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Abstract. This paper deals with local spectral properties of Hamilton type operators. The strongly decom-
posability, Weyl type theorems and hyperinvariant subspace problem of them and the similar properties
with their adjoint operators are studied. As corollaries, some local spectral properties of Hamilton operators
are obtained.

1. Introduction

The Hamiltonian system is an important branch in dynamical systems, and has various applications
in our daily life. While infinite dimensional Hamiltonian operators come from the corresponding infinite
dimensional Hamiltonian systems, and have deep mechanical background, their spectral theory is the
theoretical foundation of the separation of the variables method solving mechanical problems, and plays a
significant role in elasticity mechanics and other related fields[6,8,10].

Recently, the various results on infinite dimensional Hamiltonian operators frequently appear. In [2],
the authors study the symmetry with respect to imaginary axis of the spectrum of infinite dimensional
Hamiltonian operators; in the proof process, some properties between operators and their adjoint operators
are applied. In[7], the decomposability, Weyl type theorems and invariant subspace problem of Hamilton
operators and the similar properties with their adjoint operators are studied. In this paper, the strongly
decomposability, Weyl type theorems and hyperinvariant subspace problem of Hamilton operators and the
similar properties with their adjoint operators are given.

This paper is organized as follows. In section 2, we state some definitions and notations. The main
results and examples of this paper, together with their proofs, are presented in section 3.

2. Preliminaries

Let X be an infinite dimensional Hilbert space. Throughout this paper, an operator is always linear
bounded. According to [7], bounded Hamilton type operators and bounded Hamilton operators can be
defined as follows.
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Definition 2.1. Let H : X × X −→ X × X be a bounded operator. If (JH)∗ = JH, then H is called an infinite

dimensional Hamilton operator, where J =

[
0 I
−I 0

]
with I being the identity operator on X, 0 the zero operator on

X, and (JH)∗ the adjoint operator of JH.

Remark 2.2. Evidently J∗ = −J.

Definition 2.3. A bounded operator T : X × X −→ X × X is called Hamilton type operator, provided there is an

unitary operator J on X × X for which J2 =

[
−I 0
0 −I

]
and (JT)∗ = JT. At this time, T is called Hamilton type

operators with J as unitary operator.

Definition 2.4. We say that T satisfies
(1) property (h) if σ(T) \ σSF−+ (T) = πa

00(T), where πa
00(T) = {λ ∈ isoσa(T) : 0 < α(T − λ) < ∞}.

(2) property (1h) if σ(T) \ σSBF−+ (T) = Ea(T), where Ea(T) = {λ ∈ isoσa(T) : 0 < α(T − λ)}.

Remark 2.5. The definition of σSF−+ (T), σSBF−+ (T), α(T − λ) is introduced in [1,3,4].

Definition 2.6. [5]A linear subspace Y of X is said to be T- hyperinvariant if SY ⊂ Y for every bounded linear
operator S on X that commutes with T.

Lemma 2.7. [5] A bounded operator T on X, is strongly decomposable if and only if T is decomposable and XT(F) =

XT(F ∩U1) + · · · + XT(F ∩Um) for every open cover {U1, ...,Um} of an arbitrary closed set F ⊆ C.

3. Main results

Lemma 3.1. Let T be a Hamilton type operator with J as unitary operator. Then σSF−+ (T) = −σSF−+ (T∗), σSBF−+ (T) =
−σSBF−+ (T∗)

Proof. If λ is not belong to σSF−+ (T∗), then T∗ − λ is upper semi-Weyl operator[1], i.e. α(T∗ − λ) < ∞,R(T∗ − λ)
is closed and ind(T∗ − λ) ≤ 0. Since T∗ − λ = JTJ + JλJ = J(T + λ)J, then α(T + λ) < ∞,R(T + λ) is closed
and ind(T + λ) ≤ 0, and hence T + λ is upper semi-Weyl operator, so −λ is not belong to σSF−+ (T). i.e.
−σSF−+ (T) ⊆ σSF−+ (T∗).Replacing T by T∗ shows that −σSF−+ (T) ⊇ σSF−+ (T∗). Therefore σSF−+ (T) = −σSF−+ (T∗).

