The angle β j is as Eq. (12). The proper point q1 for follower robot R1 can be calculated as

x1 = xc
j + Rrobot cos β j (18)

y1 = yc
j + Rrobot sin β j (19)

The proper point q2 for follower robot R2 is:

x2 = xc
j+2 + Rrobot cos β j+2 (20)

y2 = yc
j+2 + Rrobot sin β j+2 (21)

The angle ϕ12 from x-axis to the connecting line between follower robot 1 and 2 is given by

ϕ12 = a tan 2((y2 − y1), (x2 − x1)) (22)

The leader robot and two follower robots form a triangle transportation formation. The height d f of the
transportation formation is calculated as (23), where δ is a compensation constant.

d f = d j+1 + 2Rrobot + δ (23)

The proper point q0 for leader robot is:

x0 = 1
2 (x1 + x2) + d f cos(ϕ12 + π/2) (24)

y0 = 1
2 (y1 + y2) + d f sin(ϕ12 + π/2) (25)

3.2. Approaching proper points process
To approach robots’ proper points, safe paths are designed. The shortest safe paths are calculated,

depending on the theta* algorithm [12]. As an obstacle, the object boundary is extended by robot radius.

3.3. Transporting an object process
If there is no obstacle, three robots form the transportation formation and move to the goal. If there is an

obstacle, robots should avoid the obstacle first, and then move to their goals. During obstacle avoidance,
the object and robots are recognized as a rigid body, which uses theta* algorithm to avoid the obstacle.
According to the width of the rigid body, the boundary of the obstacle is extended.

4. Robot Motion Control

In this section, based on robots kinematic model (2), using sliding mode control algorithm, we first
design a kinematic controller to bound the error posture Ei = (xiE, yiE, θiE)T, and limt→∞ ‖(xiE, yiE, θiE)T

‖ = 0.
Secondly, based on robots dynamic model (3), we use adaptive integral slid-ing mode control algorithm to
design a torque controller. Finally, we present the structure of the presented control scheme.
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Figure 3: Three robots form a triangle transportation formation, where two follower robots contact different edges of the object.

4.1. Kinematic controller
Based on waypoint state qiw = (xiw, yiw, θiw)T and current state qic = (xic, yic, θic)T, the state errors de-fined

as ei = (xie, yie, θie)T = qiw − qic. Add a Jacobian, we transfer the state error ei as Ei.

Ei =

 xiE
yiE
θiE

 =

 cosθic sinθic 0
− sinθic cosθic 0

0 0 1


 xie

yie
θie

 (26)

Using Eq. (26) and ẋiw sinθiw − ẏiw cosθiw = 0, Ėi is:

Ėi =

 ẋiE
ẏiE
θ̇iE

 =

 cosθiE
sinθiE

0

 viw +

 0
0
1

ωiw +

 −1
0
0

 vic +

 yiE
−xiE
−1

ωic (27)

where viw and ωiw are the reference linear and angular velocities.
According to the back-stepping algorithm, switching function is designed. When xiE = 0 and assuming

θiE = − arctan(viwyiE), the Lyapunov function is

Vy =
1
2

y2
iE (28)

The derivative of the Lyapunov function is

V̇y = yiE ẏiE = yiE(viwsinθiE − xiEωi) = −xiEyiEωi − yiEviwsin(arctan(viwyiE)) (29)

Lemma: For any x ∈ R and |x| < ∞, there is φ(x) = xsin(arctan x) ≥ 0, iff x = 0, ′ =′ is tenable.
Proof: when x = 0, then φ(0) = 0; when x ∈ (0,∞), there is arctan x ∈ (0, π/2), then sin(arctan x) > 0,

namely φ(x) > 0; when x ∈ (−∞, 0), there is arctan x ∈ (−π/2, 0), then sin(arctan x) < 0, namely φ(x) > 0.
Based on Lemma, yiEviw sin(arctan(viwyiE)) ≥ 0. When yiEviw = 0, yiEviw sin(arctan(viwyiE)) = 0. When

xiE = 0 and θiE = − arctan(viwyiE), Eq. (29) is:

V̇y = −xiEyiEωi − yiEviwsin(arctan(viwyiE)) ≤ 0 (30)

The switching function si for robot Ri is as:
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si =

[
si1
si2

]
=

[
xiE

θiE + arctan(viwyiE)

]
(31)

The controller is designed to converge si1 and si2 to zero. Then xiE converges to zero, and θiE converges
to − arctan(viwyiE). The system state yiE converges to zero.

