
Filomat 32:7 (2018), 2677–2684
https://doi.org/10.2298/FIL1807677J

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. The notion of social roles is a centerpiece of most sociological theoretical considerations. Regular
equivalences were introduced by White and Reitz in [15] as the least restrictive among the most commonly
used definitions of equivalence in social network analysis. In this paper we consider a generalization of
this notion to a bipartite case. We define a pair of regular equivalences on a two-mode social network and
we provide an algorithm for computing the greatest pair of regular equivalences.

1. Introduction

One of the main problems of the social network analysis is to find similarities between actors which
indicate that they have the same role or position in a network. These similarities were formalized first
by Lorrain and White [27], Breiger et al. [8] and Burt [9] by the concept of a structural equivalence. Two
actors are considered to be structurally equivalent if they have identical links to the rest of the network.
Structural equivalences are extensively studied in [1, 2, 4, 16–19, 21, 22]. In order to generalize the concept of
structural equivalence, White and Reitz [32] introduced the notion of a regular equivalence. Two actors are
said to be regularly equivalent if they are equally related to equivalent others [5, 20]. Afterwards, regular
equivalences have been studied in numerous of papers (cf. [23, 24]).

The regular equivalence approach is important because it provides a method for identifying ”roles”
from the patterns of ties present in a network. Rather than relying on attributes of actors to define social
roles and to understand how social roles give rise to patterns of interaction, regular equivalence analysis
seeks to identify social roles by identifying regularities in the patterns of network ties – whether or not the
occupants of the roles have names for their positions. The regular equivalences enable the clustering of
the set of actors only with respect to their relationship to each other. The aim of this paper is to introduce
the generalization of the notion of regular equivalence which provides the clustering based on the actors
relationship to some other group of actors (e.g. the group of students can be clustered by their interest in
attending the certain group of exams).

We consider a two-mode network – an ordered triple (A,B,R), where A and B are non-empty sets and R is
a relation between A and B, and we define the pair of regular equivalences (E,F), as the pair of equivalences
(E,F), on A and B respectively, which satisfies E ◦ R = R ◦ F. Similar kind of relational equalities were
extensively studied by Ćirić, Ignjatović et all in [10–15, 24–26], where the greatest solutions of the certain
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equalities were given. Based on general ideas of this study and of the well known Paige-Tarijan three
partition refinement procedure [28], we provide an efficient procedure for computing the greatest pair of
structural equivalences.

The paper is organized as follows. In Section 2 we recall some basic properties of relations in general,
and of equivalence relations. In particular, we define the right and left residuals. In Section 3 we define
pairs of regular equivalences on a two-mode network, and we examine their main properties. Section 4
contains our main results on the computation of the greatest pair of regular equivalences on a network.
Specifically, we provide an algorithm for computing the greatest pair of regular equivalences on a network
and we give an illustrative computational example.

2. Preliminaries

We will use complete residuated lattices as the structures of membership (truth) values.
A residuated lattice is an algebra L = (L,∧,∨,⊗,→, 0, 1) such that

(L1) (L,∧,∨, 0, 1) is a lattice with the least element 0 and the greatest element 1,
(L2) (L,⊗, 1) is a commutative monoid with the unit 1,
(L3) ⊗ and→ form an adjoint pair, i.e., they satisfy the adjunction property: for all x, y, z ∈ L,

x ⊗ y 6 z ⇔ x 6 y→ z. (1)

If, in addition, (L,∧,∨, 0, 1) is a complete lattice, then L is called a complete residuated lattice.
In the further text L will be a complete residuated lattice. A fuzzy subset of a set A over L, or simply

a fuzzy subset of A, is any function from A into L. The equality of f and 1 is defined as the usual equality
of functions, i.e., f = 1 if and only if f (x) = 1(x), for every x ∈ A. The inclusion f 6 1 is also defined
pointwise: f 6 1 if and only if f (x) 6 1(x), for every x ∈ A. Endowed with this partial order the set F (A) of
all fuzzy subsets of A forms a complete residuated lattice, in which the meet (intersection)

