

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Two-Geodesic-Transitive Graphs Which are Neighbor Cubic or Neighbor Tetravalent

Wei Jin^{a,b}, Li Tan^{a,b}

^aSchool of Statistics, Jiangxi University of Finance and Economics, Nanchang, Jiangxi, 330013, P.R.China ^bResearch Center of Applied Statistics, Jiangxi University of Finance and Economics, Nanchang, Jiangxi, 330013, P.R.China

Abstract. A vertex triple (u, v, w) with v adjacent to both u and w is called a 2-*geodesic* if $u \neq w$ and u, w are not adjacent. A graph Γ is said to be 2-*geodesic-transitive* if its automorphism group is transitive on both arcs and 2-geodesics. In this paper, a complete classification of 2-geodesic-transitive graphs is given which are neighbor cubic or neighbor tetravalent.

1. Introduction

In this paper, all graphs are finite, simple, connected and undirected. For a graph Γ , we use $V(\Gamma)$ and $\operatorname{Aut}(\Gamma)$ to denote its *vertex set* and *automorphism group*, respectively. For the group theoretic terminology not defined here we refer the reader to [2, 8, 22]. In a non-complete graph Γ , a vertex triple (u, v, w) with v adjacent to both u and w is called a 2-*geodesic* if $u \neq w$ and in addition u, w are not adjacent. An arc is an ordered pair of adjacent vertices. The graph Γ is said to be 2-*geodesic-transitive* if its automorphism group $\operatorname{Aut}(\Gamma)$ is transitive on both arcs and 2-geodesics. The family of 2-geodesic-transitive graphs is closely related to the well-known family of 2-arc-transitive graphs. A vertex triple (u, v, w) with v adjacent to both v and v is called a 2-v if v is transitive on both arcs and 2-arcs. Clearly, each 2-geodesic is a 2-arc, but some 2-arcs may not be 2-geodesics. If v has girth 3 (length of the shortest cycle is 3), then the 2-arcs contained in 3-cycles are not 2-geodesics. For instance, the complete multipartite graph v is 2-geodesic-transitive neighbor cubic but not 2-arc-transitive. Thus the family of non-complete 2-arc-transitive graphs is properly contained in the family of 2-geodesic-transitive graphs.

The local structure of the family of 2-geodesic-transitive graphs was determined in [4]. In [5], Devillers, Li, Praeger and the author classified 2-geodesic-transitive graphs of valency 4. Later, in [6], a reduction theorem for the family of normal 2-geodesic-transitive Cayley graphs was produced and those which are complete multipartite graphs were also classified. The family of 2-geodesic-transitive but not 2-arctransitive graphs with prime valency was precisely determined in [7].

2010 Mathematics Subject Classification. Primary 05E18; Secondary 20B25

Keywords. Two-geodesic-transitive graph, local subgraph, permutation group

Received: 06 June 2017; Accepted: 05 January 2018

Communicated by Paola Bonacini

Research supported by NSFC (11661039,11561027) and NSF of Jiangxi (20171BAB201010, 20171BCB23046, 2018ACB21001, GJJ170321, 2016KY26)

Email addresses: jinweipei82@163.com (Wei Jin), tltanli@126.com (Li Tan)

For a subset U of the vertex set of Γ , we denote by [U] the subgraph of Γ induced by U, and $[\Gamma(u)]$ is the subgraph induced by the neighborhood of the vertex u. Devillers, Li, Praeger and the author in [4, Theorem 1] proved that if Γ is a 2-geodesic-transitive graph of valency at least 2, then for each vertex u, either

- (1) $[\Gamma(u)]$ is connected of diameter 2; or
- (2) $[\Gamma(u)] \cong mK_r$ for some integers $m \ge 2, r \ge 1$.

Further, Theorem 1.4 of [4] shows that there is a bijection between the family of graphs in case (2) and a certain family of partial linear spaces. In particular, if r = 1, then Γ is 2-arc-transitive. The first remarkable result about 2-arc-transitive graphs comes from Tutte [19, 20], and this family of graphs has been studied extensively, see [1, 9, 10, 12, 15–18, 21]. The graphs in case (1) were investigated in [14]; and in [13], the author completely determined such graphs with valency twice a prime. In this paper, we continue the investigation of the graphs in case (1).

A connected graph is said to be *neighbor cubic* or *neighbor tetravalent* if its local subgraph is connected of valency 3 or 4, respectively. For a graph Γ , its *complement* $\overline{\Gamma}$ is the graph with vertex set $V(\Gamma)$, and two vertices are adjacent if and only if they are not adjacent in Γ .

Let Γ be a 2-geodesic-transitive graph. Let $u \in V(\Gamma)$. Suppose that $[\Gamma(u)]$ is connected of valency 2. Then Γ is either the octahedron or the icosahedron, see [5, Corollary 1.4]. Thus the next natural problem is to classify the family of 2-geodesic-transitive graphs whose neighbor subgraph is connected of valency 3. Our first theorem precisely determines such graphs.

Theorem 1.1. Let Γ be a 2-geodesic-transitive neighbor cubic graph. Then Γ is one of the following graphs: $K_{3[3]}$, I(5,2), complement of the triangular graph T(7), the Conway-Smith graph, or the Hall graph.