To make siṡi < 0, ṡi is defined as

ṡi =

[
ṡi1
ṡi2

]
=

[
−εi1sgn(si1) − ki1si1
−εi2sgn(si2) − ki2si2

]
(32)

where εi1, εi2, ki1 and ki2 are positive constants. Setting αi = arctan(viwyiE), ṡi for robot Ri is

ṡi =

[
−εi1sgn(si1) − ki1si1
−εi2sgn(si2) − ki2si2

]
=

[
ẋiE

θ̇iE + ∂αi
∂viw

v̇iw + ∂αi
∂yiE

ẏiE

]
=

[
viw cosθiE − vi + yiEωi

ωiw − ωi + ∂αi
∂viw

v̇iw + ∂αi
∂yiE

(viw sinθiE − xiEωi)

] (33)

The kinematic controller for robot Ri is:

[
vi
ωi

]
=


viw cosθiE + yiEωi − ṡi1

ωiw + ∂αi
∂viw

v̇iw + ∂αi
∂yiE

(viw sinθiE) − ṡi2

(1 + ∂αi
yiE

xiE)


=


viw cosθiE + yiEωi + εi1sgn(si1) + ki1si1

ωiw + ∂αi
∂viw

v̇iw + ∂αi
∂yiE

(viw sinθiE) + εi2sgn(si2) + ki2si2

(1 + ∂αi
yiE

xiE)


(34)

where ∂αi
∂viw

=
yiE

1+(viw yiE)2 , and ∂αi
∂viw

= viw
1+(viw yiE)2 .

Proof: consider the Lyapunov function V1 = 1
2 s2

i1 + 1
2 s2

i2. Differential V1 about time t as

V̇1 = −εi1 |si1| − ki1s2
i1 − εi2 |si2| − ki2s2

i2 ≤ 0 (35)

When xiE = 0 and θiE = − arctan(viwyiE), V̇1 = 0. When xiE , 0 and θiE , − arctan(viwyiE), V̇1 < 0. The
system is asymptotically stable in the sense of Lyapunov.

To weaken the charting, two fuzzy sliding mode controllers are designed. In controller 1, |si1| and εi1 are
the input and output variables, respectively. hi1I and hi1O are input and output scaling. Define |s̄i1| = hi1I |si1|

and ε̄i1 = h−1
i1Oεi1.

Five fuzzy sets describe the fuzzy partitions, such as very big (VB), big (B), medium (M), small (S), and
very small (VS). The triangular functions are applied for input variable and output variable, respectively.
Fig. 4 shows the input and output membership functions. The fuzzy rules of the fuzzy sliding mode 1 are
as: IF s̄i1 is VS, THEN ε̄i1 is VS.

The output is

ε̄i1 =
∑5
1=1 ε̄i11µ(ε̄i11)∑5
1=1 µ(ε̄i11)

(36)

Based on ε̄i1, εi1 is used in Eq. (34) to obtain vi. In controller 2, |si2| and εi2 are the input and output
variables. εi2 is used to obtain ωi.
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Figure 4: Triangular function.

4.2. Dynamic controller
Define the kinematic controller in Eq. (34) as Vid = [vid, ωid]T, and the velocity tracking error is as

Vid = Vid − Vic =

[
vid − vic
ωid − ωic

]
(37)

The integral sliding surface is defined as

si =

[
si1
si2

]
= Vie + η

∫ t

0
Vie(τ)dτ (38)

where η is a positive integral constant.
Ignoring the unknown disturbance τ̄id, based on (3), the following equation can be obtained:

V̇i = Āiτi = M̄−1(qi)B̄τi =

[
Ii Ii

mibi −mibi

]
(39)

Adding (39), the derivative of (38) can be

ṡi(t) = V̇ie(t) + ηVie(t) = V̇id − V̇ic + ηVie(t) = V̇id − Āiτi + ηVie(t) (40)

The dynamic torque controller is designed as

τi = τieq + τisw = Ā−1
i [V̇id + ηVie + Kis1n(si)] (41)

where τieq is equivalent control. τisw is switching control, and is able to constraint unknown disturbance.

s1n(si) =
[

s1n(si1) s1n(si2)
]T

. Ki is a positive definite gain. Define Ki = ĉisis1n(si). ĉi is the estimate of ci,
ci is a positive constant, and c̃i = ĉi − ci.

Proof: consider the Lyapunov function V2 = 1
2 sT

i si +
c̃2

i
2γi

. Differential V2 about time t as

V̇2 = sT
i ṡi + c̃i ˙̃ci

γi

= sT
i (V̇id − Āiτi + ηVie(t)) + c̃i ˙̃ci

γi

= sT
i (V̇id − ĀiĀ−1

i [V̇id + ηVie + Kis1n(si)] + ηVie(t)) + c̃i ˙̃ci
γi

= −sT
i Kis1n(si) + c̃i ˙̃ci

γi

= −sT
i ĉisi[s1n(si)]2 + c̃i ˙̃ci

γi

≤ −sT
i ĉisi[s1n(si)]2

− c̃i(‖si‖ −
˙̃ci
γi

)

(42)
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Figure 5: Structure of the control scheme.

