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Abstract. A vertex triple (u, v,w) with v adjacent to both u and w is called a 2-geodesic if u , w and u,w
are not adjacent. A graph Γ is said to be 2-geodesic-transitive if its automorphism group is transitive on both
arcs and 2-geodesics. In this paper, a complete classification of 2-geodesic-transitive graphs is given which
are neighbor cubic or neighbor tetravalent.

1. Introduction

In this paper, all graphs are finite, simple, connected and undirected. For a graph Γ, we use V(Γ) and
Aut(Γ) to denote its vertex set and automorphism group, respectively. For the group theoretic terminology
not defined here we refer the reader to [2, 8, 22]. In a non-complete graph Γ, a vertex triple (u, v,w) with v
adjacent to both u and w is called a 2-geodesic if u , w and in addition u,w are not adjacent. An arc is an
ordered pair of adjacent vertices. The graph Γ is said to be 2-geodesic-transitive if its automorphism group
Aut(Γ) is transitive on both arcs and 2-geodesics. The family of 2-geodesic-transitive graphs is closely
related to the well-known family of 2-arc-transitive graphs. A vertex triple (u, v,w) with v adjacent to both
u and w is called a 2-arc if u , w. The graph Γ is said to be 2-arc-transitive if its automorphism group
Aut(Γ) is transitive on both arcs and 2-arcs. Clearly, each 2-geodesic is a 2-arc, but some 2-arcs may not be
2-geodesics. If Γ has girth 3 (length of the shortest cycle is 3), then the 2-arcs contained in 3-cycles are not
2-geodesics. For instance, the complete multipartite graph K3[3] is 2-geodesic-transitive neighbor cubic but
not 2-arc-transitive. Thus the family of non-complete 2-arc-transitive graphs is properly contained in the
family of 2-geodesic-transitive graphs.

The local structure of the family of 2-geodesic-transitive graphs was determined in [4]. In [5], Devillers,
Li, Praeger and the author classified 2-geodesic-transitive graphs of valency 4. Later, in [6], a reduction
theorem for the family of normal 2-geodesic-transitive Cayley graphs was produced and those which
are complete multipartite graphs were also classified. The family of 2-geodesic-transitive but not 2-arc-
transitive graphs with prime valency was precisely determined in [7].
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For a subset U of the vertex set of Γ, we denote by [U] the subgraph of Γ induced by U, and [Γ(u)] is the
subgraph induced by the neighborhood of the vertex u. Devillers, Li, Praeger and the author in [4, Theorem
1] proved that if Γ is a 2-geodesic-transitive graph of valency at least 2, then for each vertex u, either

(1) [Γ(u)] is connected of diameter 2; or
(2) [Γ(u)] � mKr for some integers m ≥ 2, r ≥ 1.
Further, Theorem 1.4 of [4] shows that there is a bijection between the family of graphs in case (2) and a

certain family of partial linear spaces. In particular, if r = 1, then Γ is 2-arc-transitive. The first remarkable
result about 2-arc-transitive graphs comes from Tutte [19, 20], and this family of graphs has been studied
extensively, see [1, 9, 10, 12, 15–18, 21]. The graphs in case (1) were investigated in [14]; and in [13], the
author completely determined such graphs with valency twice a prime. In this paper, we continue the
investigation of the graphs in case (1).

A connected graph is said to be neighbor cubic or neighbor tetravalent if its local subgraph is connected
of valency 3 or 4, respectively. For a graph Γ, its complement Γ is the graph with vertex set V(Γ), and two
vertices are adjacent if and only if they are not adjacent in Γ.

Let Γ be a 2-geodesic-transitive graph. Let u ∈ V(Γ). Suppose that [Γ(u)] is connected of valency 2. Then
Γ is either the octahedron or the icosahedron, see [5, Corollary 1.4]. Thus the next natural problem is to
classify the family of 2-geodesic-transitive graphs whose neighbor subgraph is connected of valency 3. Our
first theorem precisely determines such graphs.

