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Abstract. A signed graph consists of a (simple) graph G = (V,E) together with a function σ : E → {+,−}
called signature. Matrices can be associated to signed graphs and the question whether a signed graph is
determined by the set of its eigenvalues has gathered the attention of several researchers. In this paper
we study the spectral determination with respect to the Laplacian spectrum of signed ∞-graphs. After
computing some spectral invariants and obtain some constraints on the cospectral mates, we obtain some
non isomorphic signed graphs cospectral to signed∞-graphs and we study the spectral characterization of
the signed∞-graphs containing a triangle.

1. Introduction

Let G = (V,E) be a simple, finite and undirected graph. We denote the order and the size of G by |V| = n
and |E| = m. Let σ : E(G) → {+,−} be a map defined on the edge set of G. Then Γ = (G, σ) is called a
signed graph, the graph G is its underlying graph and σ is its sign function (or signature). An edge e is positive
(negative) if σ(e) = 1 (resp. σ(e) = −1). If σ(e) = 1 (resp. σ(e) = −1) for all edges in E(G) then we write
(G,+) (resp. (G,−)). A cycle of Γ is said to be balanced, or positive, if it contains an even number of negative
edges, otherwise the cycle is unbalanced, or negative. A signed graph is said to be balanced if all its cycles
are balanced; otherwise, it is unbalanced. For Γ = (G, σ) and U ⊂ V(G), let ΓU be the signed graph obtained
from Γ by reversing the signature of the edges in the cut [U,V(G) \U], namely σΓU (e) = −σΓ(e) for any edge
e between U and V(G) \ U, and σΓU (e) = σΓ(e) otherwise. The signed graph ΓU is said to be (signature)
switching equivalent to Γ. Furthermore, two signed graphs Γ and Λ are said to be switching isomorphic if Γ is
isomorphic to a switching of Λ (see [5]). Here, switching isomorphic signed graphs are considered to be
the same signed graph.

Signed graphs introduced as early as 1953 by Harary [10], to model social relations involving disliking,
indifference, and liking [9]. Indeed signed graphs have been used frequently to model affect ties for social
actors. A traffic control problem at an intersection can be modeled by a signed graph, where the nodes
denote the streams and the edges represent the relation between the streams together with a sign associated
with it [3]. Signed graph can be also used as a graph theoretic tool to study transportation problem [4].
Signed graphs are much studied in the literature because of their use in modeling a variety of physical
and socio-psychological processes (see [2, 7]) and also because of their interesting connections with many
classical mathematical systems (see for example, [1, 6, 8, 11]).
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Signed graphs can be studied by means of matrices associated to them. One of the most important
graph matrices is the adjacency matrix A(G) = (ai j), where ai j = 1 whenever vertices i and j are adjacent and
ai j = 0 otherwise. The Laplacian matrix and singless Laplacian matrix are defined by L(G) = D(G) − A(G),
and Q(G) = A(G) + D(G) respectively. Recall that D(G), is the diagonal matrix of the graph G, which is
D(G) = diag(deg(v1),deg(v2), . . . ,deg(vn)).

Similar definition can be used for signed graphs. Let Γ = (G, σ) be a signed graph, the matrix A(Γ) = (aσi j)
with aσi j = σ(i j)ai j is called the (signed) adjacency matrix and L(Γ) = D(G)−A(Γ) is the corresponding Laplacian
matrix. Note that both the adjacency and Laplacian matrices are real and symmetric.

Let φ(Γ, x) = xn + a1xn−1 + · · · + an−1x + an be the adjacency characteristic polynomial (or A-polynomial)
whose roots, namely the adjacency eigenvalues (A-eigenvalues), are denoted by λ1(Γ) ≥ λ2(Γ) ≥ · · · ≥ λn(Γ).
Similarly, we denote by ψ(Γ, x) = xn + b1xn−1 + · · · + bn−1x + bn the Laplacian polynomial (or L-polynomial),
and Laplacian eigenvalues are denoted by µ1(Γ) ≥ µ2(Γ) ≥ · · · ≥ µn(Γ) ≥ 0. Notably, switching isomorphic
signed graphs get the same set of adjacency and Laplacian eigenvalues ([19]).

Let Γ = (G, σ) be a signed graph. A subgraph whose components are trees or unbalanced unicyclic
graphs is called a signed TU-subgraph. Let H be a signed TU-subgraph, then H =

⋃t
i=1 Ti

⋃c
j=1 U j, where, if

any, the Ti’s are trees and the U j’s are unbalanced unicyclic graphs. The weight of the signed TU-subgraph
H is defined as w(H) = 4c∏t

i=1 |V(Ti)|, (See [8] for details).

