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Abstract. The singularities of the midpoint map associated to a smooth plane curve, which is a map
from the plane to the plane, are classified. The midlocus associated to a regular space curve is introduced.
The geometric conditions for the midlocus of a space curve to have a crosscap or an S±1 singularities are
investigated. A more general map, the λ-point map, associated to a space curve is introduced and many
known surface singularities are realized as a special cases of this construction.

1. Introduction

The midlocus of a plane curve had been introduced by Brady under the name ”smoothed local sym-
metry” (cf. [2]). In [6] the second author and Brassett give the condition for the midlocus of a plane curve
to be a regular curve. Also, they study the behaviour of the midpoint map. In [8] the second author
and Warder present a method to create the boundary plane curve using the information provided by the
midlocus and the radius function. This method is summarized in creating a system of ordinary differential
equations using the midlocus and the radius function — the solution of this system is the symmetry set of
the boundary curve and in this case the boundary curve is created as the envelope of circles centred on the
symmetry set. For more details on envelope we refer reader to [3–7]. This method had been generalized to
the higher dimensions by the first author [1].
This paper is divided into seven main sections, the first section deals with the introduction and the second
section will be dedicated to the classification of the midpoint map as a map from the plane to the plane, in
§2 we will give the geometric conditions for the midpoint map to have cusp, fold, lips, beaks and swallow-
tails singularities. The third section provides some examples illustrating our result in §2 . In §4 , we will
prove that the midlocus associated to a smooth regular space curve is a surface and we give the geometric
conditions for this surface to have a crosscap and an S±1 singularity. In §5, we will give some examples to
illustrate the results in §4. In §6 we study the singularity of the λ-point map which is more general than the
midpoint map. Also, through §6 the special values of λ are introduced and the singularity of the λ-point
map associated the special values of λwill be investigated. Last section is the appendix, and in this section
we give a geometric interpretation of the coefficients occur in our results in §6.
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2. Singularity of the midpoint map associated to a plane curve as a map from R2 to R2

In this section we investigate the singularity of the midpoint map of a plane curve as a map from R2

to R2. Recall that the midpoint map of a smooth plane curve γ is defined by m : I ⊂ R × J ⊂ R −→ R2

such that m(t1, t2) = 1
2 (γ1(t1) + γ2(t2)), where γ1 and γ2 are two smooth parts of γ parametrized by t1 and t2

respectively.
Before the discussion of the singularities of the midpoint map, we review some basic concepts related

to the singularity of a smooth map from the plane into the plane. The map germ (R2, 0) −→ (R2, 0) with
corank one singularity (a map germ f : (Rn, 0) −→ (Rm, 0) has a corank one singularity at p if the rank of
the Jacobian matrix of f at p is equal to min(n,m) − 1 ) and Ae-codimension ≤ 6 had been classified up to
A-equivalence by J. Rieger [14] using the technique of complete transversal and finite determinacy [18].
The main purpose of this section is to give the geometric conditions for the midpoint map of a plane curve
to have fold, cusp, beaks, lips and swallowtail singularities. The normal forms of these singularities are
(x, y2), (x, xy + y3), (x, y3

− x2y), (x, y3 + x2y) and (x, y4 + xy) respectively.

The second author and S. Janeczko found the conditions for the midpoint map to have cusp, beaks, lips
and swallowtail singularities. The conditions they found are related to the centre symmetry set (CSS) and
the inflexion points of the boundary curve [10]. In our results we give more precise conditions related to
the geometry of the boundary curve.

Definition 2.1. Two map-germs fi : (Rn, 0) → (Rp, 0) (i = 1, 2) are A-equivalent if there exist germs of C∞-
diffeomorphisms ϑ and ϕ such that ϕ ◦ f1 = f2 ◦ ϑ holds, where ϑ : (Rn, 0)→ (Rn, 0) and ϕ : (Rp, 0)→ (Rp, 0).

To give the geometric conditions for the midpoint map to have the mentioned singularities we use the
criteria in [16, 19]. Since the map m : (R2, 0)→ (R2, 0) has a corank one singularity when T1(0) = ±T2(0), there
exists a neighbourhood U of 0, and non-vanishing vector field η such that dmp(η) = 0 for all p ∈ S(m)

⋂
U,

where S(m) is the singular set of m. The vector field η is called the null vector field. The discriminant
function which plays a central role in the criteria which we are going to use is defined by

Λ(t1, t2) = det
(
∂m
∂t1

,
∂m
∂t2

)
.

The expression ηΛ is the directional derivative of Λ by η. For more detail on the discriminant function and
the null vector field we refer reader to [12, 16]. Now we state the criteria.

Criteria 2.2. [16, 19] For a map germ f : (U ⊂ R2, p)→ (R2, 0), the following hold.

