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Spectral Properties of the iterated Laplacian with
a potential in a Punctured Domain

Gulzat Nalzhupbayevaa

aAl-Farabi Kazakh National University, 71 Al-Farabi Ave., Almaty, 050040, Kazakhstan

Abstract. In the work we derive regularized trace formulas which were established in papers of Kanguzhin
and Tokmagambetov for the Laplace and m-Laplace operators in a punctured domain with the fixed iterating
order m ∈ N. By using techniques of Sadovnichii and Lyubishkin, the authors in that papers described
regularized trace formulae in the spatial dimension d = 2. In this note one claims that the formulas are also
true for more general operators in the higher spatial dimensions, namely, 2 ≤ d ≤ 2m. Also, we give the
further discussions on a development of the analysis associated with the operators in punctured domains.
This can be done by using so called ’nonharmonic’ analysis.

1. Introduction

In the remark we investigate a class of elliptic differential equations in a punctured domain. For general
motivation, we refer to the papers [1, 3, 4, 9, 11, 12, 18, 19] and references therein, where different differential
operators with δ–like potentials are studied, and spectral properties, that is, formulas for the regularized
traces and resolvents are given.

In this paper we observe that the results of the work [7] are valid, even when there is a potential and,
the spatial dimension is greater than two.

Let D ⊂ Rd be a simply connected domain with the smooth boundary ∂D. Denote by s = (s1, . . . , sd) a
fixed point of the domain D. Then we define a punctured domain D0 := D \ {s}. During this manuscript, we
study the differential expression

(−∆)mu + qu (1)

with real valued potential q in a punctured domain D0. Here

(−∆)mu :=

− d∑
j=1

∂2u
∂x2

j


m

.
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We assume that the operator corresponding to the equation (1) with the Dirichlet boundary condition on
the ”whole” domain D has only discrete spectrum.

Since D0 is not simply connected, we need a special functional space for (1) to define an operator
correctly. For this, we introduce the functional class Fm that can be represented in the following form

w(x) = w0(x) + kGm(x, s), (2)

where k is some constant. The function w0 is from the functional spaceFm which is consisted of the functions
v ∈ H2m(D) such that(

∂
∂n

) j

v
∣∣∣
∂D = 0, (3)

for all j = 0, . . . ,m − 1, where ∂
∂n is the outer normal derivative. Here Hq stands for the usual Sobolev space

with the parameters (2, q), and Gm(x, s) is the Green function of the Dirichlet problem for the equation (1) in
the whole domain D with the boundary conditions (3).

Now, we define a functional for our further investigations. To this, we consider the parallelled

Πs,δ = {x : −δ ≤ |x − s| ≤ δ}.

Then for the function h from the space Fm defined as (2) we introduce the following functional

αm(h) = lim
δ→+0

∫
∂Πs,δ

[
∂(−∆)m−1h(ξ)

∂nξ

]
dsξ. (4)

Remark 1.1. We note that the functional (4) is defined for all d ∈ N. Moreover, the value of αm from the function
G(x, s) exists.

For our convenience, we denote

γ := αm(G(·, s)), α(·) :=
1
γ
αm(·),

and
ξ−(w) := α(w), ξ+(w) := w0(s).

2. Main Results

In this section we repeat the results of the paper [7]. However, here we formulate them also for the case
d ≤ 2m.

Now, we are in a way in the Hilbert space H2(D) to introduce an operator associated with the differential
equation (1), that is, (−∆)mu + qu. We denote byKM the operator defined as

KMu = (−∆)mu + qu,

in the punctured domain D0 for all functions u ∈ Fm. AssignKm as the restriction of the operatorKM to

D(Km) = {u|u ∈ Fm, ξ
−(u) = 0, ξ+(u) = 0}.

Discussing as in the works [5, 7, 8], we get the following statements:

Proposition 2.1. Let d ≤ 2m. Assume that u, v ∈ Fm. Then, we have

< KMu, v >=< u,KMv > +ξ−(u)ξ+(v) − ξ−(v)ξ+(u).
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Moreover, the operatorKθ defined on Fm by the expression

(−∆)mu + qu = f ,

in the punctured domain D0 with the condition

θ1ξ
−(u) = θ2ξ

+(u) (5)

is a self-adjoint extension of Km in the functional space Fm. Here θ = (θ1, θ2), θ1, θ2 ∈ R with the property
θ2

1 + θ2
2 , 0.

In the Hilbert space H2(D) consider the operator

KQu(x) :=
[
(−∆)m + q

]
u(x), x ∈ D0 (6)

on u ∈ Fm with

α(u) +

∫
D

Q(x)(
[
(−∆)m + q

]
u0)(x)dx = 0, (7)

where Q ∈ H2(D). Here we can write∫
D

Q(x)(
[
(−∆)m + q

]
u0)(x)dx =: 〈Q,

[
(−∆)m + q

]
u0〉,

where 〈·, ·〉 denotes inner product of H2(D).
Now, we consider the operator KQ as a perturbation of K0. Here K0 stands for the Dirichlet problem

for m–Laplace operator in the whole domain D. Then, we assume that {µn}
∞

n=1 are the eigenvalues of
KQ ordered in the increasing order of their absolute values taking into account the multiplicities, and
suppose that {λn}

∞

n=1 are the eigenvalues of K0 ordered in the increasing order by taking into account their
multiplicities.

Theorem 2.2. Let the spatial dimension d ≤ 2m. Suppose that p, ε > 0 are fixed numbers. Assume that Q ∈ D(Km
0 ),

K
m−1
0 Q ∈ Hp(Πs,ε), and Q(s) , −1. Then, we have the following regularized trace formula

∞∑
n=1

(µn − λn) =
Q̃(s)

1 + Q(s)
. (8)

Here Q̃(s) = − lim
x→s
K

m−1
0 Q(x).

The proof of Theorem 2.2 follows directly from the proofs of the main theorems of the papers [7, 17].

2.1. Further development
Finally, we note that Proposition 2.1 implies the following corollary, which gives a way to find out

self–adjoint operators from the class of operators {KQ : Q ∈ H2(D)}, namely:

Corollary 2.3. Suppose that θ1 , 0 and Q(x) = −µGm(x, s) with µ = θ2/θ1. Then the operator KQ is self–adjoint
with the parameter (θ1, θ2) in the space Fm:

K−µGm ∼ K(1,µ) = K(θ1,θ2).

Thus, we observe that the class of operators given by the equation (6) and condition (7) has a huge number
of self–adjoint operators in a punctured domain. One can be started a ’nonharmonic’ analysis connected
with the singular, in the above sense, operators. Note, that the nonharmonic analysis is developed in
the works [2, 10, 13, 15] with applications given in [14, 16]. For more general setting of the nonharmonic
analysis, see for instance [6].
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