Theorem 1.1. [6] Let Γ be a signed graph and ψ(Γ, x) = xn + b1xn−1 + · · · + bn−1x + bn be the Laplacian polynomial
of Γ. Then we have

bi = (−1)i
∑

H∈Hi

w(H), i = 1, 2, . . . ,n. (1)

whereHi denotes the set of signed TU-subgraphs of Γ built on i edges.

Observe that by Formula (1) the signs of bridges has no influence on the polynomial coefficients. Hence,
we will assume that bridges always take a positive sign. Also, it is not difficult to see that the above
polynomials are invariant under switching isomorphisms.

A natural question is then posed. Given a signed graph, are there non-switching isomorphic signed
graphs which get the same eigenvalues? Such problem is called spectral determination (or, with some abuse
of notation, spectral characterization). Spectral determinations have been widely studied for unsigned graphs
and recently this kind of study has been taken to signed graph spectra, as well. The spectral determination
of (unsigned)∞-graphs, which is the coalescence between two cycles Cr and Cs and related graphs, has been
already considered in [16]. The spectral determination of signed lollipop graph, which is the coalescence
between a cycle and a path, has been studied and it is shown that a signed lollipop graph is determined
by the spectrum of its Laplacian matrix (or simply DLS) [5]. These works motivate us to consider signed
∞-graphs and study the spectral determination of these signed graphs.

The remainder is as follows. In Section 2, we consider the spectral invariants related to the signed
∞-graphs. In Section 3, we study the triangle-free signed ∞-graphs and we determine a new family of
Laplacian cospectral mates. In Section 4, we study signed∞-graphs with at least on triangle, and we prove
that, with a few exceptions of small order, all of them does not have connected Laplacian cospectral mates.

2. Notation and basic results

Let us denote the∞-graph by Gr,s whose order is r+s−1. In Figure 1 we depicted an example of a signed
∞-graph. Since there are two cycles in any ∞-graph, these cycles can be both balanced, one balanced and
the other unbalanced and both unbalanced. So we denote the sign of an∞-graph by σ = +, σ = ± and σ = −,
respectively. Note that for σ = ± (σ = ∓), we assume Cr is unbalanced and Cs is balanced (respectively, Cr
is balanced and Cs is unbalanced). Also by σr and σs we denote the sign of Cr and Cs, respectively.

The following corollary is an immediate consequence of Theorem 1.1.
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Figure 1: The∞-graph (G6,5,∓).

Corollary 2.1. Let Γ = (Gr,s, σ) be a signed ∞-graph and ψ(Γ, x) = xn + b1xn−1 + · · · + bn−1x + bn be its Laplacian
polynomial.

(i) If σ = +, then bn = 0 and bn−1 = (−1)n−1rs(r + s − 1).

(ii) If σ = ±, then bn = (−1)n4s and bn−1 = (−1)n−1[rs(r + s − 1) +
2
3

(s3
− s)]. (Note that for σ = ±, we let σr = −

and σs = +).

(iii) If σ = −, then bn = (−1)n4(r + s) and bn−1 = (−1)n−1[rs(r + s − 1) +
2
3

(r3
− r + s3

− s)].

The following theorem shows the relation between Laplacian polynomial of a signed graph and the
adjacency polynomial of its signed subdivision graph, S(Γ), and its signed line graph, L(Γ) too. For the
definition of signed subdivision graph S(Γ) and signed line graph L(Γ) we refer to [5].

Theorem 2.2. [5, Theorem 2.3] Let Γ be a signed graph of order n and size m, and φ(Γ) and ψ(Γ) be its adjacency
and Laplacian polynomials, respectively. Then

(i) φ(L(Γ), x) = (x + 2)m−nψ(Γ, x + 2),

(ii) φ(S(Γ), x) = xm−nψ(Γ, x2).

The following result is the interlacing theorem in the edge variant, that can be deduced from the ordinary
vertex variant interlacing theorem for the adjacency matrix combined with Theorem 2.2(ii).

Theorem 2.3. [5, Theorem 2.5] Let Γ = (G, σ) be a signed graph and Γ − e be the signed graph obtained from Γ by
deleting the edge e. Then

µ1(Γ) ≥ µ1(Γ − e) ≥ µ2(Γ) ≥ µ2(Γ − e) ≥ · · · ≥ µn(Γ) ≥ µn(Γ − e).

In the following lemma, an upper bound for the largest Laplacian eigenvalue of a signed graph is given.

Lemma 2.4. [5, Lemma 2.8] Let Γ = (G, σ) be a signed graph with ∆1 and ∆2 being the first and second largest vertex
degrees in G, and let µ(Γ) be its Laplacian spectral radius. Then µ(Γ) ≤ ∆1 + ∆2, with equality if and only if Γ = K1,n
or Γ = (Kn,−).

Let Tk =
∑n

i=1 µ
k
i , be the kth spectral moment for the Laplacian spectrum of a signed graph Γ, for a

non-negative integer k. In the following theorem the relation between Ti(i = 0, 1, 2, 3) and some known
parameters of the graph is given.