∧
i∈I fi and the

join (union)
∨

i∈I fi of an arbitrary family { fi}i∈I of fuzzy subsets of A are functions from A into L defined by∧
i∈I

fi

 (x) =
∧
i∈I

fi(x),

∨
i∈I

fi

 (x) =
∨
i∈I

fi(x),

and the product f ⊗ 1 is a fuzzy subset defined by ( f ⊗ 1)(x) = f (x) ⊗ 1(x), for every x ∈ A.
Let A and B be non-empty sets. A fuzzy relation between sets A and B is any function from A × B into L,

and the equality, inclusion (ordering), joins and meets of fuzzy relations are defined as for fuzzy sets. In
particular, a fuzzy relation on a set A is any function from A×A into L. The set of all fuzzy relations from A to B
will be denoted by R(A,B), and the set of all fuzzy relations on a set A will be denoted by R(A). The converse
(in some sources called inverse or transpose) of a fuzzy relation R ∈ R(A,B) is a fuzzy relation R−1

∈ R(B,A)
defined by R−1(b, a) = R(a, b), for all a ∈ A and b ∈ B.

A fuzzy relation R on A is said to be:

(R) reflexive (or fuzzy reflexive) if R(a, a) = 1, for every a ∈ A;

(S) symmetric (or fuzzy symmetric) if R(a, b) = R(b, a), for all a, b ∈ A;

(T) transitive (or fuzzy transitive) if R(a, b) ⊗ R(b, c) ≤ R(a, c), for all a, b, c ∈ A.

It can easily be shown, that R ◦ R = R holds for any reflexive and transitive relation R on A.
A reflexive and transitive fuzzy relation on A is called a fuzzy quasi-order. A reflexive, symmetric and

transitive fuzzy relation on A is called a fuzzy equivalence. With the respect to the inclusion of fuzzy relations,
the set E(A) of all fuzzy equivalences on A is a complete lattice.
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For non-empty sets A and B and fuzzy subsets η ∈ F (A) and ξ ∈ F (B), fuzzy relations η→ ξ ∈ R(A,B)
and η← ξ ∈ R(A,B) are defined as follows

(η→ ξ)(a, b) = ( η(a) → ξ(b) ), (2)
(η← ξ)(a, b) = ( ξ(b) → η(a) ), (3)

for arbitrary a ∈ A and b ∈ B. Let us note that η← ξ = (ξ→ η)−1.
We have the following.

Lemma 2.1. Let A and B be non-empty sets and let η ∈ F (A) and ξ ∈ F (B).

(a) The set of all solutions to the inequality η ◦ χ ≤ ξ, where χ is an unknown fuzzy relation between A and B, is
the principal ideal of R(A,B) generated by the fuzzy relation η→ ξ.

(b) The set of all solutions to the inequality χ ◦ ξ ≤ η, where χ is an unknown fuzzy relation between A and B, is
the principal ideal of R(A,B) generated by the fuzzy relation η← ξ.

Note that (η→ ξ) ∧ (η← ξ) = η↔ ξ, where η↔ ξ is a fuzzy relation between A and B defined by

(η↔ ξ)(a, b) = ( η(a) ↔ ξ(b) ), (4)

for arbitrary a ∈ A and b ∈ B.
Next, let A and B be non-empty sets and let α ∈ R(A), β ∈ R(B) and γ ∈ R(A,B). The right residual of γ by

α is a fuzzy relation α\γ ∈ R(A,B) defined by

(α\γ)(a, b) =
∧
a′∈A

(α(a′, a)→ γ(a′, b) ), (5)

for all a ∈ A and b ∈ B, and the left residual of γ by β is a fuzzy relation γ/β ∈ R(A,B) defined by

(γ/β)(a, b) =
∧
b′∈B

( β(b, b′)→ γ(a, b′) ), (6)

for all a ∈ A and b ∈ B. We think of the right residual α\γ as what remains of γ on the right after “dividing”
γ on the left by α, and of the left residual γ/β as what remains of γ on the left after “dividing” γ on the
right by β. In other words,

α ◦ γ′ 6 γ ⇐⇒ γ′ 6 α\γ, γ′ ◦ β 6 γ ⇐⇒ γ′ 6 γ/β, (7)

for all α ∈ R(A), β ∈ R(B) and γ′, γ ∈ R(A,B). In the case when A = B, these two concepts become the well-
known concepts of right and left residuals of fuzzy relations on a set (cf. [24]). In that case, for fuzzy
relations δ, γ ∈ R(A) we consider also the relation δ|γ ∈ R(A) as:

δ|γ = δ/γ ∧ γ\δ.