1. f isA-equivalent to fold if and only if ηΛ(p) , 0.
2. f isA-equivalent to cusp if and only if p is non-degenerate, ηΛ(p) = 0 and ηηΛ(p) , 0.
3. f is A-equivalent to lips if and only if p is of corank one, dΛ(p) = 0 and Λ has a Morse type critical point of

index 0 or 2 at p, namely det(HessΛ(p)) > 0.
4. f isA-equivalent to beaks if and only if p is of corank one dΛ(p) = 0 and Λ has a Morse type critical point of

index 1 at p, namely det(HessΛ(p)) < 0 and ηηΛ(p) , 0 .
5. f isA-equivalent to swallowtail if and only if dΛ(p) , 0, ηΛ(p) = ηηΛ(p) = 0 and ηηηΛ(p) , 0.

Remark 2.3. It is easy to observe that ηηΛ(p) , 0 is automatically satisfied in part 3 of Criteria 2.2 and this is
because of the inequality det(HessΛ(p)) > 0 and the symmetry of HessΛ.

From the definition of the midpoint map m associated to a smooth plane curve γ it is easy to check that
the midpoint map is singular at m(t1, t2) if and only if γ has parallel tangents at γ(t1) and γ(t2). Let γ1 and γ2
be two segments of γ around γ(t1) and γ(t1) respectively. We parameterize γ1 and γ2 by their arc-lengths s1
and s2 respectively such that t1 = t2 = 0 in the new coordinates. The unit tangents of γ1 and γ2 are denoted
by T1 and T2 respectively. We state the main theorem of this section.
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Theorem 2.4. Let m be the midpoint map of a smooth plane curve. Suppose that the tangents to the two boundary
segments are parallel, i.e. T1(0) = ±T2(0) . Then at (0, 0)

1. m isA-equivalent to fold if and only if κ1(0) , ∓κ2(0).
2. m isA-equivalent to cusp if and only if κ1(0) = ∓κ2(0) , 0 and κ′1(0) , κ′2(0).
3. m isA-equivalent to lips if and only if κ1(0) = κ2(0) = 0 and κ′1(0)κ′2(0) < 0.
4. m isA-equivalent to beaks if and only if κ1(0) = κ2(0) = 0, κ′1(0)κ′2(0) > 0 and κ′1(0) , κ′2(0).
5. m isA-equivalent to swallowtail if and only if κ1(0) = ∓κ2(0) , 0, κ′1(0) = κ′2(0) and κ′′1 (0) , ∓κ′′2 (0).

Proof. From definition we have m(s1, s2) = 1
2 (γ1(s1) + γ2(s2)), where s1 and s2 are the arc-length of γ1 and γ2

respectively. This map is singular at (0, 0) if and only if T1(0) = ±T2(0) see [6]. Now we will use Criteria 2.2
to prove this theorem. Let T1(0) = −T2(0), we choose η such that dm(0,0)(η) = 0, thus we take η = ∂

∂s1
+ ∂

∂s2
.

Calculations show that Λ(s1, s2) = −T1(s1).N2(s2). For the purpose of calculations we omit s1 and s2, hence
Λ = −T1.N2. Parts 1 and 2 in Theorem 2.4 were proved by the second author in [6], but here we present a
new version of their proof using the Criteria 2.2. Calculations show that

Λs = −κ1N1 ·N2, Λt = κ2T1 · T2,

ηΛ = (κ2 − κ1)T1 · T2, ηηΛ = (κ′2 − κ
′

1)T1 · T2 + (κ2 − κ1)2T1 ·N2,

ηηηΛ = [(κ′′2 − κ
′′

1 ) − (κ2 − κ1)3]T1 · T2 + 3(κ2 − κ1)(κ′2 − κ
′

1)T1 ·N2

and

HessΛ =

(
−κ′1N1 ·N2 + κ2

1T1 ·N2 κ1κ2N1 · T2
κ1κ2N1 · T2 κ′2T1 · T2 + κ2

2T1 ·N2

)
.

At (0, 0) we have Λs(0, 0) = κ1(0),Λt(0, 0) = −κ2(0), ηΛ(0, 0) = κ1(0) − κ2(0), ηηΛ(0, 0) = κ′1(0) − κ′2(0),
ηηηΛ(0, 0) = κ′′1 (0) − κ′′2 (0) + (κ2(0) − κ1(0))3 and det(HessΛ(0, 0)) = −κ′1(0)κ′2(0). Thus applying the Cri-
teria 2.2 the results hold. Similarly, we prove the results when T1(0) = T2(0), and in this case we choose
η = ∂

∂s1
−

∂
∂s2

.

In [9] the second author and Graham Revee study the λ-equidistant ,associated to a smooth plane curve γ,
which is the set of all points of the form (1 − λ)p + λq for fixed λ and parallel tangents at p and q.