We denote by $K_{m[b]}$ the *complete multipartite graph* with m parts, and each part has b vertices where $m \ge 3, b \ge 2$. Let $\Omega = [1, n]$ where $n \ge 3$, and let $1 \le k \le \lfloor \frac{n}{2} \rfloor$ where $\lfloor \frac{n}{2} \rfloor$ is the integer part of $\frac{n}{2}$. Then the *Johnson graph J*(n,k) is the graph whose vertex set is the set of all k-subsets of Ω , and two k-subsets u and v are adjacent if and only if $|u \cap v| = k - 1$.

The second theorem determines the family of 2-geodesic-transitive graphs whose neighbor subgraph is connected of valency 4.

Theorem 1.2. Let Γ be a 2-geodesic-transitive neighbor tetravalent graph. Then Γ is one of the following three graphs: J(6,2), J(6,3) or $K_{4[2]}$.

2. Proof of Theorem 1.1

The first lemma determines the family of 2-geodesic-transitive neighbor cubic graphs whose local subgraph is symmetric.

Lemma 2.1. Let Γ be a 2-geodesic-transitive neighbor cubic graph. Suppose that $[\Gamma(u)]$ is arc-transitive for some $u \in V(\Gamma)$. Then Γ is one of the following graphs: $K_{3[3]}$, complement of the triangular graph T(7), the Conway-Smith graph, or the Hall graph.

Proof. Let (u, v) be an arc and $A = \operatorname{Aut}(\Gamma)$. Since $\Sigma := [\Gamma(u)]$ is not an empty graph, Γ has girth 3. Further, the graph Γ is 2-geodesic-transitive, so it follows from Theorem 1.1 (1) of [4] that Σ has diameter 2 and the arc stabilizer A_{uv} is transitive on $\Sigma_2(v)$. Since Σ is arc-transitive, Σ is distance-transitive, and it is listed in [3, p.221-223]. Thus by inspecting the candidates, Σ is either the complete bipartite graph $K_{3,3}$ or the Petersen graph O_3 . If Σ is $K_{3,3}$, then Γ is $K_{3[3]}$. If Σ is O_3 , then by [11, Theorem 1.1], Γ is the Conway-Smith graph, the Hall graph, or the complement of the triangular graph T(7). \square

Let $u, v \in V(\Gamma)$. Then the distance between u, v in Γ is denoted by $d_{\Gamma}(u, v)$. A graph Γ is said to be 2-distance-transitive if, for i = 1, 2 and for any two vertex pairs (u_1, v_1) and (u_2, v_2) with $d_{\Gamma}(u_1, v_1) = d_{\Gamma}(u_2, v_2) = i$, there exists $g \in \operatorname{Aut}(\Gamma)$ such that $(u_1, v_1)^g = (u_2, v_2)$. By the definition, every 2-geodesic-transitive graph is 2-distance-transitive.

Lemma 2.2. Let Γ be a 2-distance-transitive graph. If $[\Gamma(u)] \cong \overline{C_n}$ for some $u \in V(\Gamma)$ and $n \geq 5$, then Γ is either J(5,2) or the icosahedron.

Proof. Let $\Sigma := [\Gamma(u)]$. Suppose $\Sigma \cong \overline{C_n}$ where $n \ge 5$. If Σ is arc-transitive, then n = 5 and $\Sigma \cong C_5$. By [5, Corollary 1.4], Γ is the icosahedron. In the remaining of this proof, we assume that Σ is not arc-transitive. Hence $n \ge 6$ and Γ has diameter 2.

Let $v \in V(\Sigma)$. Then for any $v' \in \Sigma_2(v)$, $|\Sigma(v) \cap \Sigma(v')| = n-4$. Since $u \in \Gamma(v) \cap \Gamma(v')$, it follows that $n-3 \le |\Gamma(v) \cap \Gamma(v')|$. Since $|\Sigma_2(v) \cap \Sigma(v')| = 1$, it follows that $|\Gamma(v) \cap \Gamma(v')| \le n-1$, so $|\Gamma(v) \cap \Gamma(v')| = n-3$, n-2 or n-1.

As $\Sigma \cong \overline{C_n}$, the valency of Σ is n-3, so $|\Gamma(u) \cap \Gamma(v)| = n-3$. Thus $|\Gamma_2(u) \cap \Gamma(v)| = 2$, so $|\Gamma_2(v) \cap \Gamma(u)| = 2$, as Γ is arc-transitive. Hence there are 2n edges between $\Gamma(v)$ and $\Gamma_2(v)$. By the assumption Γ is 2-distance-transitive, the value $|\Gamma(v) \cap \Gamma(v')|$ divides 2n. Since $|\Gamma(v) \cap \Gamma(v')| < n$, it follows that $2|\Gamma(v) \cap \Gamma(v')| < 2n$, so $3|\Gamma(v) \cap \Gamma(v')| \le 2n$. If $|\Gamma(v) \cap \Gamma(v')| = n-3$, then n=6 or 9. If $|\Gamma(v) \cap \Gamma(v')| = n-2$, then n=6. If $|\Gamma(v) \cap \Gamma(v')| = n-1$, then $n \le 3$. This is impossible because $n \ge 5$. By [3, p.224], $n \ne 9$. Thus n=6.