Theorem 1.1. Let Γ be a 2-geodesic-transitive neighbor cubic graph. Then Γ is one of the following graphs: K3[3],
J(5, 2), complement of the triangular graph T(7), the Conway-Smith graph, or the Hall graph.

We denote by Km[b] the complete multipartite graph with m parts, and each part has b vertices where
m ≥ 3, b ≥ 2. Let Ω = [1,n] where n ≥ 3, and let 1 ≤ k ≤ [ n

2 ] where [ n
2 ] is the integer part of n

2 . Then the
Johnson graph J(n, k) is the graph whose vertex set is the set of all k-subsets of Ω, and two k-subsets u and v
are adjacent if and only if |u ∩ v| = k − 1.

The second theorem determines the family of 2-geodesic-transitive graphs whose neighbor subgraph is
connected of valency 4.

Theorem 1.2. Let Γ be a 2-geodesic-transitive neighbor tetravalent graph. Then Γ is one of the following three graphs:
J(6, 2), J(6, 3) or K4[2].

2. Proof of Theorem 1.1

The first lemma determines the family of 2-geodesic-transitive neighbor cubic graphs whose local
subgraph is symmetric.

Lemma 2.1. Let Γ be a 2-geodesic-transitive neighbor cubic graph. Suppose that [Γ(u)] is arc-transitive for some
u ∈ V(Γ). Then Γ is one of the following graphs: K3[3], complement of the triangular graph T(7), the Conway-Smith
graph, or the Hall graph.

Proof. Let (u, v) be an arc and A = Aut(Γ). Since Σ := [Γ(u)] is not an empty graph, Γ has girth 3. Further,
the graph Γ is 2-geodesic-transitive, so it follows from Theorem 1.1 (1) of [4] that Σ has diameter 2 and the
arc stabilizer Auv is transitive on Σ2(v). Since Σ is arc-transitive, Σ is distance-transitive, and it is listed in [3,
p.221-223]. Thus by inspecting the candidates, Σ is either the complete bipartite graph K3,3 or the Petersen
graph O3. If Σ is K3,3, then Γ is K3[3]. If Σ is O3, then by [11, Theorem 1.1], Γ is the Conway-Smith graph, the
Hall graph, or the complement of the triangular graph T(7).

Let u, v ∈ V(Γ). Then the distance between u, v in Γ is denoted by dΓ(u, v). A graph Γ is said to be 2-
distance-transitive if, for i = 1, 2 and for any two vertex pairs (u1, v1) and (u2, v2) with dΓ(u1, v1) = dΓ(u2, v2) = i,
there exists 1 ∈ Aut(Γ) such that (u1, v1)1 = (u2, v2). By the definition, every 2-geodesic-transitive graph is
2-distance-transitive.
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Lemma 2.2. Let Γ be a 2-distance-transitive graph. If [Γ(u)] � Cn for some u ∈ V(Γ) and n ≥ 5, then Γ is either
J(5, 2) or the icosahedron.

Proof. Let Σ := [Γ(u)]. Suppose Σ � Cn where n ≥ 5. If Σ is arc-transitive, then n = 5 and Σ � C5. By [5,
Corollary 1.4], Γ is the icosahedron. In the remaining of this proof, we assume that Σ is not arc-transitive.
Hence n ≥ 6 and Γ has diameter 2.

Let v ∈ V(Σ). Then for any v′ ∈ Σ2(v), |Σ(v) ∩ Σ(v′)| = n − 4. Since u ∈ Γ(v) ∩ Γ(v′), it follows that
n− 3 ≤ |Γ(v)∩Γ(v′)|. Since |Σ2(v)∩Σ(v′)| = 1, it follows that |Γ(v)∩Γ(v′)| ≤ n− 1, so |Γ(v)∩Γ(v′)| = n− 3,n− 2
or n − 1.