3. Examples

In this section we give examples of the last three parts of theorem 2.4. To do so it is easier to work locally
by considering two segments of curve as the following.

(1) We choose γ1(t1) = (t1, 3t3
1 + t4

1) and γ2(t2) = (t2, 1−2t3
2 + t4

2). Direct calculations show that T1(0) = T2(0),
κ1(0) = κ2(0) = 0, κ′1(0) = 18 and κ′2(0) = −12. Therefore, m isA-equivalent to lips (see Figure 1).

(2) For beaks we chooseγ1(t1) = (t1,−2t3
1+t4

1) andγ2(t2) = (t2, 1−3t3
2+t4

1). In this case we have T1(0) = T2(0),
κ1(0) = κ2(0) = 0, κ′1(0) = −12 and κ′2(0) = −18. Therefore, m isA-equivalent to beaks (see Figure 2).

(3) For swallowtail we take γ1(t1) = (t1, 2t2
1 + 3t3

1 + 4t4
1) and γ2(t2) = (t2, 1 − 2t2

2 − 3t3
2 + t4

2). We have
T1(0) = T2(0), κ1(0) = 4, κ2(0) = −4, κ′1(0) = κ′2(0) = −18, κ′′1 (0) = −168 and κ′′2 (0) = 216. Therefore, m is
A-equivalent to swallowtail.
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Figure 1: An example of a per-
turbed midpoint in the case of a
lips singularity

Figure 2: An example of a per-
turbed midpoint in the case of a
beaks singularity

4. Singularity of the midlocus map associated to a space curve as a map from R2 to R3

In this section we define the midlocus associated to a smooth space curve γ to be the image of the
midpoint map where we use all pairs of point of γ. Also, the geometric conditions for the midlocus of a
space curve to have a crosscap and an S±1 singularity will be investigated.

Proposition 4.1. Let γ : I → R3 be a smooth space curve embedded in R3 (where I is an open interval or a circle),
and let p1 = γ(t1) and p2 = γ(t2) be two distinct points of the curve. Then there is a sphere or plane in R3 tangent
to γ at these two points (a bitangent sphere or plane). There are infinitely many such spheres if and only if there is a
plane containing both p1 and p2 and perpendicular to the tangent lines at those points.

Proof. The centres of spheres tangent to γ at p1 all lie on the planeπ1 through p1 perpendicular to the tangent
vector γ′(t1) there; similarly there is a plane π2 perpendicular to γ′(t2) at p2. The remaining condition, that
one sphere should be tangent at both points requires the centre to lie on the perpendicular bisector plane
π12 of the chord joining p1 and p2. We require the condition that these three planes meet in a single point,
which will then be the centre of the unique bitangent sphere. The three normals to the planes are the two
tangents to γ at p1, p2 and the chord between these two points; the three planes meet in a single point, if
and only if the two tangents and the chord are not coplanar.

It remains to examine the case where this fails. Suppose first that the tangent lines at p1 and p2 are
parallel but distinct, so that π1 and π2 are also parallel. If π1 and π2 are distinct then the unique plane
containing the tangent lines at p1 and p2 is a bitangent plane and there are no bitangent spheres. If π1 = π2
then there are infinitely many bitangent spheres with centres on the intersection of π1 = π2 with π12.

If the tangent lines at p1 and p2 coincide then any plane through the common tangent line is a bitangent
plane, and there are no bitangent spheres.

Finally if the tangent lines at p1 and p2 are coplanar with the chord joining these two points, but the
tangent lines are not parallel, then the plane containing them is a bitangent plane and there are no bitangent
spheres.

Proposition 4.1 motivates the following definition of the midlocus associated to a smooth space curve.
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Definition 4.2. When constructing the midlocus of a space curve γ we use all the pairs of points p1, p2: the midlocus
M is the image of the midpoint map m : I× J→ R3, where I and J are open intervals of real numbers, if we consider
two disjoint curves γ1, γ2, or I = J = S1 if we consider a single closed curve γ. In this case call M the midpoint
surface.

Note that M is a compact closed surface M with boundary on the generating space curves, and that it
will in general have singularities. Note also that the construction of M, unlike that of the midlocus of a
plane curve, is affinely invariant.

Remark 4.3. When p2 → p1 in the Proposition 4.1 the bitangent sphere, if there is one, will in the limit have (at
least) 4-point contact with γ at p1 and hence will be the unique sphere of curvature with centre

γ(t1) +
1

κ(t1)
N(t1) −

κ′(t1)
κ2(t1)τ(t1)

B(t1),

provided κ(t1) and τ(t1) are nonzero. (See[4, §2.34].)