Theorem 2.5. [5, Theorem 3.4] Let Γ = (G, σ) be a signed graph with n vertices, m edges, t+ balanced triangles, t−

unbalanced triangles and degree sequence (d1, d2, . . . , dn). Then

(i) T0 = n,

(ii) T1 =
∑n

i=1 di = 2m,

(iii) T2 = 2m +
∑n

i=1 d2
i ,
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(iv) T3 = 6( t− − t+) + 3
∑n

i=1 d2
i +
∑n

i=1 d3
i .

In the following theorem some relations between two L-cospectral signed graphs are presented.

Theorem 2.6. [5, Theorem 3.5] Let Γ = (G, σ) and Λ = (H, σ′) be two L-cospectral signed graphs. Then,

(i) Γ and Λ have the same number of vertices and edges;

(ii) Γ and Λ have the same number of balanced components;

(iii) Γ and Λ have the same Laplacian spectral moments;

(iv) Γ and Λ have the same sum of squares of degrees,∑n
i=1 dG(vi)2 =

∑n
i=1 dH(vi)2;

(v) 6(t−Γ − t+
Γ ) +
∑n

i=1 dG(vi)3 = 6(t−
Λ
− t+

Λ
) +
∑n

i=1 dH(vi)3.

Spectral determination of unsigned ∞-graphs are considered in the papers [16] and [12]. The main
result of these papers are as follow.

Theorem 2.7. [16, Theorem 5.1] Any (unsigned) triangle-free∞-graph is determined by its Laplacian spectrum.

Theorem 2.8. [16, Theorem 6.3] Any∞-graph but Gr,r+1 (r ≥ 3) is determined by its signless Laplacian spectrum.

Theorem 2.9. [12, Theorem 6.1] All (unsigned) 2-rose graphs, except for G3,4 and G3,5, are determined by the
Laplacian spectrum. Both G3,4 and G3,5 have one Laplacian cospectral mate.

In view of Theorems 2.7 and 2.9, we know that the balanced (Gr,s,+) has no connected balanced Laplacian
cospectral mates, with the exception of G3,4 and G3,5 which both get at least one Laplacian cospectral mate.
Recall that the signless Laplacian of graphs corresponds to the Laplacian of signed graphs in which all
edges are taken negative, so from Theorem 2.8 we know that (Gr,r+1,∓) and (Gr,r−1,∓), with r even, also have
a Laplacian cospectral mate.

The following theorem gives bounds on the first and second largest eigenvalue of any signed∞-graph.
They were computed for unsigned graphs but they are still valid for signed graphs.

Theorem 2.10. Let (Gr,s, σ) be a signed∞-graph. Then we have,

(i) 5 < µ1(Gr,s, σ) < 6,

(ii) µ2(Gr,s, σ) < 4.

Proof. (i) The lower bound for µ1(Gr,s, σ) follows by Theorem 2.3 and the fact that K1,4 is a subgraph of Gr,s,
while the upper bound is an immediate consequence of Theorem 2.4.

(ii) Let v be the common vertex of two cycles in the∞-graph. By applying the interlacing theorem to the
vertex v of subdivision graph G2r,2s, we obtain two paths P2r−1 and P2s−1. Hence, by using Theorem 2.3, we
have λ2(G2r,2s, σ) ≤ λ1(P2r−1 ∪ P2s−1, σ) < 2. From Theorem 2.2 we find that the second largest eigenvalue of
signed graph (Gr,s, σ) is less than 22 = 4.

The degree sequence of a signed graph is as the same as the degree sequence of its underlying graph. It
has been shown in [16, Theorem 4.1], by using the spectral moments T0, T1 and T2, that every L-cospectral
mate for an (unsigned) ∞-graph must have degree sequence (4, 2n−1) or (33, 2n−4, 1). Since those spectral
moments do not depend on the signatures, the same restriction of [16, Theorem 4.1] holds for signed
∞-graphs.

Theorem 2.11. Let Λ = (H, σ′) be a graph L-cospectral to a signed ∞-graph Γ = (Gr,s, σ) of order n. Then deg(H)
(degree sequence of the graph H) belongs to the set {(4, 2n−1), (33, 2n−4, 1)}.
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From Theorems 2.10 and 2.11 we have an important restriction on disconnected Laplacian cospectral
mates. In fact, since the second largest L-eigenvalue is less than 4, then any Laplacian cospectral mate
cannot have two components with a vertex of degree 3 each, otherwise two copies of K1,3 appear and the
second largest Laplacian eigenvalues is at least 4 by interlacing theorem. So paths and cycles can appear
as disconnected components, however paths have two vertices of degree 1, so they are discarded as well.
In the sequel we will focus only on connected cospectral mates, but the reader should keep in mind that
possible Laplacian cospectral mates have one or more signed cycles as additional components.