As Σ � Cn, the valency of Σ is n − 3, so |Γ(u) ∩ Γ(v)| = n − 3. Thus |Γ2(u) ∩ Γ(v)| = 2, so |Γ2(v) ∩ Γ(u)| = 2,
as Γ is arc-transitive. Hence there are 2n edges between Γ(v) and Γ2(v). By the assumption Γ is 2-distance-
transitive, the value |Γ(v) ∩ Γ(v′)| divides 2n. Since |Γ(v) ∩ Γ(v′)| < n, it follows that 2|Γ(v) ∩ Γ(v′)| < 2n,
so 3|Γ(v) ∩ Γ(v′)| ≤ 2n. If |Γ(v) ∩ Γ(v′)| = n − 3, then n = 6 or 9. If |Γ(v) ∩ Γ(v′)| = n − 2, then n = 6. If
|Γ(v) ∩ Γ(v′)| = n − 1, then n ≤ 3. This is impossible because n ≥ 5. By [3, p.224], n , 9. Thus n = 6.

Set Γ(u) = {v1 = v, v2, v3, v4, v5, v6}. Let (v1, v2, v3) and (v4, v5, v6) be two triangles and let (v1, v6), (v2, v5) and
(v3, v4) be three arcs. Then |Γ2(u)∩ Γ(v1)| = 2, say Γ2(u)∩ Γ(v1) = {w1,w2}. Hence Γ(v1) = {u, v2, v3, v6,w1,w2}.
Since [Γ(v1)] � C6, (u, v2, v3) is a triangle and neither v2 nor v3 is adjacent to v6, it follows that (v6,w1,w2)
is a triangle, v2 is adjacent to exactly one of w1,w2, say w1, and v3 is adjacent to w2. Set Γ2(u) ∩ Γ(v2) =

{w1,w3}. Then Γ(v2) = {u, v1, v3, v5,w1,w3}. Since [Γ(v2)] � C6, it follows that (v5,w1,w3) is a triangle. Thus
Γ(u) ∩ Γ(w1) = {v1, v2, v5, v6} and Γ2(u) ∩ Γ(w1) = {w2,w3}. Since Γ is 2-distance-transitive, Γ has diameter 2
and is distance-transitive. By inspecting the graphs in [3, p.223], Γ � J(5, 2).

Lemma 2.3. Let Γ be a 2-geodesic-transitive neighbor cubic graph. If [Γ(u)] is not arc-transitive for some u ∈ V(Γ),
then Γ is J(5, 2).

Proof. Suppose that Σ := [Γ(u)] is not arc-transitive. Let (u, v) be an arc and A = Aut(Γ). Since Σ is not an
empty graph, Γ has girth 3. Since Γ is 2-geodesic-transitive, it follows from Theorem 1.1 (1) of [4] that Σ has
diameter 2 and Auv is transitive on Σ2(v).

If Σ has girth at least 5, then for any x, y ∈ Σ(v), (Σ2(v)∩Σ(x))∩ (Σ2(v)∩Σ(y)) = ∅. Since Auv is transitive
on Σ2(v), it follows that Auv is transitive on Σ(v), contradicting that Σ is not arc-transitive. Thus Σ has girth
3 or 4.

Suppose Σ has girth 4. Then there are 6 edges between Σ(v) and Σ2(v), as Σ has valency 3. Further,
for any x ∈ Σ2(v), |Σ(v) ∩ Σ(x)| = 2 or 3. Suppose |Σ(v) ∩ Σ(x)| = 3. Since Auv is transitive on Σ2(v) and
|Σ(v)∩Σ(x)| = 3, it follows that 6 = 3|Σ2(v)|, so |Σ2(v)| = 2. Let ∆ = {v}∪Σ2(v). Then any two vertices of ∆ are
non-adjacent, and every vertex of ∆ is adjacent to all vertices which are not in ∆, as Σ has diameter 2. Thus
∆ is a block of cardinality 3, and Σ(v) is another block. Hence Σ � K3,3, so Auv is transitive on Σ(v), which is a
contradiction. Suppose |Σ(v)∩Σ(x)| = 2. Since there are 6 edges between Σ(v) and Σ2(v) and Auv is transitive
on Σ2(v), it follows that 6 = 2|Σ2(v)|, so |Σ2(v)| = 3. Set Σ(v) = {w1,w2,w3} and Σ2(v) = {x1, x2, x3}. Let
Σ2(v)∩Σ(w1) = {x1, x2} and Σ(v)∩Σ(x1) = {w1,w2}. If Σ2(v)∩Σ(w1) = Σ2(v)∩Σ(w2), then Σ(v)∩Σ(x3) = {w3},
contradicting the fact that |Σ(v)∩Σ(x3)| = 2. Thus Σ2(v)∩Σ(w1) , Σ2(v)∩Σ(w2). Hence w2 is adjacent to x3.
In particular, Σ2(v) = Σ2(v) ∩ (Σ(w1) ∪ Σ(w2)). Since Σ has girth 4, it follows that x1 is not adjacent to any
vertex of {x2, x3}, so |Σ3(v) ∩ Σ(x1)| = 1, contradicting that Σ has diameter 2. Thus |Σ(v) ∩ Σ(x)| , 2, and so
the girth of Σ is not 4.