Set $\Gamma(u) = \{v_1 = v, v_2, v_3, v_4, v_5, v_6\}$. Let (v_1, v_2, v_3) and (v_4, v_5, v_6) be two triangles and let (v_1, v_6) , (v_2, v_5) and (v_3, v_4) be three arcs. Then $|\Gamma_2(u) \cap \Gamma(v_1)| = 2$, say $\Gamma_2(u) \cap \Gamma(v_1) = \{w_1, w_2\}$. Hence $\Gamma(v_1) = \{u, v_2, v_3, v_6, w_1, w_2\}$. Since $[\Gamma(v_1)] \cong \overline{C_6}$, (u, v_2, v_3) is a triangle and neither v_2 nor v_3 is adjacent to v_6 , it follows that (v_6, w_1, w_2) is a triangle, v_2 is adjacent to exactly one of w_1, w_2 , say w_1 , and v_3 is adjacent to w_2 . Set $\Gamma_2(u) \cap \Gamma(v_2) = \{w_1, w_3\}$. Then $\Gamma(v_2) = \{u, v_1, v_3, v_5, w_1, w_3\}$. Since $[\Gamma(v_2)] \cong \overline{C_6}$, it follows that (v_5, w_1, w_3) is a triangle. Thus $\Gamma(u) \cap \Gamma(w_1) = \{v_1, v_2, v_5, v_6\}$ and $\Gamma_2(u) \cap \Gamma(w_1) = \{w_2, w_3\}$. Since Γ is 2-distance-transitive, Γ has diameter 2 and is distance-transitive. By inspecting the graphs in [3, p.223], $\Gamma \cong J(5, 2)$. \square

Lemma 2.3. Let Γ be a 2-geodesic-transitive neighbor cubic graph. If $[\Gamma(u)]$ is not arc-transitive for some $u \in V(\Gamma)$, then Γ is J(5,2).

Proof. Suppose that $\Sigma := [\Gamma(u)]$ is not arc-transitive. Let (u, v) be an arc and $A = \operatorname{Aut}(\Gamma)$. Since Σ is not an empty graph, Γ has girth 3. Since Γ is 2-geodesic-transitive, it follows from Theorem 1.1 (1) of [4] that Σ has diameter 2 and A_{uv} is transitive on $\Sigma_2(v)$.

If Σ has girth at least 5, then for any $x, y \in \Sigma(v)$, $(\Sigma_2(v) \cap \Sigma(x)) \cap (\Sigma_2(v) \cap \Sigma(y)) = \emptyset$. Since A_{uv} is transitive on $\Sigma_2(v)$, it follows that A_{uv} is transitive on $\Sigma(v)$, contradicting that Σ is not arc-transitive. Thus Σ has girth 3 or 4.

Suppose Σ has girth 4. Then there are 6 edges between $\Sigma(v)$ and $\Sigma_2(v)$, as Σ has valency 3. Further, for any $x \in \Sigma_2(v)$, $|\Sigma(v) \cap \Sigma(x)| = 2$ or 3. Suppose $|\Sigma(v) \cap \Sigma(x)| = 3$. Since A_{uv} is transitive on $\Sigma_2(v)$ and $|\Sigma(v) \cap \Sigma(x)| = 3$, it follows that $6 = 3|\Sigma_2(v)|$, so $|\Sigma_2(v)| = 2$. Let $\Delta = \{v\} \cup \Sigma_2(v)$. Then any two vertices of Δ are non-adjacent, and every vertex of Δ is adjacent to all vertices which are not in Δ , as Σ has diameter 2. Thus Δ is a block of cardinality 3, and $\Sigma(v)$ is another block. Hence $\Sigma \cong K_{3,3}$, so A_{uv} is transitive on $\Sigma(v)$, which is a contradiction. Suppose $|\Sigma(v) \cap \Sigma(x)| = 2$. Since there are 6 edges between $\Sigma(v)$ and $\Sigma_2(v)$ and $\Sigma_2(v) = \{x_1, x_2, x_3\}$. Let $\Sigma_2(v) \cap \Sigma(w_1) = \{x_1, x_2\}$ and $\Sigma_2(v) \cap \Sigma(x_1) = \{w_1, w_2\}$. If $\Sigma_2(v) \cap \Sigma(w_1) = \Sigma_2(v) \cap \Sigma(w_2)$, then $\Sigma(v) \cap \Sigma(x_3) = \{w_3\}$, contradicting the fact that $|\Sigma(v) \cap \Sigma(x_3)| = 2$. Thus $\Sigma_2(v) \cap \Sigma(w_1) \neq \Sigma_2(v) \cap \Sigma(w_2)$. Hence w_2 is adjacent to x_3 . In particular, $\Sigma_2(v) = \Sigma_2(v) \cap (\Sigma(w_1) \cup \Sigma(w_2))$. Since Σ has girth 4, it follows that x_1 is not adjacent to any vertex of $\{x_2, x_3\}$, so $|\Sigma_3(v) \cap \Sigma(x_1)| = 1$, contradicting that Σ has diameter 2. Thus $|\Sigma(v) \cap \Sigma(x)| \neq 2$, and so the girth of Σ is not 4.

