Two-Geodesic-Transitive Graphs Which are Neighbor Cubic or Neighbor Tetravalent

Wei Jina,b, Li Tana,b

aSchool of Statistics, Jiangxi University of Finance and Economics, Nanchang, Jiangxi, 330013, P.R.China
bResearch Center of Applied Statistics, Jiangxi University of Finance and Economics, Nanchang, Jiangxi, 330013, P.R.China

Abstract. A vertex triple \((u, v, w)\) with \(v\) adjacent to both \(u\) and \(w\) is called a 2-geodesic if \(u \neq w\) and \(u, w\) are not adjacent. A graph \(\Gamma\) is said to be 2-geodesic-transitive if its automorphism group is transitive on both arcs and 2-geodesics. In this paper, a complete classification of 2-geodesic-transitive graphs is given which are neighbor cubic or neighbor tetravalent.

1. Introduction

In this paper, all graphs are finite, simple, connected and undirected. For a graph \(\Gamma\), we use \(V(\Gamma)\) and \(\text{Aut}(\Gamma)\) to denote its vertex set and automorphism group, respectively. For the group theoretic terminology not defined here we refer the reader to [2, 8, 22]. In a non-complete graph \(\Gamma\), a vertex triple \((u, v, w)\) with \(v\) adjacent to both \(u\) and \(w\) is called a 2-geodesic if \(u \neq w\) and in addition \(u, w\) are not adjacent. An arc is an ordered pair of adjacent vertices. The graph \(\Gamma\) is said to be 2-geodesic-transitive if its automorphism group \(\text{Aut}(\Gamma)\) is transitive on both arcs and 2-geodesics. The family of 2-geodesic-transitive graphs is closely related to the well-known family of 2-arc-transitive graphs. A vertex triple \((u, v, w)\) with \(v\) adjacent to both \(u\) and \(w\) is called a 2-arc if \(u \neq w\) and \(u, w\) are not adjacent. The graph \(\Gamma\) is said to be 2-arc-transitive if its automorphism group \(\text{Aut}(\Gamma)\) is transitive on both arcs and 2-arcs. Clearly, each 2-geodesic is a 2-arc, but some 2-arcs may not be 2-geodesics. If \(\Gamma\) has girth 3 (length of the shortest cycle is 3), then the 2-arcs contained in 3-cycles are not 2-geodesics. For instance, the complete multipartite graph \(K_{3[3]}\) is 2-geodesic-transitive neighbor cubic but not 2-arc-transitive. Thus the family of non-complete 2-arc-transitive graphs is properly contained in the family of 2-geodesic-transitive graphs.

The local structure of the family of 2-geodesic-transitive graphs was determined in [4]. In [5], Devillers, Li, Praeger and the author classified 2-geodesic-transitive graphs of valency 4. Later, in [6], a reduction theorem for the family of normal 2-geodesic-transitive Cayley graphs was produced and those which are complete multipartite graphs were also classified. The family of 2-geodesic-transitive but not 2-arc-transitive graphs with prime valency was precisely determined in [7].
For a subset U of the vertex set of Γ, we denote by $[U]$ the subgraph of Γ induced by U, and $[\Gamma(u)]$ is the subgraph induced by the neighborhood of the vertex u. Devillers, Li, Praeger and the author in [4, Theorem 1] proved that if Γ is a 2-geodesic-transitive graph of valency at least 2, then for each vertex u, either

1. $[\Gamma(u)]$ is connected of diameter 2; or
2. $[\Gamma(u)] \cong nK_r$, for some integers $m \geq 2, r \geq 1$.

Further, Theorem 1.4 of [4] shows that there is a bijection between the family of graphs in case (2) and a certain family of partial linear spaces. In particular, if $r = 1$, then Γ is 2-arc-transitive. The first remarkable result about 2-arc-transitive graphs comes from Tutte [19, 20], and this family of graphs has been studied extensively, see [1, 9, 10, 12, 15–18, 21]. The graphs in case (1) were investigated in [14]; and in [13], the author completely determined such graphs with valency twice a prime. In this paper, we continue the investigation of the graphs in case (1).

A connected graph is said to be neighbor cubic or neighbor tetravalent if its local subgraph is connected of valency 3 or 4, respectively. For a graph Γ, its complement $\bar{\Gamma}$ is the graph with vertex set $V(\Gamma)$, and two vertices are adjacent if and only if they are not adjacent in Γ.

Let Γ be a 2-geodesic-transitive graph. Let $u \in V(\Gamma)$. Suppose that $[\Gamma(u)]$ is connected of valency 2. Then Γ is either the octahedron or the icosahedron, see [5, Corollary 1.4]. Thus the next natural problem is to classify the family of 2-geodesic-transitive graphs whose neighbor subgraph is connected of valency 3. Our first theorem precisely determines such graphs.

Theorem 1.1. Let Γ be a 2-geodesic-transitive neighbor cubic graph. Then Γ is one of the following graphs: $K_{3[3]}$, $J(5, 2)$, complement of the triangular graph $T(7)$, the Conway-Smith graph, or the Hall graph.