Therefore Σ has girth 3. Set Σ(v) = {v1, v2, v3}. Let (v, v1,w1) be a 2-geodesic and let (v, v1, v2) be a triangle.
Since Σ has valency 3 and Σ(v1) = {v, v2,w1}, v1 and v3 are not adjacent. Assume that v2, v3 are adjacent.
Then v2 is adjacent to both v1 and v3. Since Σ is vertex-transitive, some vertex of Σ(v1) is adjacent to the
remaining two vertices in Σ(v1). Since (v, v1,w1) is a 2-geodesic, v,w1 are not adjacent, it follows that v2 is
adjacent to both v and w1, so {v, v1, v3,w1} ⊆ Σ(v2), contradicting the fact that Σ has valency 3. Thus the arc
(v, v3) is not in any triangle. Hence |Σ2(v) ∩ Σ(v3)| = 2, and say Σ2(v) ∩ Σ(v3) = {w,w′}. In particular, every
vertex is in a unique triangle. Hence w and w′ are adjacent.

Suppose that |Σ(v) ∩ Σ(w)| = 1. Then Σ(v) ∩ Σ(w) = Σ(v) ∩ Σ(w′) = {v3}. Since Σ has diameter 2,
|Σ2(v) ∩ Σ(w)| = 2. Since v1 is in a unique triangle, w1, v2 are not adjacent. Set Σ2(v) ∩ Σ(v2) = {w2}. As v2 is
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not adjacent to any one of {w,w′}, w2 < {w,w′}, so Σ2(v) = {w1,w2,w,w′}. Since Auv is transitive on Σ2(v) and
|Σ2(v)∩Σ(w)| = 2, it follows that [Σ2(v)] is a vertex-transitive graph of valency 2, so [Σ2(v)] � C4. Hence the
vertex w1 is not in any triangle, which is a contradiction. Thus |Σ(v) ∩ Σ(w)| , 1.

Hence |Σ(v)∩Σ(w)| = 2. Since Auv is transitive on Σ2(v) and there are 4 edges between Σ(v) and Σ2(v), it
follows that Σ2(v) = {w,w′} and |Σ(v) ∩ Σ(w′)| = 2. Thus Σ is C6. It follows from Lemma 2.2 that Γ is J(5, 2)
or the icosahedron. The icosahedron is not neighbor cubic, so Γ is J(5, 2).

It follows from Lemmas 2.1 and 2.3 that Theorem 1.1 is true.

3. Proof of Theorem 1.2

In this section, we prove Theorem 1.2 by a series of lemmas.

Lemma 3.1. Let Γ be a tetravalent vertex-transitive graph. Let A := Aut(Γ) and u ∈ V(Γ). If Γ has girth 4 and Au
is transitive on Γ2(u), then either Γ is symmetric or |Γ(u) ∩ Γ(w)| , 3 for any w ∈ Γ2(u).

Proof. Suppose that Γ has girth 4 and Au is transitive on Γ2(u). Assume Γ is not a symmetric graph. Since
Γ has both valency and girth 4, |Γ2(u) ∩ Γ(v)| = 3 for each v ∈ Γ(u), so there are 12 edges between Γ(u) and
Γ2(u). Let (u, v,w) be a 2-geodesic. Assume that |Γ(u) ∩ Γ(w)| = 3. By the assumption, Au is transitive on
Γ2(u), so 12 = 3|Γ2(u)|, hence |Γ2(u)| = 4.