3. Signed∞-graphs with r, s > 3

In this section, we will prove that an∞-graph is isomorphic to a connected signed graph Λ = (H, σ′) such
that deg(H) = (4, 2n−1) if and only if they are L-cospectral. Next, we will find connected graphs Λ = (H, σ′)
which are not cospectral with (Gr,s, σ) in which deg(H) = (33, 2n−4, 1).

Theorem 3.1. Let Γ = (Gr,s, σ) be a signed∞-graph of order n. If a connected graph Λ = (H, σ′) has degree sequence
(33, 2n−4, 1) and ψ(Γ) = ψ(Λ), then

(i) if Γ is triangle-free, then Λ has an unbalanced triangle, Fig. 2.

(ii) if Γ has a balanced triangle, then Λ is either a triangle-free graph or it contains a balanced triangle and an
unbalanced one, Fig.s 3 and 4.

(iii) if Γ has an unbalanced triangle, then Λ has two unbalanced triangles, Fig. 4.

Proof. (i) Let Γ = (Gr,s, σ) be a triangle-free ∞-graph. By Lemma 2.6(v) we have t−
Λ
− t+

Λ
= 1. Since

t−
Λ
, t+

Λ
∈ {0, 1, 2}, we find that t−

Λ
= 1 and t+

Λ
= 0.

The proof of (ii) and (iii) is straightforward.

Suppose H is a connected graph with deg(H) = (33, 2n−4, 1). Assume also that H has one triangle and one
cycle, say Ck. Then we conclude that H is one of the graphs Hi(i = 1, 2, . . . , 5) which are shown in Figure 2.
Note that triangles of these graphs are unbalanced by Theorem 3.1.

H1 H2 H3

H4 H5

Ck
ℓ

ℓ1

ℓ2

ℓ

ℓ

ℓ1
Ck

Ck

Ck Ck
ℓ

ℓ
ℓ1ℓ1

ℓ2

ℓ2

ℓ3

Figure 2: Graphs that can be cospectral with a signed triangle-free graph (Gr,s, σ) for r, s > 3.
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Cr′ Cr′

Cr′ Cr′

Cr′Cs′ Cs′Cs′

Cs′ Cs′

Cs′

ℓ
ℓ ℓ

ℓ ℓ

ℓ1 ℓ2 ℓ1 ℓ1

ℓ1 ℓ1

H6 H7 H8

H9 H10

Figure 3: Triangle-free graphs possibly L-cospectral with (G3,s, σ).

ℓ

ℓ
ℓ

ℓ1 ℓ1 ℓ2

H11 H12 H13

Figure 4: Graphs that can be cospectral with a signed graph (G3,s, σ) containing two triangles.

As an immediate consequence of Theorem 1.1 we have the following theorem. Note that we omit (−1)n−i

as sign of coefficient of xn−i.

Theorem 3.2. Let Λ = (Hi, σ′) be one of the graphs in Figures 2, 3 and 4 with Laplacian polynomial ψ(Λ, x) =
xn + b′1xn−1 + · · · + b′n−1x + b′n. Let ` and `is be the lengths of paths shown in Figures 2, 3 and 4. Then:

(i) for i = 1, . . . , 5, if σk = +, (σk is sign of cycle Ck), b′n = 4k, and if σk = −, for graphs H1 and H2, b′n = 4(k + 1),
for graphs H3 and H4, b′n = 4(k + 3 + 4`1) and for graph H5 , b′n = 4(k + 3 + 4`1 + 4`2),

(ii) for i = 6, . . . , 10, if σr = − and σs = +, then b′n = 4s′, if σr = + and σs = −, then b′n = 4r′ and if
σr = σs = −, then for H6, b′n = 4(r′ + s′ + 4`1 + 4`2), for H7 and H8, b′n = 4(r′ + s′ + 4`1), and for H9 and H10,
b′n = 4(r′ + s′ − 2`1).

(iii) for i = 11, 12, 13, if the graph Hi has one balanced and one unbalanced cycle, then b′n = 12. If two cycles are
unbalanced, then we have b′n = 16, b′n = 4(6 + 4`1) and b′n = 4(6 + 4`1 + 4`2) for graphs H11,H12 and H13,
respectively.

The next theorem deals with Laplacian polynomial of graphs Hi, (i = 1, . . . , 5).

Theorem 3.3. Let Λ = (Hi, σ′) be one of the graphs Hi, (i = 1, . . . , 5) with Laplacian polynomial ψ(Λ, x) = xn +
b′1xn−1 + · · · + b′n−1x + b′n. Then (−1)n−1b′n−1 for graph with a balanced cycle Ck or an unbalanced cycle Ck is given in
Tables 1 and 2 respectively.