We denote by $K_{m[n]}$ the complete multipartite graph with m parts, and each part has b vertices where $m \geq 3, b \geq 2$. Let $\Omega = [1, n]$ where $n \geq 3$, and let $1 \leq k \leq \lfloor \frac{n}{3} \rfloor$ where $\lfloor \frac{n}{3} \rfloor$ is the integer part of $\frac{n}{3}$. Then the Johnson graph $J(n, k)$ is the graph whose vertex set is the set of all k-subsets of Ω, and two k-subsets u and v are adjacent if and only if $|u \cap v| = k - 1$.

The second theorem determines the family of 2-geodesic-transitive graphs whose neighbor subgraph is connected of valency 4.

Theorem 1.2. Let Γ be a 2-geodesic-transitive neighbor tetravalent graph. Then Γ is one of the following three graphs: $J(6, 2)$, $J(6, 3)$ or $K_{4[2]}$.

2. Proof of Theorem 1.1

The first lemma determines the family of 2-geodesic-transitive neighbor cubic graphs whose local subgraph is symmetric.

Lemma 2.1. Let Γ be a 2-geodesic-transitive neighbor cubic graph. Suppose that $[\Gamma(u)]$ is arc-transitive for some $u \in V(\Gamma)$. Then Γ is one of the following graphs: $K_{3[3]}$, complement of the triangular graph $T(7)$, the Conway-Smith graph, or the Hall graph.

Proof. Let (u, v) be an arc and $A = \text{Aut}(\Gamma)$. Since $\Sigma := [\Gamma(u)]$ is not an empty graph, Γ has girth 3. Further, the graph Γ is 2-geodesic-transitive, so it follows from Theorem 1.1 (1) of [4] that Σ has diameter 2 and the arc stabilizer A_{uv} is transitive on $\Sigma_2(v)$. Since Σ is arc-transitive, Σ is distance-transitive, and it is listed in [3, p.221-223]. Thus by inspecting the candidates, Σ is either the complete bipartite graph $K_{3,3}$ or the Petersen graph O_3. If $\Sigma = K_{3,3}$, then Γ is $K_{3[3]}$. If $\Sigma = O_3$, then by [11, Theorem 1.1], Γ is the Conway-Smith graph, the Hall graph, or the complement of the triangular graph $T(7)$. \square

Let $u, v \in V(\Gamma)$. Then the distance between u, v in Γ is denoted by $d_\Gamma(u, v)$. A graph Γ is said to be 2-distance-transitive if, for $i = 1, 2$ and for any two vertex pairs (u_1, v_1) and (u_2, v_2) with $d_\Gamma(u_1, v_1) = d_\Gamma(u_2, v_2) = i$, there exists $g \in \text{Aut}(\Gamma)$ such that $(u_1, v_1)^g = (u_2, v_2)$. By the definition, every 2-geodesic-transitive graph is 2-distance-transitive.
Lemma 2.2. Let Γ be a 2-distance-transitive graph. If $[\Gamma(u)] \cong C_n$ for some $u \in V(\Gamma)$ and $n \geq 5$, then Γ is either $I(5,2)$ or the icoshedron.

Proof. Let $\Sigma := [\Gamma(u)]$. Suppose $\Sigma \cong C_n$ where $n \geq 5$. If Σ is arc-transitive, then $n = 5$ and $\Sigma \cong C_5$. By [5, Corollary 1.4], Γ is the icoshedron. In the remaining of this proof, we assume that Σ is not arc-transitive. Hence $n \geq 6$ and Γ has diameter 2.

Let $v \in V(\Sigma)$. Then for any $v' \in \Sigma_2(v)$, $|\Sigma(v) \cap \Sigma(v')| = n - 4$. Since $u \in \Gamma(v) \cap \Gamma(v')$, it follows that $n - 3 \leq |\Gamma(v) \cap \Gamma(v')|$. Since $|\Sigma_2(v) \cap \Sigma(v')| = 1$, it follows that $|\Gamma(v) \cap \Gamma(v')| \leq n - 1$, so $|\Gamma(v) \cap \Gamma(v')| = n - 3, n - 2$ or $n - 1$.

As $\Sigma \cong C_n$, the valency of Σ is $n - 3$, so $|\Gamma(u) \cap \Gamma(v)| = n - 3$. Thus $|\Gamma(v) \cap \Gamma(v')| = n - 2$, so $|\Gamma_2(v) \cap \Gamma(u)| = 2$, as Γ is arc-transitive. Hence there are 2n edges between $\Gamma(v)$ and $\Gamma_2(v)$. By the assumption Γ is 2-distance-transitive, the value $|\Gamma(v) \cap \Gamma(v')|$ divides $2n$. Since $|\Gamma(v) \cap \Gamma(v')| < n$, it follows that $2|\Gamma(v) \cap \Gamma(v')| < 2n$, so $3|\Gamma(v) \cap \Gamma(v')| \leq 2n$. If $|\Gamma(v) \cap \Gamma(v')| = n - 3$, then $n = 6$ or 9. If $|\Gamma(v) \cap \Gamma(v')| = n - 2$, then $n = 6$. If $|\Gamma(v) \cap \Gamma(v')| = n - 1$, then $n = 5$. By [3, p.224], $n \neq 9$. Thus $n = 6$.