Set Γ(u) = {v1 = v, v2, v3, v4} and Γ2(u) = {w1 = w,w2,w3,w4}. Let Γ2(u) ∩ Γ(v1) = {w1,w2,w3} and
Γ(u) ∩ Γ(w1) = {v1, v2, v3}. If Γ2(u) ∩ Γ(v1) = Γ2(u) ∩ Γ(v2), then Γ(u) ∩ Γ(w4) ⊆ {v3, v4}, contradicting the fact
that |Γ(u)∩Γ(w4)| = 3. Thus Γ2(u)∩Γ(v1) , Γ2(u)∩Γ(v2). Hence v2 is adjacent to w4, and also adjacent to one
vertex of {w2,w3}, say w2. In particular, Γ2(u) = Γ2(u) ∩ (Γ(v1) ∪ Γ(v2)). Since Γ has girth 4, it follows that w1
is not adjacent to any vertex of Γ2(u) \ {w1}, so |Γ3(u)∩ Γ(w1)| = 1, say Γ3(u)∩ Γ(w1) = {z}. Then (v1,w1, z) and
(v2,w1, z) are 2-geodesics. Thus |Γ(v1) ∩ Γ(z)| = 3 = |Γ(v2) ∩ Γ(z)|, so Γ(z) = Γ2(u). Hence Γ � K5,5 − 5K2, and
A � S2 × S5. However Au � S4 is transitive on Γ(u), contradicting the assumption that Γ is not a symmetric
graph. Thus |Γ(u) ∩ Γ(w)| , 3.

A permutation group G on a set Ω is said to be 2-homogeneous, if G is transitive on the set of 2-subsets of
Ω.

Lemma 3.2. Let Γ be a tetravalent vertex-transitive but not arc-transitive graph. Let A := Aut(Γ) and u ∈ V(Γ).
Suppose that Au is transitive on Γ2(u). Then Γ has girth 3.

Proof. Suppose Γ has girth at least 5. Then for any x, y ∈ Γ(u), (Γ2(u) ∩ Γ(x)) ∩ (Γ2(u) ∩ Γ(y)) = ∅. Since Au is
transitive on Γ2(u), it follows that Au is transitive on Γ(u), contradicting that Γ is not arc-transitive. Thus Γ
has girth 3 or 4.

Assume that Γ has girth 4. Then |Γ(u)∩Γ(w)| = 2, 3 or 4, for any w ∈ Γ2(u). By Lemma 3.1, |Γ(u)∩Γ(w)| , 3.
Suppose that |Γ(u) ∩ Γ(w)| = 2. Since Γ is vertex-transitive and Au is transitive on Γ2(u), each 2-arc of Γ lies
in a unique 4-cycle. Thus, there is a 1-1 mapping between the unordered vertex pairs in Γ(u) and vertices
in Γ2(u). Again since Au is transitive on Γ2(u), it follows that Au is transitive on the set of unordered vertex
pairs in Γ(u). Hence Au is 2-homogeneous on Γ(u), so Au is transitive on Γ(u), contradicting that Γ is not
arc-transitive. Suppose |Γ(u) ∩ Γ(w)| = 4. Since Γ has girth 4, there are 12 edges between Γ(u) and Γ2(u). As
Au is transitive on Γ2(u), Γ has diameter 2 and |Γ2(u)| = 3. Let ∆ = {u} ∪ Γ2(u). Then any two vertices of ∆
are non-adjacent, and every vertex of ∆ is adjacent to all vertices which are not in ∆. By the structure of Γ,
∆ is a block of cardinality 4, and Γ(u) is another block. Thus Γ � K4,4. Hence Au is transitive on Γ(u), again
a contradiction. Therefore Γ has girth 3.