Proof. Consider the graph H1 having an unbalanced triangle, a balanced cycle Ck and a path of length
` = n− k − 1, which is attached to a vertex of degree 2 in Ck. For finding b′n−1 we should delete two edges of
H1. Notice that if any deleted edge of H1 is not from cycle Ck, then w(H) = 0. Let at least one deleted edge is
from Ck. We consider subsetH ′n−1 containing all TU-subgraphs with n − 1 edges obtained by deleting just
one edge of Ck not belonging to the triangle. Define similarlyH ′′n−1 as the TU-subgraphs with n − 1 edges
obtained by deleting the edge common to Ck and the triangle, and H ′′′n−1 as the TU- subgraphs with n − 1
edges obtained by deleting two edges of Ck. Thus

∑
H∈H ′i

w(H) = (k − 1)(2n + 4
∑̀
i=1

i),
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∑
H∈H ′′i

w(H) = 2n + 4
∑̀
i=1

i

and∑
H∈H ′′′i

w(H) = n(k − 1) + 4 [
`1−1∑
i=1

i(i + 1)
2

+

`2−1∑
i=1

i(i + 1)
2

+

`1∑
i=1

`2∑
j=1

(` + i + j − 1)].

Since (−1)n−1b′n−1 =
∑

H∈Hi
w(H) the proof for H1 is complete. A similar argument can be used for other

graphs.

Table 1: (−1)n−1b′n−1 in graphs Hi with σk = +, i = 1, 2, . . . , 5.

Hi (−1)n−1b′n−1

H1 n(3k − 1) +
2
3

k3
− 2k2 + k(2`2 + 2` + 4``1 +

4
3

) − 4``1(`1 + 1)

H2 2kn2
− (4k2

− k + 1)n +
4
3

k(2k2 + 1)

H3 2kn2
− (7k + 4k`)n −

4
3

k3 + 2k2 + k(4`2 + 12` +
34
3

)

H4
2
3

n3
− (2` + 2`1 + 4)n2 + (2`2 + 2`2

1 + 8` + 8`1 + 4``1 + 4``2

+3k +
22
3

)n −
2
3
`3
− (−2k + 2`1 + 4`2 + 4)`2

− (4`1`2 − 4k`1

−2k + 2`2
1 + 4`2

2 + 8`1 + 8`2 +
22
3

)` −
2
3
`3

1 + (2k − 4)`2
1

+(4k2
− 2k −

22
3

)`1 − 4

H5 2kn2
− (7k + 4k`)n −

4
3

k3 + 2k2 + (4`2 + 4``1 + 12` +
34
3

)k

Now we will prove that an ∞-graph is isomorphic to a connected graph with deg(H) = (4, 2n−1) if and
only if they are L-cospectral.

Theorem 3.4. Let Γ = (Gr,s, σ) be an∞-graph of order n. Let the connected graph Λ = (H, σ′) with degree sequence
(4, 2n−1) have the property that ψ(Γ) = ψ(Λ). Then Λ is switching isomorphic to Γ.

Proof. Since H is connected, so it is obvious that H is an ∞-graph, say H = Gr1,s1 . By Theorem 2.6 (i) and
(v), we find that t−Γ − t+

Γ = t−
Λ
− t+

Λ
. So graphs Γ and Λ have both the same number of triangles with the same

signs.
The case of two triangles, i.e. graph G3,3, will be considered in Theorem 4.1. If the graph Γ = (G3,s, σ)

contains one triangle, then Λ = (Gr1,s1 , σ
′) must have one triangle. So r = r1 = 3 and s = s1 or r = s1 = 3 and

s = r1. Without loss of generality, let Λ = (G3,s1 , σ
′). By using Corollary 2.1, we find that the cycles Cs and

Cs1 have the same signs.
Let Γ = (Gr,s, σ) does not have any triangle. By using [16, Theorem 5.1] we can prove theorem for case

Γ = (Gr,s,+). Now let σr = + and σs = −. By comparing bn and b′n, we conclude that Λ does not have two
unbalanced cycles. Hence either σr1 = + and σs1 = − or σr1 = − and σs1 = +. So we have r = r1 and s = s1.

Finally, let Cr and Cs are unbalanced. This implies that Cr1 and Cs1 are unbalanced too. Let r < r1. Since
r + s = r1 + s1, then s > s1. We can consider a positive integer say k so that r1 = r + k and s1 = s − k. Since we
assume that Γ = (Gr,s, σ) and Λ = (Gr1,s1 , σ

′) are cospectral, the coefficients of their Laplacian polynomials
are the same. By comparing bn−1 and b′n−1 we have nk(s − r − k) + 2(r2k + rk2

− s2k + sk2) = 0. Without loss
of generality, let r ≥ s. If r = s, then we have (4r − n)k2 = 0, and since r is a positive integer, we have k = 0,
which is a contradiction. If r > s, let r = s + a, where a > 0. Then we have k(k + a)(2s + a + 1) = 0 which is not
possible as a, k, s are positive integers.
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Table 2: (−1)n−1b′n−1 in graphs Hi with σk = −, i = 1, . . . , 5.