Set $\Gamma(v) = \{v_1,v_2,v_3,v_4,v_5,v_6\}$. Let (v_1,v_2,v_3) and (v_4,v_5,v_6) be two triangles and let $(v_1,v_6),(v_2,v_3)$ and (v_5,v_4) be three arcs. Then $|\Gamma_2(u) \cap \Gamma_2(v)| = 2$, say $\Gamma_2(u) \cap \Gamma_2(v) = \{w_1,w_2\}$. Hence $\Gamma_2(v) = \{u,v_2,v_3,v_6,w_1,w_2\}$.

Since $|\Gamma(v)| \cong C_6$, (u,v_2,v_3) is a triangle and neither v_2 nor v_3 is adjacent to v_6, it follows that (v_6,w_1,w_2) is a triangle, v_2 is adjacent to exactly one of w_1,w_2, say w_1, and v_3 is adjacent to w_2. Set $\Gamma_2(u) \cap \Gamma_2(v) = \{w_1,w_2\}$. Then $\Gamma(v_2) = \{u,v_1,v_3,v_5,w_1,w_2\}$.

Since $|\Gamma(v)| \cong C_6$, it follows that (v_2,w_1,w_2) is a triangle. Thus $\Gamma(u) \cap \Gamma(v_2) = \{v_1,v_2,v_5,v_6\}$ and $\Gamma_2(u) \cap \Gamma_2(v_2) = \{w_2,w_3\}$. Since Γ is 2-distance-transitive, Γ has diameter 2 and is distance-transitive. By inspecting the graphs in [3, p.223], $\Gamma \cong J(5,2)$.

Lemma 2.3. Let Γ be a 2-geodesic-transitive neighbor cubic graph. If $[\Gamma(u)]$ is not arc-transitive for some $u \in V(\Gamma)$, then Γ is $J(5,2)$.

Proof. Suppose that $\Sigma := [\Gamma(u)]$ is not arc-transitive. Let (u,v) be an arc and $A = \text{Aut}(\Gamma)$. Since Σ is not an empty graph, Γ has girth 3. Since Γ is 2-geodesic-transitive, it follows from Theorem 1.1 (1) of [4] that Σ has diameter 2 and A_{arc} is transitive on $\Sigma_2(v)$.

If Σ has girth at least 5, then for any $x,y \in \Sigma(v)$, $(\Sigma_2(v) \cap \Sigma(x)) \cap (\Sigma_2(v) \cap \Sigma(y)) = \emptyset$. Since A_{arc} is transitive on $\Sigma(v)$, it follows that A_{arc} is transitive on $\Sigma(v)$, contradicting that Σ is not arc-transitive. Thus Σ has girth 3 or 4.

Suppose Σ has girth 4. Then there are 6 edges between $\Sigma(v)$ and $\Sigma_2(v)$, as Σ has valency 3. Further, for any $x \in \Sigma_2(v)$, $|\Sigma(v) \cap \Sigma(x)| = 2$ or 3. Suppose $|\Sigma(v) \cap \Sigma(x)| = 3$. Since A_{arc} is transitive on $\Sigma_2(v)$ and $|\Sigma(v) \cap \Sigma(x)| = 3$, it follows that $\Sigma_2(v) \cap \Sigma_2(x) = \emptyset$. Any two vertices of Δ are non-adjacent, and every vertex of Δ is adjacent to all vertices which are not in Δ, as Σ has diameter 2. Thus Δ is a block of cardinality 3, and $\Sigma(v)$ is another block. Hence $\Sigma \cong K_{3,3}$, so A_{arc} is transitive on $\Sigma(v)$, which is a contradiction. Suppose $|\Sigma(v) \cap \Sigma(x)| = 2$. Then there are at least two edges between $\Sigma(v)$ and $\Sigma_2(v)$ and A_{arc} is transitive on $\Sigma(v)$, it follows that $\Sigma_2(v) \cap \Sigma_2(x) = \emptyset$. Set $\Sigma(v) = \{v_1,v_2,w_1\}$ and $\Sigma_2(v) = \{x_1,x_2,x_3\}$. Let $\Sigma_2(v) \cap \Sigma_1(x) = \{x_1,x_2\}$ and $\Sigma(v) \cap \Sigma(x) = \{w_1,w_2\}$. If $\Sigma_2(v) \cap \Sigma_1(x) = \{x_1,x_2\}$, then $\Sigma(v) \cap \Sigma(x) = \{w_1\}$, contradicting the fact that $|\Sigma(v) \cap \Sigma(x)| = 2$. Thus $\Sigma_2(v) \cap \Sigma_1(x) = \emptyset$. Hence $\Sigma_2(v)$ is adjacent to x_3.