We also have the following.

Lemma 2.2. Let A and B be non-empty sets and let α ∈ R(A), β ∈ R(B) and γ ∈ R(A,B).

(a) The set of all solutions to the inequality α ◦ χ ≤ γ, where χ is an unknown fuzzy relation between A and B, is
the principal ideal of R(A,B) generated by the right residual α\γ of of γ by α.

(b) The set of all solutions to the inequality χ ◦ β ≤ γ, where χ is an unknown fuzzy relation between A and B, is
the principal ideal of R(A,B) generated by the left residual γ/β of of γ by β.

Proof. These are also results by E. Sanchez (cf. [29–31]).
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In the sequel we recall some well known results concerning fuzzy equivalence relations, which will be
needed in the further work:

Lemma 2.3. Let E,F ∈ E(A) be fuzzy equivalences on A. Then, relation E ∧ F is also a fuzzy equivalence.

Lemma 2.4. Let E,F ∈ E(A) be fuzzy equivalences on A such that E ≤ F, then E ◦ F = F.

Lemma 2.5. Let f ∈ R(A) be fuzzy relation on A. Then, relation f | f is a fuzzy equivalence.

Lemma 2.6. Let A and B be non-empty sets and let R ∈ R(A) and G ∈ R(A,B)
The set of all solutions to the inequality R ◦ G ≤ G, where R is an unknown fuzzy relation on A, is the principal

ideal of R(A) generated by the right residual G/G. The set of all fuzzy equivalences which are solutions to the
inequality , where is the principal ideal of E(A) generated by the right residual G |G.

The set of all solutions to the inequality G ◦ R ≤ G, where R is an unknown fuzzy relation on A, is the principal
ideal of R(A) generated by the right residual G \ G. The set of all fuzzy equivalences which are solutions to the
inequality , where is the principal ideal of E(A) generated by the residual G |G.

Lemma 2.7. Let E,F ∈ E(A) such that E ≤ F. Then, E ◦ F ≤ F.

As the consequence of Lemma 2.6 and 2.7, we have the following result:

Lemma 2.8. Let E,F ∈ E(A) such that E ≤ F. Then, E ≤ F |F.

3. Regular fuzzy equivalence

Fuzzy social network is an ordered pair (A,R), where A is a non-empty set of the actors or the nodes of
the network and R ∈ R(A) is a fuzzy relation on A, which present relationship among the actors.Since the
social network, in general, have large number of actors, for understanding the structure of the network it
is convenient to observe the equivalence classes on the set of actors.

Let (A,R) be a fuzzy social network. A fuzzy equivalence relation E ∈ R(A), is a regular equivalence on
the network if the following holds:

E ◦ R = R ◦ E.

Two mode fuzzy social network is an ordered triple (A,B,R), where A and B are non-empty sets of the
actors or the nodes of the network and R ∈ R(A,B) is a fuzzy relation between A and B, which present
relationship among these two groups of actors.

Let (A,B,R) be a two mode fuzzy network. A pair of fuzzy equivalences (E,F), where E ∈ R(A) and
F ∈ R(B), is a pair of regular equivalence on (A,B,R) if it satisfies:

E ◦ R = R ◦ F. (8)

This kind of equivalence perform even better than classical regular fuzzy equivalence in presenting the
structure of the network.

Theorem 3.1. A pair of fuzzy equivalence relations (E,F) is a pair of regular equivalences if and only if the following
holds:

E ◦ R ◦ F = E ◦ R ∧ R ◦ F. (9)

Proof. Let (E,F) be a pair of structural equivalences, then (E,F) satisfies (8). Therefore,

E ◦ R ◦ F = R ◦ F ◦ F = R ◦ F,

and similarly E ◦ R ◦ F = E ◦ R. Thus, (9) holds.
On the other hand, let (9) holds. Hence, E ◦ R ◦ F ≤ R ◦ F and E ◦ R ◦ F ≤ E ◦ R holds. Directly from the

fact E and F are reflexive we obtain R ◦ F ≤ E ◦ R ◦ F and E ◦ R ≤ E ◦ R ◦ F
So, R ◦ F = E ◦ R ◦ F and E ◦ R = E ◦ R ◦ F holds, which means (8) holds.