The simple singularities of map germs (R2, 0) −→ (R3, 0) have been classified by Mond [13]. As an
application of Mond’s classification we give the geometric conditions for the midlocus surface to have a
crosscap singularity ( resp. S±1 singularity) with normal form (x, xy, y2) (resp. (x, y2, y(x2

± y2))). We present
the criteria for a surface in R3 to have such singularities and for more details we refer reader to [15]. If a
map germ f : (R2, 0) → (R3, 0) has a corank one singularity at 0, then there exist two independent vector
fields ξ and η near the origin satisfying d f0(η0) = 0 and ξ0, η0 ∈ T0R2. The function which plays a central
role for the criteria is defined by ϕ : (R2, 0) → R such that ϕ = det(ξ f , η f , ηη f ) = (ξ f ∧ η f ) · ηη f , where ζ f
is the directional derivative of f by ζ.

Criteria 4.4. [15] Let f : (R2, 0)→ (R3, 0) be a map germ and 0 a corank one singular point. Then

1. f at 0 isA-equivalent to the crosscap if and only if ξϕ(0) , 0.
2. f at 0 isA-equivalent to S−1 if and only if ϕ has a critical point at 0, and det(Hessϕ(0)) > 0.
3. f at 0 is A equivalent to S+

1 if and only if ϕ has a critical point at 0 and det(Hessϕ(0)) < 0 and the vectors
ξ f (0) and ηη f (0) are linearly independent.

Through the rest of this article the curvature and torsion of the curve γi are denoted by κi and τi respectively.
Moreover, the Serret- Frenet frame of γi is denoted by {Ti,Ni,Bi}, where Ti, Ni and Bi are the unit tangent,
the unit principle normal and the unit binormal respectively.

Lemma 4.5. Let γ1 and γ2 be two regular space curves. If T1 = ±T2, then N1 ·B2 = ∓N2 ·B1 and N1 ·N2 = ±B1 ·B2,
where {Ti,Ni,Bi} is the Serret - Frenet frame of γi, i = 1, 2.

Proof. The proof of this Lemma is obvious.

Before we state and prove the main results of this section, which are related to the singularities of the
midlocus of a space curve, we state the essential lemma.

Lemma 4.6. Let M be the midlocus associated to a smooth space curve γ with non-vanishing curvature.

1. The midlocus is smooth at M(t1, t2) if and only if the tangents of γ at γ(t1) and γ(t2) are not parallel.
2. The midlocus is parametrized by a corank one singularity at M(t1, t2) if and only if the tangents of γ at γ(t1)

and γ(t2) are parallel.

Proof. The proof of this lemma is obvious.

Theorem 4.7. Let M be the midlocus associated to a smooth space curve γ with non-vanishing curvature. If γ has
parallel tangents at t1 and t2, then the midlocus has a crosscap singularity at the mid-point of the the chord joining
γ(t1) and γ(t2) if and only if
N(t1) · B(t2) , 0. That means γ does not have parallel Serret - Frenet frames at γ(t1) and γ(t2).
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Proof. To prove this theorem we use Criteria 4.4. Let T(t1) = −T(t2) and consider two pieces γ1 and γ2 of
γ around t1 and t2. We parameterize γ1 by its arc-length s and γ2 by its arc-length t such that t1 = 0 and
t2 = 0 in the new coordinates. The midlocus associated to γ1 and γ2 is defined by M = 1

2 (γ1 + γ2). By our
assumption we have T1(0) = −T2(0) and in this case M is singular at (0, 0). Since dM0(η0) = 0 we choose
η = ∂

∂s + ∂
∂t and ξ = ∂

∂s −
∂
∂t . We define the function ϕ = det(ξM, ηM, ηηM). Direct calculations show that

ξM = 1
2 (T1 − T2), ηM = 1

2 (T1 + T2) and ηηM = 1
2 (κ1N1 + κ2N2). Thus

ϕ = det(ξM, ηM, ηηM)
= (ξM ∧ ηM) · ηηM

=
1
4

(κ2T1 · B2 − κ1T2 · B1).

M has a crosscap singularity at (0, 0) if and only if ξϕ , 0. ξϕ =
∂ϕ

∂s
−
∂ϕ

∂t
and direct calculations show that

ξϕ =
1
4

(κ1κ2N1 · B2 − κ
′

1T2 · B1 + κ1τ1T2 ·N1) −
1
4

(κ′2T1 · B2 − κ2τ2T1 ·N2 − κ1κ2N2 · B1).

At s = 0 and t = 0 we have T1 = −T2 thus

ξϕ|(0,0) =
κ1κ2

4
(N1 · B2 + N2 · B1)

and from Lemma 4.5 we have N1 · B2 = N2 · B1. Therefore, ξϕ|(0,0) , 0 if and only if N1 · B2 , 0. Similarly,
we prove the results when T(t1) = T(t2), in this case we choose η = ∂

∂s −
∂
∂t , and ξ = ∂

∂s + ∂
∂t .