Therefore Σ has girth 3. Set $\Sigma(v) = \{v_1, v_2, v_3\}$. Let (v, v_1, w_1) be a 2-geodesic and let (v, v_1, v_2) be a triangle. Since Σ has valency 3 and $\Sigma(v_1) = \{v, v_2, w_1\}$, v_1 and v_3 are not adjacent. Assume that v_2, v_3 are adjacent. Then v_2 is adjacent to both v_1 and v_3 . Since Σ is vertex-transitive, some vertex of $\Sigma(v_1)$ is adjacent to the remaining two vertices in $\Sigma(v_1)$. Since (v, v_1, w_1) is a 2-geodesic, v, w_1 are not adjacent, it follows that v_2 is adjacent to both v and v_1 , so $\{v, v_1, v_3, v_1\} \subseteq \Sigma(v_2)$, contradicting the fact that Σ has valency 3. Thus the arc (v, v_3) is not in any triangle. Hence $|\Sigma_2(v) \cap \Sigma(v_3)| = 2$, and say $\Sigma_2(v) \cap \Sigma(v_3) = \{w, w'\}$. In particular, every vertex is in a unique triangle. Hence w and w' are adjacent.

Suppose that $|\Sigma(v) \cap \Sigma(w)| = 1$. Then $\Sigma(v) \cap \Sigma(w) = \Sigma(v) \cap \Sigma(w') = \{v_3\}$. Since Σ has diameter 2, $|\Sigma_2(v) \cap \Sigma(w)| = 2$. Since v_1 is in a unique triangle, v_1, v_2 are not adjacent. Set $\Sigma_2(v) \cap \Sigma(v_2) = \{w_2\}$. As v_2 is

not adjacent to any one of $\{w, w'\}$, $w_2 \notin \{w, w'\}$, so $\Sigma_2(v) = \{w_1, w_2, w, w'\}$. Since A_{uv} is transitive on $\Sigma_2(v)$ and $|\Sigma_2(v) \cap \Sigma(w)| = 2$, it follows that $[\Sigma_2(v)]$ is a vertex-transitive graph of valency 2, so $[\Sigma_2(v)] \cong C_4$. Hence the vertex w_1 is not in any triangle, which is a contradiction. Thus $|\Sigma(v) \cap \Sigma(w)| \neq 1$.

Hence $|\Sigma(v) \cap \Sigma(w)| = 2$. Since A_{uv} is transitive on $\Sigma_2(v)$ and there are 4 edges between $\Sigma(v)$ and $\Sigma_2(v)$, it follows that $\Sigma_2(v) = \{w, w'\}$ and $|\Sigma(v) \cap \Sigma(w')| = 2$. Thus Σ is $\overline{C_6}$. It follows from Lemma 2.2 that Γ is J(5, 2) or the icosahedron. The icosahedron is not neighbor cubic, so Γ is J(5, 2). \square

It follows from Lemmas 2.1 and 2.3 that Theorem 1.1 is true.

3. Proof of Theorem 1.2

In this section, we prove Theorem 1.2 by a series of lemmas.

Lemma 3.1. Let Γ be a tetravalent vertex-transitive graph. Let $A := \operatorname{Aut}(\Gamma)$ and $u \in V(\Gamma)$. If Γ has girth 4 and A_u is transitive on $\Gamma_2(u)$, then either Γ is symmetric or $|\Gamma(u) \cap \Gamma(w)| \neq 3$ for any $w \in \Gamma_2(u)$.

Proof. Suppose that Γ has girth 4 and A_u is transitive on $\Gamma_2(u)$. Assume Γ is not a symmetric graph. Since Γ has both valency and girth 4, $|\Gamma_2(u) \cap \Gamma(v)| = 3$ for each $v \in \Gamma(u)$, so there are 12 edges between $\Gamma(u)$ and $\Gamma_2(u)$. Let (u, v, w) be a 2-geodesic. Assume that $|\Gamma(u) \cap \Gamma(w)| = 3$. By the assumption, A_u is transitive on $\Gamma_2(u)$, so $12 = 3|\Gamma_2(u)|$, hence $|\Gamma_2(u)| = 4$.

Set $\Gamma(u) = \{v_1 = v, v_2, v_3, v_4\}$ and $\Gamma_2(u) = \{w_1 = w, w_2, w_3, w_4\}$. Let $\Gamma_2(u) \cap \Gamma(v_1) = \{w_1, w_2, w_3\}$ and $\Gamma(u) \cap \Gamma(w_1) = \{v_1, v_2, v_3\}$. If $\Gamma_2(u) \cap \Gamma(v_1) = \Gamma_2(u) \cap \Gamma(v_2)$, then $\Gamma(u) \cap \Gamma(w_4) \subseteq \{v_3, v_4\}$, contradicting the fact that $|\Gamma(u) \cap \Gamma(w_4)| = 3$. Thus $\Gamma_2(u) \cap \Gamma(v_1) \neq \Gamma_2(u) \cap \Gamma(v_2)$. Hence v_2 is adjacent to w_4 , and also adjacent to one vertex of $\{w_2, w_3\}$, say w_2 . In particular, $\Gamma_2(u) = \Gamma_2(u) \cap (\Gamma(v_1) \cup \Gamma(v_2))$. Since Γ has girth 4, it follows that w_1 is not adjacent to any vertex of $\Gamma_2(u) \setminus \{w_1\}$, so $|\Gamma_3(u) \cap \Gamma(w_1)| = 1$, say $\Gamma_3(u) \cap \Gamma(w_1) = \{z\}$. Then (v_1, w_1, z) and (v_2, w_1, z) are 2-geodesics. Thus $|\Gamma(v_1) \cap \Gamma(z)| = 3 = |\Gamma(v_2) \cap \Gamma(z)|$, so $\Gamma(z) = \Gamma_2(u)$. Hence $\Gamma \cong K_{5,5} - 5K_2$, and $\Lambda \cong S_2 \times S_5$. However $\Lambda_u \cong S_4$ is transitive on $\Gamma(u)$, contradicting the assumption that Γ is not a symmetric graph. Thus $|\Gamma(u) \cap \Gamma(w)| \neq 3$. \square

A permutation group G on a set Ω is said to be 2-homogeneous, if G is transitive on the set of 2-subsets of Ω .