In particular, $\Sigma_2(v) = \{v_1,v_2,(\Sigma_2(w_1) \cup \Sigma_2(w_2))\}$. Since Σ has girth 4, it follows that x_1 is not adjacent to any vertex of $\{x_2,x_3\}$, so $\Sigma_2(v) \cap \Sigma_1(x) = \emptyset$, contradicting that Σ has diameter 2. Thus $|\Sigma(v) \cap \Sigma(x)| = 2$, and so the girth of Σ is not 4.

Therefore Σ has girth 3. Set $\Sigma(v) = \{v_1,v_2,v_3\}$. Let (v,v_1,w_1) be a 2-geodesic and let (v_1,v_3,w_2) be a triangle. Set $\Sigma(v) = \{v_1,v_2,v_3\}$ and (v_1,v_3,w_2) are not adjacent. Assume that v_2,v_3 are adjacent. Then v_2 is adjacent to both v_1 and v_3. Since Σ is vertex-transitive, some vertex of $\Sigma(v_1)$ is adjacent to the remaining two vertices in $\Sigma(v)$. Since (v,v_1,w_1) is a 2-geodesic, v,v_1 are not adjacent, it follows that v_2 is adjacent to both v and w_1, so $\{v,v_1,v_2,w_1\} \not\subseteq \Sigma(v_1)$, contradicting the fact that Σ has valency 3. Thus the arc (v,v_2) is not in any triangle. Hence $|\Sigma_2(v) \cap \Sigma_2(v)| = 2$, and say $\Sigma_2(v) \cap \Sigma_2(v) = \{w,w'\}$. In particular, every vertex is in a unique triangle. Hence w and w' are adjacent.

Suppose that $|\Sigma(v) \cap \Sigma(w)| = 1$. Then $\Sigma(v) \cap \Sigma(w) = \Sigma(v) \cap \Sigma(w') = \{v_3\}$. Since Σ has diameter 2, $|\Sigma_2(v) \cap \Sigma_2(w)| = 2$. Since v_1 is in a unique triangle, w_1,w_2 are not adjacent. Set $\Sigma_2(v) \cap \Sigma_2(v) = \{w_2\}$. As v_2 is
not adjacent to any one of \(|w, w'|, w_2 \notin \{w, w'\}\). Since \(A_w\) is transitive on \(\Sigma_2(v)\) and \(|\Sigma_2(v) \cap \Sigma(w)| = 2\), it follows that \(\Sigma_2(v)\) is a vertex-transitive graph of valency 2, so \(\Sigma_2(v) \cong C_4\). Hence the vertex \(w_1\) is not in any triangle, which is a contradiction. Thus \(|\Sigma(v) \cap \Sigma(w)| = 1\).

Hence \(|\Sigma(v) \cap \Sigma(w)| = 2\). Since \(A_w\) is transitive on \(\Sigma_2(v)\) and there are 4 edges between \(\Sigma(v)\) and \(\Sigma_2(v)\), it follows that \(\Sigma_2(v) = \{w, w'|\} \) and \(|\Sigma(v) \cap \Sigma(w')| = 2\). Thus \(\Sigma \cong \overline{C_6}\). It follows from Lemma 2.2 that \(\Gamma\) is \(J(5, 2)\) or the icosahedron. The icosahedron is not neighbor cubic, so \(\Gamma\) is \(J(5, 2)\) .

It follows from Lemmas 2.1 and 2.3 that Theorem 1.1 is true.

3. Proof of Theorem 1.2

In this section, we prove Theorem 1.2 by a series of lemmas.

Lemma 3.1. Let \(\Gamma\) be a tetravalent vertex-transitive graph. Let \(A := \text{Aut}(\Gamma)\) and \(u \in V(\Gamma)\). If \(\Gamma\) has girth 4 and \(A_u\) is transitive on \(\Gamma_2(u)\), then either \(\Gamma\) is symmetric or \(|\Gamma(u) \cap \Gamma(w)| \neq 3\) for any \(w \in \Gamma_2(u)\).

Proof. Suppose that \(\Gamma\) has girth 4 and \(A_u\) is transitive on \(\Gamma_2(u)\). Assume \(\Gamma\) is not a symmetric graph. Since \(\Gamma\) has both valency and girth 4, \(|\Gamma_2(u) \cap \Gamma(v)| = 3\) for each \(v \in \Gamma(u)\), so there are 12 edges between \(\Gamma(u)\) and \(\Gamma_2(u)\). Let \((u, v, w)\) be a 2-geodesic. Assume that \(|\Gamma(u) \cap \Gamma(w)| = 3\). By the assumption, \(A_u\) is transitive on \(\Gamma_2(u)\), so 12 \(3|\Gamma_2(u)|\), hence \(|\Gamma_2(u)| = 4\).