Remark 4.8. From the Theorem 4.7 and its proof it can be easily shown that if the space curve γ has a parallel
tangents at γ(t1) and γ(t2) and γ has zero curvature at γ(t1) or at γ(t2), then the midlocus does not have a crosscap
singularity.

Now assume that γ has non-vanishing curvature and the midlocus does not have a crosscap singularity.
In this case we have N(t1) · B(t2) = 0. We will give the geometric conditions for the midlocus to have S±1
singularities and to do so we are going to use Criteria 4.4. Before starting our aim in the rest of this section
we state the following elementary lemma.

Lemma 4.9. Let γ1 and γ2 be two regular space curves. Suffix 1 or 2 refers to the curve γ1 or γ2 respectively.

1. If T1 = −T2 and N1 · B2 = 0, then one and only one of the following is true
(a) N1 = −N2 and B1 = B2. (b) N1 = N2 and B1 = −B2.

2. If T1 = T2 and N1 · B2 = 0, then one and only one of the following is true
(c) N1 = N2 and B1 = B2. (d) N1 = −N2 and B1 = −B2.

Now we state the main theorem of the rest of this section.

Theorem 4.10. Let M be the midlocus associated to a smooth space curve γ with curvature κ and torsion τ. Suppose
that γ has parallel tangents at t1 and t2 and N(t1) · B(t2) = 0.

1. If T1 = −T2, then M has an S+
1 singularity if and only if

τ1τ2(κ2
1 + κ2

2)B1 · B2 + κ1κ2(τ2
1 + τ2

2) > 0.

2. If T1 = T2, then M has an S+
1 singularity if and only if

τ1τ2(κ2
1 + κ2

2)B1 · B2 − κ1κ2(τ2
1 + τ2

2) < 0.

3. If T1 = −T2, then M has an S−1 singularity if and only if

τ1τ2(κ2
1 + κ2

2)B1 · B2 + κ1κ2(τ2
1 + τ2

2) < 0.
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4. If T1 = T2, then M has an S−1 singularity if and only if

τ1τ2(κ2
1 + κ2

2)B1 · B2 − κ1κ2(τ2
1 + τ2

2) > 0.

Proof. We will follow the same procedure of the proof of Theorem 4.7. Let T1 = −T2, then we have
ϕ = 1

4 (κ2T1 · B2 − κ1T2 · B1). Direct calculations show that

ϕs =
1
4

(κ1κ2N1 · B2 − κ
′

1T2 · B1 + κ1τ1T2 ·N1),

and

ϕt =
1
4

(κ′2T1 · B2 − κ2τ2T1 ·N2 − κ1κ2N2 · B1).

Now at (0, 0) we have T1 = −T2 and N1 · B2 = N2 · B1 = 0. Thus ϕ has a critical point at (0, 0). Also, we have

ϕss =
1
4
{κ2κ

′

1N1 · B2 − κ2κ
2
1T1 · B2 + κ2κ1τ1B1 · B2

− κ′′1 T2 · B1 + 2κ′1τ1T2 ·N1 + κ1τ
′

1T2 ·N1

− κ2
1τ1T1 · T2 + κ1τ

2
1T2 · B1},

ϕts =
1
4
{κ1κ

′

2N1 · B2 − κ1κ2τ2N1 ·N2 − κ2κ
′

1N2 · B1 + κ1κ2τ1N1 ·N2},

and

ϕtt =
1
4
{κ′′2 T1 · B2 − 2κ′2τ2T1 ·N2 − κ2τ

′

2T1 ·N2

+ κ2
2τ2T1 · T2 − κ2τ

2
2T1 · B2 − κ1κ

′

2N2 · B1

+ κ1κ
2
2T2 · B1 − κ1κ2τ2B1 · B2},

where Z′1 =
dZ1

ds
and Z′2 =

dZ2

dt
. Now at s = 0, t = 0 we have T1 = −T2 and B1 ·N2 = B2 ·N1 = 0, thus we have

ϕss =
κ1τ1

4
(κ2B1 · B2 − κ1T1 · T2), ϕts =

κ1κ2

4
(τ1 − τ2)N1 ·N2 and ϕtt =

κ2τ2

4
(κ2T1 · T2 − κ1B1 · B2). Therefore,

ϕss =
κ1τ1

4
(κ2B1 · B2 + κ1), and ϕtt =

−κ2τ2

4
(κ2 + κ1B1 · B2). The necessary and sufficient condition for the

midlocus to have an S+
1 singularity is ϕssϕtt − ϕ2

ts < 0 if and only if

−κ1κ2{τ1τ2(κ2B1 · B2 + κ1)(κ2 + κ1B1 · B2) + κ1κ2(τ1 − τ2)2
} < 0

if and only if

κ1κ2{τ1τ2(κ2B1 · B2 + κ1)(κ2 + κ1B1 · B2) + κ1κ2(τ1 − τ2)2
} > 0.