Lemma 3.3. Let Γ be a tetravalent vertex-transitive but not arc-transitive graph of diameter 2. Let A := Aut(Γ) and
u ∈ V(Γ). Suppose that Au is transitive on Γ2(u). Then |Γ(u) ∩ Γ(w)| , 4 for any w ∈ Γ2(u).
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Proof. Since Au is transitive on Γ2(u) but not on Γ(u), it follows from Lemma 3.2 that Γ has girth 3. If for any
v, v′ ∈ Γ(u) we have Γ2(u) ∩ Γ(v) ∩ Γ(v′) = ∅, then as Au is transitive on Γ2(u), Au is transitive on Γ(u), which
is a contradiction. Thus, there exist v, v′ ∈ Γ(u) such that Γ2(u) ∩ Γ(v) ∩ Γ(v′) , ∅. Set Γ(u) = {v1, v2, v3, v4}.
Suppose that Γ2(u)∩Γ(v1)∩Γ(v3) , ∅, and say w1 ∈ Γ2(u)∩Γ(v1)∩Γ(v3). Then |Γ(u)∩Γ(w1)| = 2, 3 or 4. Since
Au is transitive on Γ2(u), for any w ∈ Γ2(u), |Γ(u) ∩ Γ(w)| = 2, 3 or 4. In particular, |Γ(u) ∩ Γ(w)| divides the
number of edges between Γ(u) and Γ2(u).

Assume that |Γ(u) ∩ Γ(w)| = 4. If u lies in a unique triangle (u, v1, v2), then there are 10 edges between
Γ(u) and Γ2(u), however 4 does not divide 10, which is a contradiction. Assume that u is in two triangles.
Then there are 8 edges between Γ(u) and Γ2(u). Hence |Γ2(u)| = 2 and Γ has 7 vertices. Let ∆ = {u} ∪ Γ2(u).
Then any two vertices of ∆ are non-adjacent, and every vertex of ∆ is adjacent to all vertices which are not
in ∆. Since Γ is vertex-transitive, ∆ is a block of cardinality 3. However, 3 does not divide 7, so such a Γ
does not exist. Assume that u lies in more than two triangles. Then there are x ≤ 6 edges between Γ(u)
and Γ2(u). Since 4 divides x, x = 4, so |Γ2(u)| = 1, Γ has 6 vertices. Let ∆ = {u} ∪ Γ2(u). Then any two
vertices of ∆ are non-adjacent, and every vertex of ∆ is adjacent to all vertices which are not in ∆. Since Γ is
vertex-transitive, ∆ is a block of cardinality 2. In particular, Γ(u) contains two such blocks ∆′ and ∆′′, and
[∆′ ∪ ∆′′] � C4. Thus Γ � K3[2]. However Au is transitive on Γ(u), contradicting that Γ is not arc-transitive.
Hence |Γ(u) ∩ Γ(w)| , 4.

Let Γ1,Γ2 be two graphs. We use Γ1�Γ2 to denote the Cartesian product of Γ1 and Γ2, its vertex set is
V(Γ1) × V(Γ2), two vertices (u1,u2) and (v1, v2) are adjacent if and only if u2 = v2 and u1, v1 are adjacent in
Γ1, or u1 = v1 and u2, v2 are adjacent in Γ2.

Now we can prove the second theorem.

Proof of Theorem 1.2. Let Γ be a 2-geodesic-transitive neighbor tetravalent graph. Let (u, v) be an arc and
A = Aut(Γ). Since Σ := [Γ(u)] is not an empty graph, Γ has girth 3. Since Γ is 2-geodesic-transitive, it follows
from Theorem 1.1 (1) of [4] that Σ has diameter 2 and Auv is transitive on Σ2(v).

Suppose first that Σ is arc-transitive. Then Σ is distance-transitive, and it is listed in [3, p.221-223]. By
inspecting the candidates, Σ is either K3[2] or H(2, 3). If Σ is K3[2], then Γ is K4[2]. If Σ is H(2, 3), then Γ is
J(6, 3).