Lemma 3.2. Let Γ be a tetravalent vertex-transitive but not arc-transitive graph. Let $A := \operatorname{Aut}(\Gamma)$ and $u \in V(\Gamma)$. Suppose that A_u is transitive on $\Gamma_2(u)$. Then Γ has girth 3.

Proof. Suppose Γ has girth at least 5. Then for any $x, y \in \Gamma(u)$, $(\Gamma_2(u) \cap \Gamma(x)) \cap (\Gamma_2(u) \cap \Gamma(y)) = \emptyset$. Since A_u is transitive on $\Gamma_2(u)$, it follows that A_u is transitive on $\Gamma(u)$, contradicting that Γ is not arc-transitive. Thus Γ has girth 3 or 4.

Assume that Γ has girth 4. Then $|\Gamma(u) \cap \Gamma(w)| = 2,3$ or 4, for any $w \in \Gamma_2(u)$. By Lemma 3.1, $|\Gamma(u) \cap \Gamma(w)| \neq 3$. Suppose that $|\Gamma(u) \cap \Gamma(w)| = 2$. Since Γ is vertex-transitive and A_u is transitive on $\Gamma_2(u)$, each 2-arc of Γ lies in a unique 4-cycle. Thus, there is a 1-1 mapping between the unordered vertex pairs in Γ(*u*) and vertices in Γ₂(*u*). Again since A_u is transitive on Γ₂(*u*), it follows that A_u is transitive on the set of unordered vertex pairs in Γ(*u*). Hence A_u is 2-homogeneous on Γ(*u*), so A_u is transitive on Γ(*u*), contradicting that Γ is not arc-transitive. Suppose $|\Gamma(u) \cap \Gamma(w)| = 4$. Since Γ has girth 4, there are 12 edges between Γ(*u*) and Γ₂(*u*). As A_u is transitive on Γ₂(*u*), Γ has diameter 2 and $|\Gamma_2(u)| = 3$. Let $\Delta = \{u\} \cup \Gamma_2(u)$. Then any two vertices of Δ are non-adjacent, and every vertex of Δ is adjacent to all vertices which are not in Δ. By the structure of Γ, Δ is a block of cardinality 4, and Γ(*u*) is another block. Thus Γ ≅ K_{4,4}. Hence A_u is transitive on Γ(*u*), again a contradiction. Therefore Γ has girth 3.

Lemma 3.3. Let Γ be a tetravalent vertex-transitive but not arc-transitive graph of diameter 2. Let $A := \operatorname{Aut}(\Gamma)$ and $u \in V(\Gamma)$. Suppose that A_u is transitive on $\Gamma_2(u)$. Then $|\Gamma(u) \cap \Gamma(w)| \neq 4$ for any $w \in \Gamma_2(u)$.

Proof. Since A_u is transitive on $\Gamma_2(u)$ but not on $\Gamma(u)$, it follows from Lemma 3.2 that Γ has girth 3. If for any $v,v'\in\Gamma(u)$ we have $\Gamma_2(u)\cap\Gamma(v)\cap\Gamma(v')=\emptyset$, then as A_u is transitive on $\Gamma_2(u)$, A_u is transitive on $\Gamma(u)$, which is a contradiction. Thus, there exist $v,v'\in\Gamma(u)$ such that $\Gamma_2(u)\cap\Gamma(v)\cap\Gamma(v')\neq\emptyset$. Set $\Gamma(u)=\{v_1,v_2,v_3,v_4\}$. Suppose that $\Gamma_2(u)\cap\Gamma(v_1)\cap\Gamma(v_3)\neq\emptyset$, and say $w_1\in\Gamma_2(u)\cap\Gamma(v_1)\cap\Gamma(v_3)$. Then $|\Gamma(u)\cap\Gamma(w_1)|=2$, 3 or 4. Since A_u is transitive on $\Gamma_2(u)$, for any $w\in\Gamma_2(u)$, $|\Gamma(u)\cap\Gamma(w)|=2$, 3 or 4. In particular, $|\Gamma(u)\cap\Gamma(w)|$ divides the number of edges between $\Gamma(u)$ and $\Gamma_2(u)$.

Assume that $|\Gamma(u) \cap \Gamma(w)| = 4$. If u lies in a unique triangle (u, v_1, v_2) , then there are 10 edges between $\Gamma(u)$ and $\Gamma_2(u)$, however 4 does not divide 10, which is a contradiction. Assume that u is in two triangles. Then there are 8 edges between $\Gamma(u)$ and $\Gamma_2(u)$. Hence $|\Gamma_2(u)| = 2$ and Γ has 7 vertices. Let $\Delta = \{u\} \cup \Gamma_2(u)$. Then any two vertices of Δ are non-adjacent, and every vertex of Δ is adjacent to all vertices which are not in Δ . Since Γ is vertex-transitive, Δ is a block of cardinality 3. However, 3 does not divide 7, so such a Γ does not exist. Assume that u lies in more than two triangles. Then there are $x \leq 6$ edges between $\Gamma(u)$ and $\Gamma_2(u)$. Since 4 divides x, x = 4, so $|\Gamma_2(u)| = 1$, Γ has 6 vertices. Let $\Delta = \{u\} \cup \Gamma_2(u)$. Then any two vertices of Δ are non-adjacent, and every vertex of Δ is adjacent to all vertices which are not in Δ . Since Γ is vertex-transitive, Δ is a block of cardinality 2. In particular, $\Gamma(u)$ contains two such blocks Δ' and Δ'' , and $[\Delta' \cup \Delta''] \cong C_4$. Thus $\Gamma \cong K_{3[2]}$. However A_u is transitive on $\Gamma(u)$, contradicting that Γ is not arc-transitive. Hence $|\Gamma(u) \cap \Gamma(w)| \neq 4$. \square