Hi (−1)n−1b′n−1

H1 n(3k − 1) +
2
3

k3
− 2k2 + k(2`2 + 2` + 4``1 +

4
3

) − 4``1(`1 + 1)

+2` + 2`2 + 4

H2 (2k + 1)n2
− (4k2 + 3k − 1)n +

8
3

k3 + 2k2
−

2
3

k

H3
8
3

n3
− (6k + 8` + 10)n2 + (16`2 + 8k2 + 40` + 13k + 12k`

+
106
3

)n −
32
3
`3
− (12k + 40)`2

− (8k2 + 28k −
184

3
)` − 4k3

−8k2
− 24k − 36

H4
2
3

n3
− (2` + 2`1 + 4)n2 + (2`2 + 2`2

1 + 8` + 8`1 + 4``1 + 4``2 + 3k

+
22
3

)n −
2
3
`3 + (2k + 6`1 − 4`2 + 2)`2

− (4`1`2 − 4k`1 − 2k + 2`2
1

+4`2 + 8`2 −
4
3

)` + 2`3
1 + (2k + 2)`2

1 + (4k2
− 2k + 20)`1 + 12

H5
8
3

n3
− (6k + 8` + 10)n2 + (16`2 + 8k2 + 40` + 13k + 16``1 + 12k`

+
106
3

)n −
32
3
`3
− (12k + 16`1 + 40)`2

− (8k2 + 28k + 44`1 + 12k`1`

+16`2
1 +

208
3

) − 4k3
− 8k2

− 24k − 36

For graphs of degree sequence deg(H) = (33, 2n−4, 1) that can be cospectral with ∞-graph, we have the
following conjecture. We expect that∞-graph does not have cospectral mates among the signed graphs H1,
H3, H4 and H5. However, in some special cases it can be cospectral with graph H2.

Conjecture 3.5. The signed graphs of type (Hi, σ′), with i = 1, 3, 4, 5, can not be cospectral with the graph (Gr,s, σ),
for r, s > 3.

Conjecture 3.5 is stated for signed graphs H1, H3, H4 and H5. But for the signed graph H2 it is possible to
find some r and s such that (H2, σ) is cospectral with (Gr,s, σ). In fact, from Theorem 2.8 in [16], we know that
(Gr,r+1,∓) and (Gr,r−1,∓) with r even are L-cospectral with some opportunely signed H2. In fact, the result of
[16] can be given without the restriction on r and by adapting the original proof to signed graphs.

Theorem 3.6. Graph H2 with n = 2(` + 1) vertices and balanced Ck is cospectral with G`+1,`+2, with balanced C`+1
and unbalanced C`+2. Indeed graph H2 with n = 2(`+ 1) vertices and unbalanced Ck is cospectral with G`+1,`+2, with
unbalanced C`+1 and balanced C`+2.

Proof. We will use the same strategy of Lemma 6.11 in [16].
Consider for example the pair (G`+1,`+2,∓) with ` even and (H2, σ) such that it has a pendant path of

length ` and the cycle C`+1 is balanced, which means that we can take a negative edge in the triangle and
none on the edges of C`+1. If we pass to the subdivision signed graphs we get the pair (G2`+2,2`+4,−) and
S(H2) of order 2` + 5 with the cycle C2`+4 being unbalanced and the C6 (subdivision of the triangle) being
positive. If we now use the decomposition formulas as in [16] and the transformation φ(Pn) = x2n

−1
xn+2−xn , we

can check by software that the polynomials are indeed equal.
The remaining cases can be proved similarly.
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4. Signed∞-graphs with r = 3 and s ≥ 3

In this section we deal with signed infinity graphs with at least one triangle, that is (G3,s, σ), and we look
for their connected Laplacian cospectral mates.

The case with exactly two triangles is considered in the next theorem.

Theorem 4.1. Let Λ = (H, σ′) be a connected L-cospectral mate with Γ = (G3,3, σ). Then H and G3,3 are isomorphic
and σ = σ′.

Proof. Since Γ and Λ are L-cospectral, we find that Γ has order 5 and size 6. By Theorem 2.11, deg(H) ∈
{(4, 24), (33, 2, 1)}. On the other hand, H is a connected graph. So by [13] the graph H is isomorphic to one
of the graphs in Figure 5.

Figure 5: Two graphs corresponding to Theorem 4.1.

By Theorem 2.6(v), we have

6(t−Γ − t+
Γ ) +

n∑
i=1

dΓ(vi)3 = 6(t−Λ − t+
Λ) +

n∑
i=1

dH(vi)3.