The parameter is selected as

ci = γi‖si‖ (43)

Therefore, (42) can be rewritten as

V̇2 ≤ −sT
i ĉisi[s1n(si)]2

− c̃i(‖si‖ −
˙̃ci
γi

)
= −sT

i ĉisi[s1n(si)]2
≤ 0

(44)

when Vie = 0, V̇2 = 0. When Vie , 0, V̇2 < 0. The system is asymptotically stable.
The structure of the presented control scheme is illustrated in Fig. 5. The waypoint state of the robot

and the reference linear and angular velocities of the robot are system input. The system output is the
configuration of the robot. Using the sliding mode control algorithm, the system calculates the kinematic
velocity controller. Based on adaptive integral sliding mode control algorithm, the system calculates the
dynamic torque controller.

5. Simulations

The physical parameters of the robots are as: bi = 0.1315m, ri = 0.095m, mi = 7.52k1, Ii = 2.325k1m2.
Controller parameters are chosen as: ki1 = ki2 = 0.0001, εi1 = εi2 = 0.001, γi = 0.01. In the simulations, the
time step is defined as: dt = 0.1s. The velocity constraints of the robot are set as: vmax = 0.08(m/s), and
ωmax = 0.62(rad/s).

Fig. 6 shows that three robots transport a convex object. The initial states of three robots are as follows:
(0.2m, 1.7m, 0)T, (0.2m, 0.2m, 0)T, and (0.2m, 1m, 0)T. Based on the calculating proper points process for a
convex object, proper points for three robots are located at (1.8m, 1.7m), (1.2m, 0.2m), and (1m, 1.1m). The
object is regarded as an obstacle, three robots approach to their proper points, based on theta star algorithm.
After approaching proper points, three robots maintain the transportation formation to transport the convex
object. Leader robot’s trajectory is calculated by Eqs. (45)-(47).

x1(t + 1) = x1(t) + 0.04 (45)
y1(t + 1) = y1(t) + 0.04 (46)
θ1(t + 1) = a tan 2((y1(t + 1) − y1(t)), (x1(t + 1) − x1(t))) (47)

Figs. 7-9 show trajectory tracking errors of three robots, using the proposed control scheme.
Figs. 10-12 show velocity tracking errors of three robots, using the proposed control scheme.
This experiment shows that three robots can transport a concave object, avoiding two obstacles, as in

Fig. 13. The initial states of three robots are as: (0.2m, 1.7m, 0)T, (0.2m, 0.2m, 0)T, and (0.2m, 1m, 0)T. Based
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Figure 6: Three robots transport a convex object.
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Figure 7: Leader robot’s trajectory tracking errors.
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Figure 8: Follower robot 1’s trajectory tracking errors.
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Figure 9: Follower robot 2’s trajectory tracking errors.

Figure 10: Leader robot’s velocity tracking errors.
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Figure 11: Follower robot 1’s velocity tracking errors.

Figure 12: Follower robot 2’s velocity tracking errors.

on the calculating proper points process for a concave object, proper points for three robots are located
at (1.9m, 1.8m), (2.5m, 1m), and (1.4m, 1m). The obstacles are on (0.7m, 2.6m) and (0.7m, 3.5m). The leader
robot’s trajectory is calculated by Eqs. (48)-(50).

x1(t + 1) = x1(t) (48)
y1(t + 1) = y1(t) + 0.055 (49)
θ1(t + 1) = a tan 2((y1(t + 1) − y1(t)), (x1(t + 1) − x1(t))) (50)

6. Experiment

Three mobile robots are used to transport an object. The robot uses the odometry platform to localize
itself. Parameters in the experiment are the same as in the simulation. Fig. 14 shows snapshots of three
robots transport a convex object. At t=0, three robot form a line formation. At t=55s, three robots form a
transportation formation. At t=99s, the object is transported to the goal point. Fig. 15 presents trajectories
of three robots. Comparing the result in Fig. 6, three robots’ trajectories are approximately same. The
experiment video link is https://www.dropbox.com/s/4vo6crd0w4upq5x/video

7. Conclusion

In order to solve concave or convex object transportation problem, three transportation processes are
designed. For robot motion control, depending on fuzzy sliding mode control algorithm, we designed
a kinematic velocity controller; according to adaptive integral sliding control algorithm, we proposed a
dynamic torque controller. The simulations and experiment show good performance of all methods.
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Figure 13: Three robots transport a concave object avoiding two obstacles.

Figure 14: Snapshots of three robots (a) t=0; (b) t=55s; (c) t=99s (From left to right).

Figure 15: Three robots trajectories.
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