Also, the condition for the midlocus to have an S−1 singularity is ϕssϕtt − ϕ2
ts > 0 if and only if

κ1κ2{τ1τ2(κ2B1 · B2 + κ1)(κ2 + κ1B1 · B2) + κ1κ2(τ1 − τ2)2
} < 0.

Similarly we prove the results when T1 = T2 and in this case η = ∂
∂s −

∂
∂t and ξ = ∂

∂s + ∂
∂t . Thus ϕ =

1
4 (κ1T2 · B1 − κ2T1 · B2). Therefore, by the same procedure of the first case we prove the results.

Now we present examples to illustrate our results in section 4.
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5. Examples

(1) Let γ(t) = (cos t, sin t, sin 2t). (We can for example change the third coordinate to sin 2t + a cos t +
b sin t, a, b ∈ R (an affine transformation of R3) without affecting the results.) Then it is easy to show
that parallel tangents occur exactly for (t1, t2) = (± 1

4π,∓
3
4π), and that the binormals at these four points

are parallel to:

t = ± 1
4π : (∓2

√

2,−2
√

2, 1); t = ± 3
4π : (±2

√

2, 2
√

2, 1).

Hence the binormals at the parallel tangent pairs are not parallel and using Theorem 4.7 M will have
a crosscap singularity at each point. The midpoint surface M is shown in Figure 3.

(2) In order to give examples of the non-crosscap cases it is easier to work locally, that is consider two
segments of curve, say

γ1(t) = (x, y, z) = (t, t2, t3); γ2(u) = (x, y, z) = (au, bu2, 1 + cu3),

for t,u close to 0. These curves have parallel tangent lines y = z = 0 and parallel osculating planes
z = 0. The binormals, curvature and torsion at the basepoints t = 0,u = 0 are:

B1 = (0, 0, 1), κ1 = 2, τ1 = 3; B2 = (0, 0, sign(ab)), κ2 =
2|b|
a2 , τ2 =

3c
ab
.

Therefore, If we take γ1(t) = (t, t2, t3) and γ2(u) = (2u,−u2, −1
9 u3 + 1), then the associated midpoint of

γ1 and γ2 has an S+
1 singularity at (0, 0). If we take γ1(t) = (t, t2, t3) and γ2(u) = ( 1

2 u,u2, 1
2 u3 + 1), then

the associated midpoint of γ1 and γ2 has an S−1 singularity at (0, 0) see Figure 4.

Figure 3: The midpoint surface for the curve in Ex-
ample (1) which has two crosscaps, when t ∈ (0, 2π).
Two crosscaps marked by a white circle.

Figure 4: The midpoint surface for the curves in
Example (2) which has an S−1 singularity. The self-
intersection curve is emphasized by a dark line.

6. λ-point map

In this section we study the λ-point map associated to space curves which is more general than the
midpoint map. Our main task in this section is to study the singularity of this map and to recognize the
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special values of λ. The λ-point map associated to two regular space curves γ1 and γ2 (or one curve) is a
map from R2 to R3 defined by

M(t1, t2) = (1 − λ)γ1(t1) + λγ2(t2). (1)

In [17] the author classifies the local singularities of the envelope of this 2-parameter family of chords,
calling it the chord set. Away from γ1 and γ2 themselves this is the ruled surface consisting of lines joining
points p1 and p2 of γ1 and γ2 for which the tangents at p1 and p2 and the chord are coplanar. This contrasts
with our investigation which studies the locus of points at a fixed ratio along the chords. It is obvious for
the reader to recognize that the image of the λ-point map is γ1 when λ = 0 and γ2 when λ = 1. In our
case we assume that λ , 0, 1 and this will be taken in the rest of this section. Without loss of generality we
may assume that γ1 and γ2 are parametrized by their arc-lengths s and t respectively. It is clear that M is
singular at M(s0, t0) if and only T1(s0) and T2(t0) are parallel. By similar calculations to those in section 4 we
have the following result.

Theorem 6.1. Let γ1 and γ2 be two regular space curves with non-vanishing curvatures such that T1(s0) = ±T2(t0).
The λ- point map given by equation (1) isA-equivalent to crosscap if and only if the osculating planes of γ1 and γ2
at γ1(s0) and γ2(t0) are not parallel.

This theorem tells us that when the osculating planes are not parallel then all values of λ (, 0, 1) give
the same map up toA-equivalence.
In the following we study the case when T1(0) = −T2(0) and the osculating planes are parallel; the case
T1(0) = T2(0) is similar. If γ1 and γ2 have non-vanishing curvatures and torsion, then by a similar method
used in Theorem 4.10, the determinant of the Hessian of the function ϕ at (0, 0) is given by

ρ = −
(1 − λ
λ

)2

κ1κ2

{
τ1τ2

(
κ2

1 + κ2
2

(1 − λ
λ

)2)
B1 · B2 + κ1κ2

(
τ2

1 + τ2
2

(1 − λ
λ

)2)}
. (2)

Using criteria 4.4, the λ-point map isA-equivalent to S±1 if and only if ρ , 0. The interesting question rises
now when ρ = 0 is, which type of singularity can occur? It is obvious from equation (2) that ρ = 0 if and
only if(1 − λ

λ

)2

= −δ
κ1τ1

κ2τ2
, (3)

where δ is the sign of (B1 · B2).