There are three different cases for the two triangles in the graph G3,3:

(i) t−Γ = 0 and t+
Γ = 2, (σ = +);

(ii) t−Γ = 2 and t+
Γ = 0, (σ = −);

(iii) t−Γ = t+
Γ = 1, (σ = ±).

First assume that the degree sequence of H is equal to (4, 24). In this case we have

6(t−Γ − t+
Γ ) + 96 = 6(t−Λ − t+

Λ) + 96.

Hence for case (i), t−
Λ
− t+

Λ
= −2. So t−

Λ
= 0 and t+

Λ
= 2, which implies that σ′ = +. A similar argument can be

used to prove for σ = + and σ = ±.
Let the degree sequence of H is equal to (33, 2, 1). So we have 6(t−Γ − t+

Γ ) + 96 = 6(t−
Λ
− t+

Λ
) + 90. For σ = +,

we have 6(0−2)+96 = 6(t−
Λ
− t+

Λ
)+90.Hence t−

Λ
= 0 and t+

Λ
= 1. This is impossible for graph Λ. Similarly, we

can prove the two remaining cases. Thus the graph (G3,3, σ) is determined by its Laplacian spectrum.

Now let∞-graph have exactly one triangle. Without loss of generality we can assume that s ≥ 4. Recall
that such signed∞-graphs can have connected cospectral mates among the Hi’s with i = 6, 7, . . . , 13.

Remark 4.2. The signed graphs H11,H12 and H13 with all possible signatures are special cases of graphs H1,H2, . . . ,H5.
So we can easily compute the coefficient b′n−1 for such graphs. The relation between these graphs is given in Table 3.
The two cycles in these graphs are denoted by C′3 and C′′3 from left to right. Note that b and ub stand for balanced
cycle and unbalanced cycle, respectively.
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Table 3: Relation between graphs H11,H12,H13 and graphs H1,H2, . . . ,H5.

graph C′3 C′′3 comments
H11 b ub H1, Ck balanced, `1 = `2 = 1, ` = n − 4
H11 ub b H2, Ck balanced, ` = n − 4
H11 ub ub H1, Ck unbalanced, `1 = `2 = 1, ` = n − 4
H12 b ub H4, Ck balanced, `2 = 1,`3 = 2, `1 = n − ` − 5
H12 ub b H3, Ck balanced, `1 = n − ` − 5
H12 ub ub H4, Ck unbalanced, `2 = 1, `3 = 2, `1 = n − ` − 5
H13 b ub H5, Ckbalanced, ` = n − `1 − `2 − 5
H13 ub b H5, Ck balanced, ` = n − `1 − `2 − 5
H13 ub ub H5, Ck unbalanced, ` = n − `1 − `2 − 5

We next consider the three following cases, according to all possible signatures of (G3,s, σ). The first case
is covered by [12, Theorem 6.1], and the H9’s have two quadrangles each.

Lemma 4.3. The signed ∞-graph Γ = (G3,s,+) with s ≥ 6 has no connected L-cospectral mates. The signed graphs
(G3,4,+) and (G3,5,+) are L-cospectral to (H9,+) with ` = 1 and `1 = 2 and to (H9,+) with ` = 1 and `1 = 1,
respectively.

In the next lemma we consider the signature σ = ±.

Lemma 4.4. The signed graph Γ = (G3,s,±) has no connected L-cospectral mate, with the exception of s = 4.

Proof. The exception s = 4 is a special case of Theorem 3.6. The signed graph Γ = (G3,s,±) has an unbalanced
triangle and a balanced cycle s = n− 2. By looking to the least Laplacian coefficient we have that |bn| = 4s =
4(n − 2). From Theorem 3.1, the L-cospectral mate has two unbalanced triangles and it is one of the Hi’s
with i = 11, 12, 13 given in Figure 3.

The signed graph (H11,−) has |bn| = 16, which can be equal to that of Γ = (G3,s,±) for s = 4 and n = 6,
and this leads to the known cospectral mate.

The signed graph (H12,−) has |bn| = 4(6 + 4`1), and by equating the order and bn we get that{
`1 + ` + 5 = n
6 + 4`1 = n − 2

From the above system we get n = 4(`1 + 2) and ` = 3(`1 + 1). However, if `1 ≥ 2 leads to two copies of K1,3
and λ2(H12,−) ≥ 4, so it is `1 = 1. Consequently ` = 6 and n = 12. The so obtained signed graph is not a
cospectral mate of Γ = (G3,10,±).

Finally, the signed graph (H13,−) has |bn| = 4(6+4`1 +4`2). Similarly to above, we get that ` = 3(`1 +`2 +1)
and n = 4(`1 + `2 + 2). Also in this case, `1 > 1 or `2 > 1 leads to two copies of K1,3. Hence it is `1 = `2 = 1,
consequently we get ` = 9 and n = 16, but the so obtained signed graph is not cospectral with Γ = (G3,14,±).