Set \(\Gamma(u) = \{v_1 = v, v_2, v_3, v_4\}\) and \(\Gamma_2(u) = \{w_1 = w, w_2, w_3, w_4\}\). Let \(\Gamma_2(u) \cap \Gamma(v_1) = \{w_1, w_2, w_3\}\) and \(\Gamma_2(u) \cap \Gamma(v_1) = \{w_1, w_2, w_3\}\). Let \(\Gamma_2(u) \cap \Gamma(v_1) = \{w_1, w_2, w_3\}\). Since \(\Gamma\) has girth 4, it follows that \(w_1\) is not adjacent to any vertex of \(\Gamma_2(u) \setminus \{w_1\}\), so \(|\Gamma_3(u) \cap \Gamma(v_1)| = 1\), say \(|\Gamma_3(u) \cap \Gamma(v_1) = \{z\}\). Then \((v_1, w_1, z)\) and \((v_2, w_1, z)\) are 2-geodesics. Thus \(|\Gamma(v_1) \cap \Gamma(z)| = 3 = |\Gamma(v_2) \cap \Gamma(z)|\), so \(\Gamma(z) = \Gamma_2(u)\). Hence \(\Gamma \cong K_{5.5} - K_2\), and \(A \cong S_2 \times S_5\). However \(A_u \cong S_3\) is transitive on \(\Gamma(u)\), contradicting the assumption that \(\Gamma\) is not a symmetric graph. Thus \(|\Gamma(u) \cap \Gamma(w)| \neq 3\).

A permutation group \(G\) on a set \(\Omega\) is said to be 2-homogeneous, if \(G\) is transitive on the set of 2-subsets of \(\Omega\).

Lemma 3.2. Let \(\Gamma\) be a tetravalent vertex-transitive but not arc-transitive graph. Let \(A := \text{Aut}(\Gamma)\) and \(u \in V(\Gamma)\). Suppose that \(A_u\) is transitive on \(\Gamma_2(u)\). Then \(\Gamma\) has girth 3.

Proof. Suppose \(\Gamma\) has girth at least 5. Then for any \(x, y \in \Gamma(u), (\Gamma_2(u) \cap \Gamma(x)) \cap (\Gamma_2(u) \cap \Gamma(y)) = \emptyset\). Since \(A_u\) is transitive on \(\Gamma_2(u)\), it follows that \(A_u\) is transitive on \(\Gamma(u)\), contradicting that \(\Gamma\) is not arc-transitive. Thus \(\Gamma\) has girth 3 or 4.

Assume that \(\Gamma\) has girth 4. Then \(|\Gamma(u) \cap \Gamma(w)| = 2, 3\) or 4, for any \(w \in \Gamma_2(u)\). By Lemma 3.1, \(|\Gamma(u) \cap \Gamma(w)| \neq 3\). Suppose that \(|\Gamma(u) \cap \Gamma(w)| = 2\). Since \(\Gamma\) is vertex-transitive and \(A_u\) is transitive on \(\Gamma_2(u)\), each 2-arc of \(\Gamma\) lies in a unique 4-cycle. Thus, there is a 1-1 mapping between the unordered vertex pairs in \(\Gamma(u)\) and vertices in \(\Gamma_2(u)\). Again since \(A_u\) is transitive on \(\Gamma_2(u)\), it follows that \(A_u\) is transitive on the set of unordered vertex pairs in \(\Gamma(u)\). Hence \(A_u\) is 2-homogeneous on \(\Gamma(u)\), so \(A_u\) is transitive on \(\Gamma(u)\), contradicting that \(\Gamma\) is not arc-transitive. Suppose \(|\Gamma(u) \cap \Gamma(w)| = 4\). Since \(\Gamma\) has girth 4, there are 12 edges between \(\Gamma(u)\) and \(\Gamma_2(u)\). As \(A_u\) is transitive on \(\Gamma_2(u)\), \(\Gamma\) has diameter 2 and \(|\Gamma_2(u)| = 3\). Let \(\Delta = \{u\} \cup \Gamma_2(u)\). Then any two vertices of \(\Delta\) are non-adjacent, and every vertex of \(\Delta\) is adjacent to all vertices which are not in \(\Delta\). By the structure of \(\Gamma\), \(\Delta\) is a block of cardinality 4, and \(\Gamma(u)\) is another block. Thus \(\Gamma \cong K_{4.4}\). Hence \(A_u\) is transitive on \(\Gamma(u)\), again a contradiction. Therefore \(\Gamma\) has girth 3.