If λ is not belong to σSBF−+ (T∗), then T∗ − λ is upper semi B-Weyl operator[1], i.e. for some n ≥ 0,
α((T∗−λ)[n]) < ∞,R((T∗−λ)[n]),R((T∗−λ)n) are closed and ind((T∗−λ)[n]) ≤ 0. Since T∗−λ = JTJ+JλJ = J(T+λ)J,
then α((T + λ)[n]) < ∞,R((T + λ)[n]),R((T + λ)n) are closed and ind((T + λ)[n]) ≤ 0, and hence T + λ is upper
semi B-Weyl operator, so −λ is not belong to σSBF−+ (T). i.e. −σSBF−+ (T) ⊆ σSBF−+ (T∗).Replacing T by T∗ shows
that −σSBF−+ (T) ⊇ σSBF−+ (T∗). Therefore σSBF−+ (T) = −σSBF−+ (T∗).

In the following theorem we give a duality theorem of strongly decomposable operators. In general, the
strongly decomposability of T∗ is not transmitted to operator T([9]).

Theorem 3.2. Let T be a Hamilton type operator with J as unitary operator. Then T is strongly decomposable if and
only if T∗ is strongly decomposable.

Proof. If T is strongly decomposable, then T is decomposable, by Lemma 2.7. By Theorem 6.1.8 of [7], it
follows that T has property (β) or property (δ). Then we know from Theorem 2.2.5 of [5] that, T∗ has property
(δ), so T∗ is decomposable. Now we consider an arbitrary closed set F ⊆ C and a finite open cover {U1, ...,Um}

of F. Then {−U1, ...,−Um} is a cover of F. Given any x ∈ XT∗ (F), we have−σT(J∗x) ⊆ F, moreover J∗x ∈ XT(−F).
The strong decomposability of T leads to J∗x ∈ XT((−F) ∩ (−U1)) + · · · + XT((−F) ∩ (−U1)), it is immediate
that x ∈ J(XT((−F) ∩ (−U1)) + · · · + XT((−F) ∩ (−U1))) = XT∗ (F ∩ U1) + · · · + XT∗ (F ∩ Um), therefore XT∗ (F) ⊆
XT∗ (F∩U1)+· · ·+XT∗ (F∩Um). To show the opposite inclusion, let x ∈ XT∗ (F∩U1)+· · ·+XT∗ (F∩Um) be arbitrary.
Then J∗x ∈ J∗XT∗ (F∩U1) + · · ·+ J∗XT∗ (F∩Um) = XT(−(F∩U1)) + · · ·+ XT(−(F∩U1)). Moreover J∗x ∈ XT((−F)),
so x ∈ XT∗ (F).therefore XT∗ (F∩U1) + · · ·+ XT∗ (F∩Um) ⊆ XT∗ (F). Thus XT∗ (F∩U1) + · · ·+ XT∗ (F∩Um) = XT∗ (F).
By Lemma 2.7, this establishes the strong decomposability of T∗.

For the reverse implication replace T by T∗.
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Theorem 3.3. Let T be a Hamilton type operator with J as unitary operator. Then Y is T- hyperinvariant if and only
if J∗Y is T∗- hyperinvariant.

Proof. Let S be a bounded linear operator on X and ST∗ = T∗S, then JSJ∗T = TJSJ∗. Since Y is T- hyperin-
variant, we know from Definition 2.6 that JSJ∗Y ⊂ Y. Therefore SJ∗Y ⊂ J∗Y. i.e. J∗Y is T∗- hyperinvariant.

To see the converse, suppose that J∗Y is T∗- hyperinvariant. Let S be a bounded linear operator on
X and ST = TS, then JSJ∗T∗ = T∗ JSJ∗. Since J∗Y is T∗- hyperinvariant, we know from Definition 2.6 that
JSJ∗ J∗Y ⊂ J∗Y. Therefore SY ⊂ Y. i.e. Y is T- hyperinvariant.

Remark 3.4. In general, Hamilton type operator does not satisfy property (h), and does not satisfy property (1h).