Let Γ_1 , Γ_2 be two graphs. We use $\Gamma_1 \square \Gamma_2$ to denote the *Cartesian product* of Γ_1 and Γ_2 , its vertex set is $V(\Gamma_1) \times V(\Gamma_2)$, two vertices (u_1, u_2) and (v_1, v_2) are adjacent if and only if $u_2 = v_2$ and u_1, v_1 are adjacent in Γ_1 , or $u_1 = v_1$ and u_2, v_2 are adjacent in Γ_2 .

Now we can prove the second theorem.

Proof of Theorem 1.2. Let Γ be a 2-geodesic-transitive neighbor tetravalent graph. Let (u, v) be an arc and $A = \operatorname{Aut}(\Gamma)$. Since $\Sigma := [\Gamma(u)]$ is not an empty graph, Γ has girth 3. Since Γ is 2-geodesic-transitive, it follows from Theorem 1.1 (1) of [4] that Σ has diameter 2 and A_{uv} is transitive on $\Sigma_2(v)$.

Suppose first that Σ is arc-transitive. Then Σ is distance-transitive, and it is listed in [3, p.221-223]. By inspecting the candidates, Σ is either $K_{3[2]}$ or H(2,3). If Σ is $K_{3[2]}$, then Γ is $K_{4[2]}$. If Σ is H(2,3), then Γ is J(6,3).

In the remaining, we suppose that Σ is not arc-transitive. Since A_{uv} is transitive on $\Sigma_2(v)$, it follows from Lemma 3.2 that Σ has girth 3. If for any $v', v'' \in \Sigma(v)$ we have $\Sigma_2(v) \cap \Sigma(v') \cap \Sigma(v'') = \emptyset$, then as A_{uv} is transitive on $\Sigma_2(v)$, A_{uv} is transitive on $\Sigma(v)$, which is a contradiction. Thus, there exist $v', v'' \in \Sigma(v)$ such that $\Sigma_2(v) \cap \Sigma(v') \cap \Sigma(v'') \neq \emptyset$. Set $\Sigma(v) = \{v_1, v_2, v_3, v_4\}$. Suppose that $\Sigma_2(v) \cap \Sigma(v_1) \cap \Sigma(v_3) \neq \emptyset$, and say $w_1 \in \Sigma_2(v) \cap \Sigma(v_1) \cap \Sigma(v_3)$. Then $|\Sigma(v) \cap \Sigma(w_1)| = 2,3$ or 4. Since A_{uv} is transitive on $\Sigma_2(v)$, for any $\delta \in \Sigma_2(v)$, $|\Sigma(v) \cap \Sigma(\delta)| = 2,3$ or 4. It follows from Lemma 3.3 that $|\Sigma(v) \cap \Sigma(\delta)| \neq 4$. In particular, $|\Sigma(v) \cap \Sigma(\delta)|$ divides the number of edges between $\Sigma(v)$ and $\Sigma_2(v)$.

Assume that $|\Sigma(v) \cap \Sigma(\delta)| = 3$. If v lies in one or two triangles, then there are 10 or 8 edges between $\Sigma(v)$ and $\Sigma_2(v)$, respectively. However 3 does not divide 8 or 10, which is a contradiction. Hence v lies in more than two triangles. Then there are $x \le 6$ edges between $\Sigma(v)$ and $\Sigma_2(v)$. Since 3 divides x, x = 3 or 6, so $|\Sigma_2(v)| = 1$ or 2. Assume $|\Sigma_2(v)| = 1$, say $\Sigma_2(v) = \{w\}$. Then $|\Sigma_3(v) \cap \Sigma(w)| = 1$, contradicting the fact that Σ has diameter 2. Hence $|\Sigma_2(v)| = 2$, say $\Sigma_2(v) = \{w, w'\}$. Since Σ has diameter 2, $|\Sigma_2(v) \cap \Sigma(w)| = 1$. Thus $\overline{\Sigma}$ is a vertex-transitive graph of valency 2 with 7 vertices, so $\overline{\Sigma} \cong C_7$. Thus $\Sigma \cong \overline{C_7}$. By Lemma 2.2, Γ does not exist.

Now assume that $|\Sigma(v) \cap \Sigma(\delta)| = 2$. Since Σ has diameter 2, it follows that $|\Sigma_2(v) \cap \Sigma(\delta)| = 2$. Thus $[\Sigma_2(v)]$ is a vertex-transitive graph of valency 2. If v lies in r triangles for some $r \ge 1$, then there are 12 - 2r edges between $\Sigma(v)$ and $\Sigma_2(v)$. Since A_{uv} is transitive on $\Sigma_2(v)$, $|\Sigma(v) \cap \Sigma(\delta)|$ divides 12 - 2r. It follows that $r \le 5$. Since $|\Sigma_2(v) \cap \Sigma(\delta)| = 2$, it follows that $|\Sigma_2(v)| \ge 3$, and so there are at least 6 edges between $\Sigma(v)$ and $\Sigma_2(v)$. Hence $12 - 2r \ge 6$, so r = 1, 2 or 3.