Lemma 3.3. Let \(\Gamma\) be a tetravalent vertex-transitive but not arc-transitive graph of diameter 2. Let \(A := \text{Aut}(\Gamma)\) and \(u \in V(\Gamma)\). Suppose that \(A_u\) is transitive on \(\Gamma_2(u)\). Then \(|\Gamma(u) \cap \Gamma(w)| \neq 4\) for any \(w \in \Gamma_2(u)\).
Proof. Since A_u is transitive on $\Gamma_2(u)$ but not on $\Gamma(u)$, it follows from Lemma 3.2 that Γ has girth 3. If for any $v, v' \in \Gamma(u)$ we have $\Gamma_2(u) \cap \Gamma(v) \cap \Gamma(v') = \emptyset$, then as A_2 is transitive on $\Gamma_2(u)$, A_u is transitive on $\Gamma(u)$, which is a contradiction. Thus, there exist $v, v' \in \Gamma(u)$ such that $\Gamma_2(u) \cap \Gamma(v) \cap \Gamma(v') \neq \emptyset$. Set $\Gamma(u) = \{v_1, v_2, v_3, v_4\}$. Suppose that $\Gamma_2(u) \cap \Gamma(v_1) \cap \Gamma(v_2) \neq \emptyset$, and say $w_1 \in \Gamma_2(u) \cap \Gamma(v_1) \cap \Gamma(v_3)$. Then $\Gamma'(u) \cap \Gamma(w_i) = 2, 3$ or 4. Since A_u is transitive on $\Gamma_2(u)$, for any $w \in \Gamma_2(u)$, $\Gamma(u) \cap \Gamma(w) = 2, 3$ or 4. In particular, $\Gamma'(u) \cap \Gamma(w)$ divides the number of edges between $\Gamma(u)$ and $\Gamma_2(u)$.

Assume that $\Gamma'(u) \cap \Gamma(w) = 4$. If u lies in a unique triangle (u, v_1, v_2), then there are 10 edges between $\Gamma(u)$ and $\Gamma_2(u)$, however 4 does not divide 10, which is a contradiction. Assume that u is in two triangles. Then there are 8 edges between $\Gamma(u)$ and $\Gamma_1(u)$. Hence $\Gamma_2(u) = 2$ and Γ has 7 vertices. Let $\Delta = \{u\} \cup \Gamma_2(u)$. Then any two vertices of Δ are non-adjacent, and every vertex of Δ is adjacent to all vertices which are not in Δ. Since Γ is vertex-transitive, Δ is a block of cardinality 3. However, 3 does not divide 7, so such a Δ does not exist. Assume that u lies in more than two triangles. Then there are $x \leq 6$ edges between $\Gamma(u)$ and $\Gamma_2(u)$. Since 4 divides x, $x = 4$, so $|\Gamma_2(u)| = 1$, Γ has 6 vertices. Let $\Delta = \{u\} \cup \Gamma_2(u)$. Then any two vertices of Δ are non-adjacent, and every vertex of Δ is adjacent to all vertices which are not in Δ. Since Γ is vertex-transitive, Δ is a block of cardinality 2. In particular, $\Gamma(u)$ contains two such blocks Δ' and Δ'', and $[\Delta' \cup \Delta''] \cong C_4$. Thus $\Gamma \cong K_{3,3}$. However A_u is transitive on $\Gamma(u)$, contradicting that Γ is not arc-transitive. Hence $\Gamma'(u) \cap \Gamma(w) = 4$.\]

Let Γ_1, Γ_2 be two graphs. We use $\Gamma_1 \square \Gamma_2$ to denote the Cartesian product of Γ_1 and Γ_2, its vertex set is $V(\Gamma_1) \times V(\Gamma_2)$, two vertices (u_1, u_2) and (v_1, v_2) are adjacent if and only if $u_2 = v_2$ and u_1, v_1 are adjacent in Γ_1 or $u_1 = v_1$ and u_2, v_2 are adjacent in Γ_2.

Now we can prove the second theorem.

Proof of Theorem 1.2. Let Γ be a 2-geodesic-transitive neighbor tetravalent graph. Let (u, v) be an arc and $A = \text{Aut}(\Gamma)$. Since $\Sigma := [\Gamma(u)]$ is not an empty graph, Γ has girth 3. Since Γ is 2-geodesic-transitive, it follows from Theorem 1.1 (1) of [4] that Σ has diameter 2 and A_{uv} is transitive on $\Sigma_2(v)$.

Suppose first that Σ is arc-transitive. Then Σ is distance-transitive, and it is listed in [3, p.221-223]. By inspecting the candidates, Σ is either $K_{3,3}$ or $H(2,3)$. If Σ is $K_{3,3}$, then Γ is $K_{4,2}$. If Σ is $H(2,3)$, then Γ is $I(6,3)$.