Z. Jančić et al. / Filomat 32:7 (2018), 2677–2684 2681

The following theorem provides a method for computing the pair of greatest regular equivalences on
the given two mode network.

Theorem 3.2. Let (A,B,R) be a network and let E ∈ E(A) and F ∈ E(B) be equivalences on A and B respectively.
Define the sequences {(Ek,Fk)}k∈N and {(Xk,Yk)}k∈N as follows: Initially for k = 1

(X1,Y1) = (UA,UB), (E1,F1) = (E,F) ∧
(
(R ◦Ub

B) | (R ◦Ub
B), (Ua

A ◦ R) | (Ua
A ◦ R)

)
where a ∈ A and b ∈ B are arbitrary elements.

Further, for each k ∈ N repeat the following step: Find a ∈ A and b ∈ B such that (Xa
k,Y

b
k) , (Ea

k,F
b
k) and set

(Xk+1,Yk+1) = (Xk,Yk) ∧ (Ea
k |E

a
k,F

b
k |F

b
k),

(Ek+1,Fk+1) = (Ek,Fk)
∧(

(R ◦ Yk+1|R ◦ Yk+1 ), (Xk+1 ◦ R |Xk+1 ◦ R)
)
,

until (Xk,Yk) = (Ek,Fk). Then:

(a) Sequences {(Ek,Fk)}k∈N and {(Xk,Yk)}k∈N are descending;

(b) For every k ∈ N, Ek ≤ Xk and Fk ≤ Yk;

(c) For every k ∈ N, the following holds :

Ek ≤ (R ◦ Yk) | (R ◦ Yk), Fk ≤ (Xk ◦ R) | (Xk ◦ R); (10)

(d) If there exists n ∈ N such that (Xn,Yn) = (En,Fn) then (En,Fn) is the greatest pair of regular equivalences
contained in (E,F);

(e) IfA is finite and L(A,R) satisfies DCC, then there exists n ∈ N such that (Xn,Yn) = (En,Fn).

Proof. (a) Follows directly from the definition of these sequences;
(b) We will show only Ek ≤ Xk, k ∈ N, the other inequality can be showed in analogue way.
We prove it by induction on k ∈ N.
For k = 1, evidently E1 ≤ X1.
Suppose for k = m, Em ≤ Xm, and prove Em+1 ≤ Xm+1.
According to Lemma 2.7 we have Em ≤ (Ea

m |Ea
m), and by induction assumption Em ≤ Rm, therefore

Em ≤ Xm ∧ (Ea
m |Ea

m) = Xm+1, and since {Ek}k∈N is descending, we have that Em+1 ≤ Xm+1, which was to be
proved.

(c)We will prove only the first inequality, the secund one can be proved in analogue way. We will
consider only the case k = 1. For k > 1 it is evident from the definition of (Ek+1,Fk+1). Let us first note that all
Yc

1 of Y1 are equal to each other, that is, for any c ∈ B, Pc
1 is defined by Yc

1(b) = 1, for every b ∈ A. According
to this fact and the definition of E1 we have :

E1 ≤ (R ◦ Yc
1 |R ◦ Yc

1),

for every c ∈ A, and hence for k = 1 (c) holds.
(d) If (Ek,Fk) = (Xk,Yk), for some k ∈ N, then according to (c) the following holds:

(Ek,Fk) ≤ ((R ◦ Fk) | (R ◦ Fk), (Ek ◦ R) | (Ek ◦ R)).

which means that (Ek,Fk) is a pair of regular equivalences. In order to show that (Ek,Fk) is the greatest pair,
let us consider an arbitrary pair of regular fuzzy equivalences (E′,F′) contained in (E,F) on the network.

We will prove that (E′,F′) ≤ (En,Fn) for every n ∈ N, by induction on n.
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For n = 1, (E′,F′) and (UA,Ub) are fuzzy equivalences such that (E′,F′) ≤ (UA,UB) = (R1,P1). According
to Theorem 3.1 fuzzy equivalence E′ satisfies inequality E′ ◦ R ◦ F′ ≤ R ◦ F′. Since F′ ≤ Y1, multiplying this
inequality with Y1 on the right, we obtain:

E′ ◦ R ◦ F′ ◦ Y1 ≤ R ◦ F′ ◦ Y1

Next according to Lemma 2.4, we have

E′ ◦ R ◦ Y1 ≤ R ◦ Y1,

and by Lemma 2.6 we have that E′ ≤ (R ◦Y1) | (R ◦Y1), and since E′ ≤ E we conclude E′ ≤ E1. In the similar
way we show that F′ ≤ F1.