If r=1, then there are 10 edges between $\Sigma(v)$ and $\Sigma_2(v)$. Since $|\Sigma(v) \cap \Sigma(\delta)| = 2$ for any $\delta \in \Sigma_2(v)$, one has $|\Sigma_2(v)| = 5$. Assume that (v, v_1, v_2) is a triangle. Then v_3 is not adjacent to v_4 . So, A_{uv} fixes $\{v_1, v_2\}$ and $\{v_3, v_4\}$ setwise, respectively. Therefore, A_{uv} fixes $\Sigma_2(v) \cap (\Sigma(v_1) \cup \Sigma(v_2))$ setwise. As $|\Sigma_2(v) \cap (\Sigma(v_1) \cup \Sigma(v_2))| \le 4$, it follows that $\Sigma_2(v) \cap (\Sigma(v_1) \cup \Sigma(v_2)) \subset \Sigma_2(v)$, contradicting the fact that A_{uv} is transitive on $\Sigma_2(v)$.

If r=2, then there are 8 edges between $\Sigma(v)$ and $\Sigma_2(v)$. Further, $|\Sigma_2(v)|=4$, so $[\Sigma_2(v)]\cong C_4$. Set $\Sigma(v)=\{v_1,v_2,v_3,v_4\}$. Then $|\Sigma(v)\cap\Sigma(v_i)|=1$ or 2. If $|\Sigma(v)\cap\Sigma(v_i)|=1$ for each v_i , then $|\Sigma(v)]\cong 2K_2$. Hence each arc lies in a unique triangle. Let (v_1,v_2) and (v_3,v_4) be two arcs. Let $\Sigma_2(v)\cap\Sigma(v_1)=\{w_1,w_2\}$. Since $[\Sigma(v_1)]\cong 2K_2$, (w_1,w_2) is an arc and v_2 is not adjacent to any one of $\{w_1,w_2\}$. Set $\Sigma_2(v)\cap\Sigma(v_2)=\{w_3,w_4\}$. Since $[\Sigma(v_2)]\cong 2K_2$, (w_3,w_4) is an arc. Since $[\Sigma_2(v)]\cong C_4$, it follows that (w_1,w_2,w_3,w_4) is a 4-cycle. Since $|\Sigma(v)\cap\Sigma(w_1)|=2$ and each arc lies in a unique triangle, w_1 is adjacent to one of v_3,v_4 , say v_3 . Then $\Sigma(w_1)=\{v_1,v_3,w_2,w_4\}$. Since $[\Sigma(w_1)]\cong 2K_2$, it follows that v_3,w_4 are adjacent. Hence v_4 is adjacent to both v_2 and v_3 . Thus Σ is isomorphic to the Hamming graph V_2 . However V_3 is arc-transitive, which is a contradiction. Thus there exists v_i such that $|\Sigma(v)\cap\Sigma(v_i)|=2$. Without loss of generality, let $v_i=v_1$ and let V_2 is V_3 . Then V_3 is the unique vertex of V_3 such that V_3 is V_3 and V_3 . Thus V_3 is a contradiction. Thus there exists v_i such that V_3 is an arc and v_4 and v_4 is a contradiction. Thus there exists v_i such that V_3 is a contradiction. Thus there exists v_i such that V_3 is an arc and v_4 in an arc and v_4 is triangles, v_4 is the unique vertex of V_3 such that V_4 is transitive on V_4 in the V_4 of V_4 in the V_4 in the V_4 is the unique vertex of V_4 such that V_4 is transitive on V_4 in the V_4 in the V_4 is the unique vertex of V_4 in that V_4 is transitive on V_4 . Hence V_4 is an arc and V_4 in the each V_4 is the unique vertex of V_4 in the each V_4 in the each V_4 is the unique vertex of V_4 in the each V_4 in