In the remaining, we suppose that Σ is not arc-transitive. Since A_{uv} is transitive on $\Sigma_2(v)$, it follows from Lemma 3.2 that Σ has girth 3. If for any $v', v'' \in \Sigma(v)$ we have $\Sigma_2(v) \cap \Sigma(v') \cap \Sigma(v'') = \emptyset$, then as A_{uv} is transitive on $\Sigma_2(v)$, A_{uv} is transitive on $\Sigma(v)$, which is a contradiction. Thus, there exist $v', v'' \in \Sigma(v)$ such that $\Sigma_2(v) \cap \Sigma(v') \cap \Sigma(v'') \neq \emptyset$. Set $\Sigma(v) = \{v_1, v_2, v_3, v_4\}$. Suppose that $\Sigma_2(v) \cap \Sigma(v_1) \cap \Sigma(v_3) \neq \emptyset$, and say $w_1 \in \Sigma_2(v) \cap \Sigma(v_1) \cap \Sigma(v_3)$. Then $\Sigma_2(v) \cap \Sigma(v_1) = 2, 3$ or 4. Since A_{uv} is transitive on $\Sigma_2(v)$, for any $\delta \in \Sigma_2(v)$, $|\Sigma_2(v) \cap \Sigma(v) = 2, 3$ or 4. From Lemma 3.3 that $|\Sigma(v) \cap \Sigma(v) = 2, 3$ or 4. In particular, $|\Sigma(v) \cap \Sigma(v) = 2, 3$ or 4 divides the number of edges between $\Sigma_2(v)$ and $\Sigma_2(v)$.

Assume that $|\Sigma_2(v) \cap \Sigma(v) = 3$. If v lies in one or two triangles, then there are 10 or 8 edges between $\Sigma(v)$ and $\Sigma_2(v)$, respectively. However 3 does not divide 8 or 10, which is a contradiction. Hence v lies in more than two triangles. Then there are $x \leq 6$ edges between $\Sigma(v)$ and $\Sigma_2(v)$. Since x divides x, $x = 3$ or 6, so $|\Sigma_2(v)| = 1$ or 2. Assume $|\Sigma_2(v)| = 1$, say $\Sigma_2(v) = \{w\}$. Then $\Sigma_3(v) \cap \Sigma(w) = 1$, contradicting the fact that Σ has diameter 2. Hence $|\Sigma_2(v)| = 2$, say $\Sigma_2(v) = \{w, w'\}$. Since Σ has diameter 2, $|\Sigma_2(v) \cap \Sigma(w) = 1$. Thus Σ is a vertex-transitive graph of valency 2 with 7 vertices, so $\Sigma \cong C_7$. Thus $\Sigma \cong C_7$. By Lemma 2.2, Γ does not exist.

Now assume that $|\Sigma(v) \cap \Sigma(v) = 2$. Since Σ has diameter 2, it follows that $|\Sigma_2(v) \cap \Sigma(v) = 2$. Thus $|\Sigma_2(v)|$ is a vertex-transitive graph of valency 2. If v lies in r triangles for some $r \geq 1$, then there are $12 - 2r$ edges between $\Sigma(v)$ and $\Sigma_2(v)$. Since A_{uv} is transitive on $\Sigma_2(v)$, $|\Sigma_2(v) \cap \Sigma(v) = 2$ divides $12 - 2r$. It follows that $r \leq 5$. Since $|\Sigma_2(v) \cap \Sigma(v) = 2$, it follows that $|\Sigma_2(v) = 3$, and so there are at least 6 edges between $\Sigma(v)$ and $\Sigma_2(v)$. Hence $12 - 2r \geq 6$, so $r = 1, 2$ or 3.

If $r = 1$, then there are 10 edges between $\Sigma(v)$ and $\Sigma_2(v)$. Since $|\Sigma(v) \cap \Sigma(v) = 2$ for any $\delta \in \Sigma_2(v)$, one has $|\Sigma_2(v)| = 5$. Assume that (v, v_1, v_2, v_3) is a triangle. Then v_3 is not adjacent to v_1. So, A_{uv} fixes $\{v_1, v_2\}$ and $\{v_3, v_4\}$ setwise, respectively. Therefore, A_{uv} fixes $\Sigma_2(v) \cap (\Sigma(v_1) \cup \Sigma(v_2))$ setwise. As $|\Sigma_2(v) \cap (\Sigma(v_1) \cup \Sigma(v_2)) \leq 4$, it follows that $|\Sigma_2(v) \cap (\Sigma(v_1) \cup \Sigma(v_2)) \leq 4$. Thus A_{uv} fixes $\Sigma_2(v) \cap (\Sigma(v_1) \cup \Sigma(v_2))$ setwise, contradicting the fact that A_{uv} is transitive on $\Sigma_2(v)$.\]
If \(r = 2 \), then there are 8 edges between \(\Sigma(v) \) and \(\Sigma_2(v) \). Further, \(|\Sigma_2(v)| = 4 \), so \(|\Sigma_2(v)| \cong C_4 \). Set \(\Sigma(v) = \{v_1, v_2, v_3, v_4\} \). Then \(|\Sigma(v) \cap \Sigma_2(v)| = 1 \) or 2. If \(|\Sigma(v) \cap \Sigma_2(v)| = 1 \) for each \(v_i \), then \(|\Sigma(v)| \cong 2K_2 \). Hence each arc lies in a unique triangle. Let \((v_1, v_2) \) and \((v_1, v_4) \) be two arcs. Let \(\Sigma_2(v) \cap \Sigma(v_1) = \{v_1, v_2\} \). Since \(\Sigma(v_1) \cong 2K_2 \), \((v_1, v_2) \) is an arc and \(v_2 \) is not adjacent to any one of \(v_1, v_3 \). Set \(\Sigma_2(v) \cap \Sigma(v_2) = \{v_3, v_4\} \). Since \(|\Sigma_2(v)| = 2K_2 \), \((v_3, v_4) \) is an arc. Since \(|\Sigma(v)| \cong C_4 \), it follows that \((v_1, v_2, v_3, v_4) \) is a 4-cycle. Since \(|\Sigma(v) \cap \Sigma(w)| = 2 \) and each arc lies in a unique triangle, \(w_1 \) is adjacent to one of \(v_1, v_4 \), say \(v_1 \). Then \(\Sigma(v_1) = \{v_1, v_2, v_3, v_4\} \). Since \(|\Sigma(v_1)| \cong 2K_2 \), it follows that \(v_3, v_4 \) are adjacent. Hence \(v_1 \) is adjacent to both \(v_2 \) and \(v_3 \). Thus \(\Sigma \) is isomorphic to the Hamming graph \(H(2, 3) \). However \(H(2, 3) \) is arc-transitive, which is a contradiction. Thus there exists \(v_i \) such that \(|\Sigma(v) \cap \Sigma(v_i)| = 2 \). Without loss of generality, let \(v_1 = v_i \) and let \(\Sigma(v) \cap \Sigma(v_1) = \{v_2, v_3\} \). Then \(|\Sigma_2(v) \cap \Sigma(v_1)| = 1 \), and say \(\Sigma_2(v) \cap \Sigma(v_1) = \{w_1\} \). Since \(w_i \) lies in 2 triangles, \(v_i \) is the unique vertex of \(\Sigma(v) \) such that \(|\Sigma(v) \cap \Sigma(v_i)| = 2 \). Thus \(A_{uv} \) can not map \(v_i \) to other vertices of \(\Sigma_2(v) \), contradicting the fact that \(A_{uv} \) is transitive on \(\Sigma_2(v) \). Hence \(r \neq 2 \).