Definition 6.2. The values of λ given by equation (3) will be called special values of λ when the osculating planes
are parallel.

From Lemma (4.9), when the osculating planes are parallel, B1 = ±B2. Therefore, the existence of the special
values of λ depends on the signs of τ1 and τ2. The following remark gives the situation when the special
values of λ exist.

Remark 6.3. Let γ1 and γ2 be two regular space curves with non-vanishing curvatures and torsions. Let T1(0) =
−T2(0) and γ1 and γ2 have parallel osculating planes at γ1(0) and γ2(0).

1. If B1(0) = B2(0), then the special values of λ exist if and only if τ1(0) and τ2(0) have opposite signs.
2. If B1(0) = −B2(0), then the special values of λ exist if and only if τ1(0) and τ2(0) have the same sign.

Now we have the following theorem.

Theorem 6.4. Let γ1 and γ2 be two regular space curves with non-vanishing curvatures and torsions ( at s0 = 0,
and t0 = 0). If T1(0) = −T2(0) and the two curves have parallel osculating planes at γ1(0) and γ2(0), then away from
the special values of λ the λ-point map at M(0, 0) isA-equivalent to S±1 .
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This theorem tells us that the type of singularity of the λ-point map, when T1(0) = −T2(0 and the two
curves have parallel osculating planes at γ1(0) and γ2(0), is always S±1 at all values of λ except at values of
λ satisfying equation (3). For this reason we call the values of λ satisfy equation (3), the special values of λ.
In the rest of this section our task is to classify the type of singularity of the λ-point map when λ reaches its
special values. Now we use the results of Mond ([13]) to classify the type of singularity of the λ-point map
at the special values of λ. Consider two curves γ1 and γ2. By an affine transformation we may assume that
γ1 and γ2 have the form

γ1(t) = (t, a2
2t2 + a3t3 + a4t4 + . . . , b2

3t3 + b4t4 + b5t5 + . . .) (4)

γ2(u) = (p − u, q + c2
2u2 + c3u3 + v4u4 + . . . , r − d2

3u3 + d4u4 + d5u5 + . . .). (5)

Direct calculations show that T1(0) = −T2(0), B1(0) = −B2(0). For the purpose of calculation we may

assume that b3 > 0, d3 > 0, and d3 , b3. In this case the special values of λ are given by λ =
d3

d3 ± b3
. In the

following we study the case when λ =
d3

d3 + b3
. By appropriate variable changes in the source and suitable

coordinates changes in the target, we find the following proposition.

Proposition 6.5. Assume that γ1 and γ1 are as in equations (4) and (5). If λ =
d3

d3 + b3
, then the 5-jet of the λ-point

map isA-equivalent to

j5M = (x, y2, a21x2y + a13xy3 + a31x3y + a41x4y + a23x2y3 + a05y5). (6)

In the appendix we will give a geometric interpretation of the coefficients of the third component of j5M in
terms of curvatures and torsions of γ1 and γ2. Now we state the following theorem which was proved by
Mond ([13]).

Theorem 6.6. [13] A map germ Ω : (R2, 0) −→ (R3, 0) with j2Ω = (x, y2, 0) isA-equivalent to a germ of the form
(x, y2, yF(x, y2)), for smooth F(x, y2).

The following corollary gives the normal form of the λ-point map at the special values of λ.

Corollary 6.7. Let γ1 and γ2 be two regular space curves with non-vanishing curvatures and torsions. Let T1(0) =
−T2(0) and γ1 and γ2 have parallel osculating planes at γ1(0) and γ2(0). The λ-point map at the special values of λ
isA-equivalent to a germ of the form (x, y2, yF(x, y2)), for smooth F(x, y2).

Proof. From equation (6), the second jet of the λ-point map is given by j2M = (x, y2, 0). Therefore, using
Theorem (6.6) the result holds.