In the remaining, we suppose that Σ is not arc-transitive. Since Auv is transitive on Σ2(v), it follows
from Lemma 3.2 that Σ has girth 3. If for any v′, v′′ ∈ Σ(v) we have Σ2(v) ∩ Σ(v′) ∩ Σ(v′′) = ∅, then as Auv
is transitive on Σ2(v), Auv is transitive on Σ(v), which is a contradiction. Thus, there exist v′, v′′ ∈ Σ(v) such
that Σ2(v) ∩ Σ(v′) ∩ Σ(v′′) , ∅. Set Σ(v) = {v1, v2, v3, v4}. Suppose that Σ2(v) ∩ Σ(v1) ∩ Σ(v3) , ∅, and say
w1 ∈ Σ2(v) ∩ Σ(v1) ∩ Σ(v3). Then |Σ(v) ∩ Σ(w1)| = 2, 3 or 4. Since Auv is transitive on Σ2(v), for any δ ∈ Σ2(v),
|Σ(v) ∩ Σ(δ)| = 2, 3 or 4. It follows from Lemma 3.3 that |Σ(v) ∩ Σ(δ)| , 4. In particular, |Σ(v) ∩ Σ(δ)| divides
the number of edges between Σ(v) and Σ2(v).

Assume that |Σ(v) ∩ Σ(δ)| = 3. If v lies in one or two triangles, then there are 10 or 8 edges between Σ(v)
and Σ2(v), respectively. However 3 does not divide 8 or 10, which is a contradiction. Hence v lies in more
than two triangles. Then there are x ≤ 6 edges between Σ(v) and Σ2(v). Since 3 divides x, x = 3 or 6, so
|Σ2(v)| = 1 or 2. Assume |Σ2(v)| = 1, say Σ2(v) = {w}. Then |Σ3(v) ∩ Σ(w)| = 1, contradicting the fact that Σ

has diameter 2. Hence |Σ2(v)| = 2, say Σ2(v) = {w,w′}. Since Σ has diameter 2, |Σ2(v) ∩ Σ(w)| = 1. Thus Σ is
a vertex-transitive graph of valency 2 with 7 vertices, so Σ � C7. Thus Σ � C7. By Lemma 2.2, Γ does not
exist.

Now assume that |Σ(v)∩Σ(δ)| = 2. Since Σ has diameter 2, it follows that |Σ2(v)∩Σ(δ)| = 2. Thus [Σ2(v)]
is a vertex-transitive graph of valency 2. If v lies in r triangles for some r ≥ 1, then there are 12 − 2r edges
between Σ(v) and Σ2(v). Since Auv is transitive on Σ2(v), |Σ(v) ∩ Σ(δ)| divides 12 − 2r. It follows that r ≤ 5.
Since |Σ2(v) ∩ Σ(δ)| = 2, it follows that |Σ2(v)| ≥ 3, and so there are at least 6 edges between Σ(v) and Σ2(v).
Hence 12 − 2r ≥ 6, so r = 1, 2 or 3.

If r = 1, then there are 10 edges between Σ(v) and Σ2(v). Since |Σ(v)∩Σ(δ)| = 2 for any δ ∈ Σ2(v), one has
|Σ2(v)| = 5. Assume that (v, v1, v2) is a triangle. Then v3 is not adjacent to v4. So, Auv fixes {v1, v2} and {v3, v4}