Suppose that assumption (E′,F′) ≤ (Em,Fm) holds for n = m, and prove (E′,F′) ≤ (Em+1,Fm+1).
Since E′ ≤ Em, using (b), we obtain E′ ≤ Rm and by Lemma 2.7 it follows E′ ≤ Xm+1, and similarly

F′ ≤ Ym+1. Now, if we again use inequality E′ ◦ R ◦ F′ ≤ R ◦ F′ and fact F′ ≤ Ym+1 we obtain E′ ≤ Xm+1, and
similarly F′ ≤ Fm+1 which was to be proved.

(e) LetA be a finite fuzzy transition system and let L(δ, τ,R) satisfy DCC. Then fuzzy relations {Rk}k∈N
can be considered as fuzzy matrices with entries inL(δ, τ,R), and for any pair (a, b) ∈ A×A, the (a, b)-entries
of these matrices form a decreasing sequence {Rk(a, b)}k∈N of elements of L(δ, τ,R). By the hypothesis, all
these sequences stabilize, and since there is a finite number of these sequences, there exists s ∈N such that
after s steps all these sequences are stabilized. This means that the sequence {Rk}k∈N of fuzzy equivalences
also stabilizes after s steps, i.e., Ek = Ek+1.

Next, we will prove that if Xk = Xk+1 then Ek = Xk. If Xk = Xk+1 then

Xk = Xk+1 = Xk ∧ (Ea
k |E

a
k),

and thus, Xk ≤ Ea
k |E

a
k. Consequently, Xa

k ≤ Ea
k, and since Xa

k ≤ Ea
k we obtain Xa

k = Ea
k. This means that there

is no class Xa
k of Xk such that Xa

k , Ea
k, or equivalently Xk = Ek.

4. Regular fuzzy quasi-orders

Note that if we consider inequality (8) and require relations E and F be fuzzy quasi-orders, we will
obtain even the greater solution.

Let (A,B,R) be a fuzzy network. A pair of fuzzy quasi orders (P,Q), where P ∈ R(A) and Q ∈ R(B), is a
pair of regular fuzzy quasi-orders if it satisfies:

P ◦ R = R ◦Q.

The following theorem can be proved in the similar way as Theorem 3.2, so we will omit the proof.

Theorem 4.1. Let (A,B,R) be a network and let P ∈ Q(A) and Q ∈ Q(B) be fuzzy quasi-oreds on A and B respectively.
Define the sequences {(Pk,Qk)}k∈N and {(Xk,Yk)}k∈N as follows: Initially for k = 1

(X1,Y1) = (UA,UB), (P1,Q1) = (P,Q) ∧
(
(R ◦Ub

B) / (R ◦Ub
B), (Ua

A ◦ R) \ (Ua
A ◦ R)

)
where a ∈ A and b ∈ B are arbitrary elements.

Further, for each k ∈ N repeat the following step: Find a ∈ A and b ∈ B such that (Xa
k,Y

b
k) , (Pa

k,Q
b
k) and set

(Xk+1,Yk+1) = (Xk,Yk) ∧ (Pa
k /Pa

k,Q
b
k \ Qb

k),

(Pk+1,Qk+1) = (Pk,Qk)
∧(

(R ◦ Yk+1/R ◦ Yk+1 ), (Xk+1 ◦ R \ Xk+1 ◦ R)
)
,

until (Xk,Yk) = (Pk,Qk). Then:

(a) Sequences {(Pk,Qk)}k∈N and {(Xk,Yk)}k∈N are descending;
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(b) For every k ∈ N, Pk ≤ Xk and Qk ≤ Yk;

(c) For every k ∈ N, the following holds :

Pk ≤ (R ◦ Yk) / (R ◦ Yk), Qk ≤ (Xk ◦ R) \ (Xk ◦ R); (11)

(d) If there exists n ∈ N such that (Xn,Yn) = (Pn,Qn) then (Pn,Qn) is the greatest pair of regular equivalences
contained in (P,Q);

(e) IfA is finite and L(A,R) satisfies DCC, then there exists n ∈ N such that (Xn,Yn) = (Pn,Qn).
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