Finally, assume r=3. Then there are 6 edges between $\Sigma(v)$ and $\Sigma_2(v)$. Further, $|\Sigma_2(v)|=3$, so $[\Sigma_2(v)]\cong C_3$. Set $\Sigma(v)=\{v_1,v_2,v_3,v_4\}$. Then for any v_i , $|\Sigma(v)\cap\Sigma(v_i)|\le 3$. Since v is in 3 triangles, there exist at most one vertex v_i such that $|\Sigma(v)\cap\Sigma(v_i)|=3$. Assume there exists a vertex, v_1 , such that $|\Sigma(v)\cap\Sigma(v_1)|=3$. Then $\Sigma(v)\cap\Sigma(v_1)=\{v_2,v_3,v_4\}$, and vertices of $\{v_2,v_3,v_4\}$ are pairwise non-adjacent. Hence $\Sigma(v_2)=\{v,v_1\}\cup(\Sigma_2(v)\cap\Sigma(v_2))$. Since there are no edges between sets $\{v,v_1\}$ and $\Sigma_2(v)\cap\Sigma(v_2)$, it follows that for any $\varphi\in\Sigma(v_2)$, $|\Sigma(v_2)\cap\Sigma(\varphi)|<3$, so $|\Sigma(v)|\not\equiv|\Sigma(v_2)|$. Thus A can not map v to v_2 , contradicting that Σ is vertex-transitive. Hence $|\Sigma(v)\cap\Sigma(v_i)|\le 2$. If for any v_i , $|\Sigma(v)\cap\Sigma(v_i)|\ge 1$, then $|\Sigma_2(v)\cap\Sigma(v_i)|=1$ or 2. Since there are 6 edges between $\Sigma(v)$ and $\Sigma_2(v)$, there exists v_i such that $|\Sigma_2(v)\cap\Sigma(v_i)|=1$. Assume that there are x vertices in $\Sigma(v)$ that are adjacent to exactly one vertex of $\Sigma_2(v)$. Then counting the edges between $\Sigma(v)$ and $\Sigma_2(v)$, x+2(4-x)=6, so x=2. Suppose $|\Sigma_2(v)\cap\Sigma(v_1)|=|\Sigma_2(v)\cap\Sigma(v_2)|=1$, say $\Sigma_2(v)\cap\Sigma(v_1)=\{w_1\}$ and $\Sigma_2(v)\cap\Sigma(v_2)=\{w_2\}$. Then A_{uv} can not map w_3 to any one of w_1,w_2 , contradicting the fact that A_{uv} is transitive on $\Sigma_2(v)$. Thus there exists a vertex v_i such that $|\Sigma(v)\cap\Sigma(v_i)|=0$. Since v is in 3 triangles, $|\Sigma(v)\setminus\{v_i\}|\cong C_3$. Further $\Sigma_2(v)\cap\Sigma(v_i)=\Sigma_2(v)$, and there are 3 edges between $\Sigma(v)\setminus\{v_i\}$ and $\Sigma_2(v)$. Hence for each $v_i\in\Sigma(v)\setminus\{v_i\}$, $|\Sigma_2(v)\cap\Sigma(v_i)|=1$. Therefore $\Sigma\cong K_4\square K_2$. Then by [3, Theorem 9.1.3], Γ is [6,2). \square

References

- [1] B. Alspach, M. Conder, D. Marušič and M. Y. Xu, A classification of 2-arc transitive circulants, J. Algebraic Combin. 5 (1996) 83–86.
- [2] P. J. Cameron, Permutation Groups, volume 45 of London Mathematical Society Student Texts, Cambridge University Press, Cambridge, 1999.
- [3] A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-Regular Graphs, Springer Verlag, Berlin, Heidelberg, New York, 1989.
- [4] A. Devillers, W. Jin, C. H. Li and C. E. Praeger, Local 2-geodesic transitivity and clique graphs, J. Combin. Theory Ser. A 120 (2013) 500–508.
- [5] A. Devillers, W. Jin, C. H. Li and C. E. Praeger, Line graphs and geodesic transitivity, Ars Math. Contemp. 6 (2013) 13–20.
- [6] A. Devillers, W. Jin, C. H. Li and C. E. Praeger, On normal 2-geodesic transitive Cayley graphs, J. Algebraic Combin. 39 (2014) 903–918.
- [7] A. Devillers, W. Jin, C. H. Li and C. E. Praeger, Finite 2-geodesic transitive graphs of prime valency, J. Graph Theory 80 (2015) 18–27.
- [8] J. D. Dixon and B. Mortimer, Permutation groups, Springer, New York, 1996.
- [9] S. F. Du, D. Marušič and A. O. Waller, On 2-arc-transitive covers of complete graphs, J. Combin. Theory Ser. B 74 (1998) 276–290.
- [10] S. T. Guo and Y. Q. Feng, A note on pentavalent s-transitive graphs, Discrete Math. 312 (2012) 2214–2216.
- [11] J. I. Hall, Locally Petersen graphs, J. Graph Theory 4 (1980) 173-187.
- [12] A. A. Ivanov and C. E. Praeger, On finite affine 2-arc transitive graphs, European J. Combin. 14 (1993) 421–444.
- [13] W. Jin, Finite 2-geodesic transitive graphs of valency twice a prime, European J. Combin. 49 (2015) 117–125.
- [14] W. Jin, Two-geodesic transitive graphs which are locally connected, Discrete Math. 340 (2017) 637-643.
- [15] B. Jia, Z. P. Lu and G. X. Wang, A class of symmetric graphs with 2-arc-transitive quotients, J. Graph Theory 65 (2010) 232-245.
- [16] C. H. Li and J. M. Pan, Finite 2-arc-transitive abelian Cayley graphs, European J. Combin. 29 (2008) 148–158.
- [17] J. M. Pan, Z. Liu and Z. W. Yang, On 2-arc-transitive representations of the groups of fourth-power-free order, Discrete Math. 310 (2010) 1949–1955.
- [18] C. E. Praeger, An O'Nan Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs, J. London Math. Soc. (2) 47 (1993) 227–239.
- [19] W. T. Tutte, A family of cubical graphs, Proc. Cambridge Philos. Soc. 43 (1947) 459–474.
- [20] W. T. Tutte, On the symmetry of cubic graphs, Canad. J. Math. 11 (1959) 621–624.
- [21] R. Weiss, The non-existence of 8-transitive graphs, Combinatorica 1 (1981) 309–311.
- [22] H. Wielandt, Finite Permutation Groups, New York: Academic Press (1964).