setwise, respectively. Therefore, Auv fixes Σ2(v) ∩ (Σ(v1) ∪ Σ(v2)) setwise. As |Σ2(v) ∩ (Σ(v1) ∪ Σ(v2))| ≤ 4, it
follows that Σ2(v) ∩ (Σ(v1) ∪ Σ(v2)) ⊂ Σ2(v), contradicting the fact that Auv is transitive on Σ2(v).
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If r = 2, then there are 8 edges between Σ(v) and Σ2(v). Further, |Σ2(v)| = 4, so [Σ2(v)] � C4. Set
Σ(v) = {v1, v2, v3, v4}. Then |Σ(v) ∩ Σ(vi)| = 1 or 2. If |Σ(v) ∩ Σ(vi)| = 1 for each vi, then [Σ(v)] � 2K2. Hence
each arc lies in a unique triangle. Let (v1, v2) and (v3, v4) be two arcs. Let Σ2(v) ∩ Σ(v1) = {w1,w2}. Since
[Σ(v1)] � 2K2, (w1,w2) is an arc and v2 is not adjacent to any one of {w1,w2}. Set Σ2(v) ∩ Σ(v2) = {w3,w4}.
Since [Σ(v2)] � 2K2, (w3,w4) is an arc. Since [Σ2(v)] � C4, it follows that (w1,w2,w3,w4) is a 4-cycle. Since
|Σ(v) ∩ Σ(w1)| = 2 and each arc lies in a unique triangle, w1 is adjacent to one of v3, v4, say v3. Then
Σ(w1) = {v1, v3,w2,w4}. Since [Σ(w1)] � 2K2, it follows that v3,w4 are adjacent. Hence v4 is adjacent to both
w2 and w3. Thus Σ is isomorphic to the Hamming graph H(2, 3). However H(2, 3) is arc-transitive, which
is a contradiction. Thus there exists vi such that |Σ(v) ∩ Σ(vi)| = 2. Without loss of generality, let vi = v1 and
let Σ(v)∩Σ(v1) = {v2, v3}. Then |Σ2(v)∩Σ(v1)| = 1, and say Σ2(v)∩Σ(v1) = {w1}. Since u lies in 2 triangles, v1
is the unique vertex of Σ(v) such that |Σ(v) ∩ Σ(v1)| = 2. Thus Auv can not map w1 to other vertices of Σ2(v),
contradicting the fact that Auv is transitive on Σ2(v). Hence r , 2.

Finally, assume r = 3. Then there are 6 edges between Σ(v) and Σ2(v). Further, |Σ2(v)| = 3, so [Σ2(v)] � C3.
Set Σ(v) = {v1, v2, v3, v4}. Then for any vi, |Σ(v) ∩ Σ(vi)| ≤ 3. Since v is in 3 triangles, there exist at most
one vertex vi such that |Σ(v) ∩ Σ(vi)| = 3. Assume there exists a vertex, v1, such that |Σ(v) ∩ Σ(v1)| = 3.
Then Σ(v) ∩ Σ(v1) = {v2, v3, v4}, and vertices of {v2, v3, v4} are pairwise non-adjacent. Hence Σ(v2) = {v, v1} ∪

(Σ2(v) ∩ Σ(v2)). Since there are no edges between sets {v, v1} and Σ2(v) ∩ Σ(v2), it follows that for any
ϕ ∈ Σ(v2), |Σ(v2) ∩ Σ(ϕ)| < 3, so [Σ(v)] � [Σ(v2)]. Thus A can not map v to v2, contradicting that Σ is
vertex-transitive. Hence |Σ(v) ∩ Σ(vi)| ≤ 2. If for any vi, |Σ(v) ∩ Σ(vi)| ≥ 1, then |Σ2(v) ∩ Σ(vi)| = 1 or 2. Since
there are 6 edges between Σ(v) and Σ2(v), there exists vi such that |Σ2(v) ∩ Σ(vi)| = 1. Assume that there are
x vertices in Σ(v) that are adjacent to exactly one vertex of Σ2(v). Then counting the edges between Σ(v)
and Σ2(v), x + 2(4 − x) = 6, so x = 2. Suppose |Σ2(v) ∩ Σ(v1)| = |Σ2(v) ∩ Σ(v2)| = 1, say Σ2(v) ∩ Σ(v1) = {w1}

and Σ2(v) ∩ Σ(v2) = {w2}. Then Auv can not map w3 to any one of w1,w2, contradicting the fact that Auv
is transitive on Σ2(v). Thus there exists a vertex vi such that |Σ(v) ∩ Σ(vi)| = 0. Since v is in 3 triangles,
[Σ(v) \ {vi}] � C3. Further Σ2(v) ∩ Σ(vi) = Σ2(v), and there are 3 edges between Σ(v) \ {vi} and Σ2(v). Hence
for each v j ∈ Σ(v) \ {vi}, |Σ2(v)∩Σ(v j)| = 1. Therefore Σ � K4�K2. Then by [3, Theorem 9.1.3], Γ is J(6, 2).
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