Example 3.5. Let T = R
⊕

(−R∗), where R be the unilateral right shift operator defined on the Hilbert space `2(N).
Then T is Hamilton type operator, and does not satisfy Weyl theorem, and therefore does not satisfy a-Weyl theorem,
so Hamilton type operator does not satisfy property (h), therefore does not satisfy property (1h).

In the following theorems we give the necessary and sufficient conditions for Hamilton type operator
which satisfies property (h) and (1h).

Theorem 3.6. Let T be a Hamilton type operator with J as unitary operator. Then T satisfies property (h) if and only
if T∗ satisfies property (h).

Proof. Let T satisfies property (h), then σ(T) \ σSF−+ (T) = πa
00(T). Given any λ ∈ σ(T∗) \ σSF−+ (T∗), we have

−λ ∈ σ(T) \ σSF−+ (T), by Lemma 3.1 and Lemma 6.1.19 of [7]. Since T satisfies property (h), then −λ ∈ πa
00(T),

and hence λ ∈ πa
00(T∗), therefore σ(T∗) \ σSF−+ (T∗) ⊆ πa

00(T∗). To show the opposite inclusion, let λ ∈ πa
00(T∗),

then λ ∈ isoσa(T∗) and 0 < α(T∗ − λ) < ∞, and therefore −λ ∈ πa
00(T). Since T satisfies property (h), then

−λ ∈ σ(T) \ σSF−+ (T). We conclude from Lemma 3.1 and Lemma 6.1.19 of [7] that λ ∈ σ(T∗) \ σSF−+ (T∗). Hence
πa

00(T∗) ⊆ σ(T∗) \ σSF−+ (T∗). So T∗ satisfies property (h).
A similar argument shows that T∗ satisfies property (h), then T satisfies property (h).

Theorem 3.7. Let T be a Hamilton type operator with J as unitary operator. Then T satisfies property (1h) if and
only if T∗ satisfies property (1h).

Proof. Let T satisfies property (1h), then σ(T) \ σSBF−+ (T) = Ea(T). Given any λ ∈ σ(T∗) \ σSBF−+ (T∗), we have
−λ ∈ σ(T) \σSBF−+ (T), by Lemma 3.1 and Lemma 6.1.19 of [7]. Since T satisfies property (1h), then −λ ∈ Ea(T),
and hence λ ∈ Ea(T∗), therefore σ(T∗) \ σSBF−+ (T∗) ⊆ Ea(T∗). To show the opposite inclusion, let λ ∈ Ea(T∗),
then λ ∈ isoσa(T∗) and 0 < α(T∗ − λ), and therefore −λ ∈ Ea(T). Since T satisfies property (1h), then
−λ ∈ σ(T) \σSBF−+ (T). We conclude from Lemma 3.1 and Lemma 6.1.19 of [7] that λ ∈ σ(T∗) \σSBF−+ (T∗). Hence
Ea(T∗) ⊆ σ(T∗) \ σSBF−+ (T∗). So T∗ satisfies property (1h).

A similar argument shows that T∗ satisfies property (1h), then T satisfies property (1h).

Remark 3.8. In general, the results of Theorem 3.6 and 3.7 do not hold if we replace Hamilton type operator by
bounded operator.

Example 3.9. Let T be defined for each x = (xi) ∈ `2 by T(x1, x2, x3, · · · , xn, · · · ) = ( 1
2 x2, 1

3 x3, 1
4 x4, · · · , 1

n xn, · · · ).
Then σ(T) = σa(T∗) = σw(T) = σSF−+ (T∗) = π00(T) = {0}, πa

00(T∗) = ∅. Hence σ(T) \ σw(T) = ∅ , {0} = π00(T), i.e. T
does not satisfy Weyl’s theorem. Then T does not obey a-Weyl’s theorem. Hence T does not satisfy property (h), and
therefore does not satisfy property (1h). But σa(T∗) \ σSF−+ (T∗) = πa

00(T∗) = ∅, i.e. T∗ satisfies a-Weyl’s theorem. Then
T∗ obeys property (h) and property (1h).

Remark 3.10. The results of Lemma 3.1, Theorem 3.2, 3.3, 3.6 and 3.7 hold if we replace Hamilton type operator by
Hamilton operator.
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