The proof is completed.

Lemma 4.5. The signed graph Γ = (G3,s,−) has no connected L-cospectral mate, with the exception of s = 4.

Proof. The exception s = 4 is a special case of Theorem 3.6, so we can assume that s ≥ 5. The signed
graph Γ = (G3,s,−) has an unbalanced triangle and an unbalanced cycle s = n − 2. By looking to the least
Laplacian coefficient we have that |bn| = 4(r + s) = 4(n + 1). From Theorem 3.1, the L-cospectral mate has
two unbalanced triangles and it is one of the Hi’s with i = 11, 12, 13 given in Figure 4.

The signed graph (H11,−) has |bn| = 16, which can be equal to that of Γ = (G3,s,−) for n = 3, and this is
impossible.
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The signed graph (H12,−) has |bn| = 4(6 + 4`1), and by equating the order and bn we get that{
`1 + ` + 5 = n
6 + 4`1 = n + 1

From the above system we get n = 5 + 4`1 and ` = 3`1. However, if `1 > 1 leads to two copies of K1,3 and
λ2(H12,−) ≥ 4, so it is `1 = 1. Consequently ` = 3 and n = 9. The so obtained signed graph is not a cospectral
mate of Γ = (G3,7,−).

Finally, the signed graph (H13,−) has |bn| = 4(6 + 4`1 + 4`2). Similarly to above, we get that ` = 3(`1 + `2)
and n = 4`1 + 4`2 + 5. Also in this case, `1 > 1 or `2 > 1 leads to two copies of K1,3. Hence it is `1 = `2 = 1,
consequently we get ` = 6 and n = 13, but the so obtained signed graph is not cospectral with Γ = (G3,11,−).

The proof is completed.

With the next lemma we have considered all possible cases.

Lemma 4.6. The signed graph Γ = (Gr,3,±) has no connected L-cospectral mate, with the exception of r = 4.

Proof. The exception r = 4 is a special case of Theorem 3.6, so we can assume that r ≥ 5. The signed graph
Γ = (Gr,3,±) has a balanced triangle and an unbalanced cycle r = n − 2. By looking to the least Laplacian
coefficient we have that |bn| = 12. From Theorem 3.1, the L-cospectral mate is either triangle-free (so it is
one of the Hi’s with i = 6, 7, . . . , 10 given in Figure 3), or it has two triangles of different signs (so it is one of
the Hi’s with i = 11, 12, 13 given in Figure 4).

We consider first the former case, so let Λ = (H, σ) be a L-cospectral mate of Γ = (Gr,3,±) without triangles.
So H is one of the graphs in Figure 3, namely one among H6, H7, H8,H9 and H10. We shall compare the last
coefficients of the L-polynomials; recall that for Γ = (Gr,3,±), we have that |bn| = 12.

Assume that the Hi’s (i = 6, 7, . . . , 10) have a balanced cycle. We have that bn = 4r′ or bn = 4s′, with
r′, s′ ≥ 4, and equality is not possible.

So, we next assume that the Hi’s (i = 6, 7, . . . , 10) have just unbalanced cycles. We check the least
Laplacian coefficient. For the signed graphs (H6,−), we get bn = 4(r′ + s′ + 4`1), for (H7,−) and (H8,−) , we
get bn = 4(r′ + s′ + 4`1 + 4`2). Again, being r′, s′ ≥ 4, and equality is not possible. It remains to consider the
signed graphs (H9,−) and (H10,−) for which bn = 4(r′+ s′−2`1). Also in this case, the equality is impossible,
since r′, s′ ≥ `1 + 2, that yields bn ≥ 16.

So it remains to consider the case that Λ = (H, σ) is one among (H11,±), (H11,∓), (H12,±), (H12,∓), and
(H13,±), where, if present, `1 = 1 and `2 = 1 to avoid 2K1,3 as subgraph. Note that the least Laplacian
coefficient is |bn| = 12 for all signed graphs considered in this part of the proof. Therefore, we compare che
second least Laplacian coefficient |bn−1|. For the graphs Γ = (Gn−2,3,±) we get |bn−1| = 3n2

− 6n + 16. For the
Hi’s we have the following values in terms of the order n, obtained from Table 2 and Table 3:

bn−1(H11,±) = 6n2
− 30n + 60; bn−1(H11,∓) = 6n2

− 34n + 76;

bn−1(H12,±) = 6n2
− 37n + 112; bn−1(H12,∓) = 6n2

− 57n + 232;

bn−1(H13,±) = 6n2
− 57n + 268.

By equating the above expressions we get as valid (positive integer) solutions: n = 6 for (H11,∓) which
leads to the known cospectral graph, and n = 8, 9 for (H12,∓) which lead to non cospectral graphs.

This ends the proof.
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