Finally, assume \(r = 3 \). Then there are 6 edges between \(\Sigma(v) \) and \(\Sigma_2(v) \). Further, \(|\Sigma_2(v)| = 3 \), so \(|\Sigma_2(v)| \cong C_3 \).

Set \(\Sigma(v) = \{v_1, v_2, v_3, v_4\} \). Then for any \(v_i \), \(|\Sigma(v) \cap \Sigma(v_i)| \leq 3 \). Since \(v_i \) is in 3 triangles, there exist at most one vertex \(v_i \) such that \(|\Sigma(v) \cap \Sigma(v_i)| = 1 \). Assume there exists a vertex, \(v_i \), such that \(|\Sigma(v) \cap \Sigma(v_i)| = 3 \). Then \(\Sigma(v_i) = \{v_1, v_2, v_3, v_4\} \) and vertices of \(\Sigma(v_1) \cup \Sigma(v_2) \cup \Sigma(v_3) \cup \Sigma(v_4) \) are pairwise non-adjacent. Hence \(\Sigma_2(v) = \{v_1, v_2, v_3, v_4\} \). Since there are no edges between sets \(\{v_1, v_2\} \) and \(\{v_3, v_4\} \), and there are \(3 \) edges between \(\Sigma(v) \cap \Sigma(v_i) \), there exists \(v_i \) such that \(|\Sigma(v) \cap \Sigma(v_i)| = 1 \). Assume that there are \(x \) vertices in \(\Sigma(v) \) that are adjacent to exactly one vertex of \(\Sigma_2(v) \). Then counting the edges between \(\Sigma(v) \) and \(\Sigma_2(v) \), \(x + 2(4 - x) = 6 \), so \(x = 2 \). Suppose \(|\Sigma_2(v) \cap \Sigma(v_i)| = |\Sigma(v) \cap \Sigma_2(v)| = 1 \), say \(\Sigma(v) \cap \Sigma(v_1) = \{w_1\} \) and \(\Sigma(v) \cap \Sigma(v_2) = \{w_2\} \). Then \(A_{uv} \) can not map \(w_1 \) to any one of \(w_1, w_2 \), contradicting the fact that \(A_{uv} \) is transitive on \(\Sigma_2(v) \). Thus there exists a vertex \(v_i \) such that \(|\Sigma(v) \cap \Sigma(v_i)| = 0 \). Since \(v_i \) is in 3 triangles, \(|\Sigma_2(v) \cap \Sigma(v_i)| \cong C_3 \). Further \(\Sigma_2(v) \cap \Sigma(v_i) = \Sigma_2(v) \), and there are 3 edges between \(\Sigma(v) \setminus \{v_i\} \) and \(\Sigma_2(v) \). Hence for each \(v_j \in \Sigma(v) \setminus \{v_i\} \), \(\Sigma_2(v) \cap \Sigma(v_j) \) is 1. Therefore \(\Sigma \cong K_4 \square K_2 \). Then by [3, Theorem 9.1.3], \(\Gamma \) is \(J(6, 2) \).