The coefficient a21 plays a central role in the type of classification of the λ-point map. We use equation (6) to
give the normal form of the λ-point map. Precisely, we give the condition for this map to beA-equivalent
to B±2 , C±3 , F4, and C±4 with normal forms (x, y2, x2y± y5), (x, y2, xy3

±x3y), (x, y2, x3y+ y5), and (x, y2, xy3
±x4y)

respectively. Recall that C±3 is 4-determined, and the others are 5-determined and for more details in this
subject we refer the reader to ([11, 13]).
Case 1 a21 , 0
If a21 , 0, then after suitable coordinates change in the target j5M can be transformed to j5M = (x, y2, a21x2y+
a13xy3 + a05y5). Therefore, j5M isA-equivalent to B±2 if and only if 4a05a21 − a2

13 , 0.
Case 2 a21 = 0
In this case the fourth jet of the λ-point map is given by j4M = (x, y2, a13xy3 + a31x3y). Therefore, j4M isA-
equivalent to C±3 if and only if a13 , 0 and a31 , 0. Thus M isA-equivalent to C±3 if and only if a13 , 0 and a31 ,

0. Now assume that a13 = 0, then the fifth jet of M is given by j5M = (x, y2, a31x3y + a41x4y + a23x2y3 + a05y5).



A. Alghanemi, P. Giblin / Filomat 32:8 (2018), 2977–2990 2987

If a31 , 0, then j5M can be transformed to j5M = (x, y2, a31x3y + a23x2y3 + a05y5). Therefore, j5M is A-
equivalent to F4 if and only if a05 , 0. Now assume that a31 = 0. If a13 , 0, then j5M can be transformed
to j5M = (x, y2, a13xy3 + a41x4y + a05y5). Therefore, j5M is A-equivalent to C±4 if and only if a41 , 0. We
summarize this discussion in the following theorem.

Theorem 6.8. Let γ1 and γ2 be two regular space curves with non-vanishing curvatures and torsions (necessarily
at t0 = 0, and u0 = 0). If T1(0) = −T2(0) and the two curves have parallel osculating planes at γ1(0) and γ2(0). At
the special values of λ, we have the following.

1. If a21 , 0, then M isA-equivalent to B±2 if and only if 4a05a21 − a2
13 , 0.

2. If a21 = 0, then M isA-equivalent to C±3 if and only if a13 , 0 and a31 , 0.
3. If a21 = a13 = 0, then M isA-equivalent to F4 if and only if a31 , 0 and a05 , 0.
4. If a21 = a31 = 0, then M isA-equivalent to C±4 if and only if a13 , 0 and a41 , 0.

In the appendix we give the geometric interpretations of the coefficients ai j in terms of the curvatures
and torsions of γ1 and γ2. In the previous we discuss the possible singularities of the λ-point map when
τ1(0) , 0 and τ2(0) , 0. The interesting question now is that what is the type of singularity does the λ-point
map may have when τ1(0) = 0 or τ2(0) = 0 or τ1(0) = τ2(0) = 0?

Proposition 6.9. Letγ1 andγ2 be two regular space curves with non-vanishing curvatures such that T1(s0) = ±T2(t0)
and γ1 and γ2 have parallel osculating planes at γ1(0) and γ2(0) . If τ1(0) = 0 or τ2(0) = 0, but not both zero, then
the λ-point map isA-equivalent to S+

1 .

Proof. The proof of this proposition comes directly from equation (2) and Criteria (4.4).

The following table is a summary of our results when the torsions are not both zero.

Type of singu-
larity

Osculating
planes are
parallel

Special val-
ues

a21 a13 a31 τ1,τ2 a41 a05 4a21a05 − a2
13

Crosscap No — — — — — — — —
S±1 Yes No — — — Not

both
zero

— — —

B±2 Yes Yes , 0 — — — — — , 0
C±3 Yes Yes = 0 , 0 , 0 — — — —
C±4 Yes Yes = 0 , 0 = 0 — , 0 — —
F4 Yes Yes = 0 = 0 , 0 — — , 0 —

Table 1: This table is the summary of the classifications of λ-point map. The dash — means this term is not
involved.

Remark 6.10. If τ1(0) = τ2(0) = 0 that means b3 = d3 = 0 in equations (4) and (5). In this case there is another

special values of λ. If
1 − λ
λ
,
κ1

κ2
, then by appropriate variable changes in the source and suitable coordinates changes

in the target, it can be shown that the fifth jet of the λ-point map is given by

j5M = (x, y2,A13xy3 + A31x3y + A41x4y + A23x2y3 + A05y5). (7)

From this equation it is clear that the B±2 singularity is not possible for λ-point map when both torsions are
zero, whereas the C±3 , C±4 and F4 singularities are possible.
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Example 6.11. Consider the two curves γ1(t) = (t, 4t2 + 3t3
− 2t4

− 5t5 + 2t6, 4t4
− 8t5

− 2t6 + 6t7) and γ2(u) =
(3− u, 2 + 9u2

− 6u3
− 7u4 + 3u5 + 12u6 + 4u7, 1 + 6u4 + u5

− u6 + 5u7). The associated λ-point map to these curves
M(t,u) = (1 − λ)γ1(t) + λγ2(u) at M(0, 0) isA-equivalent to C+

3 when λ = 1
2 and to C−3 when λ = 1

3 .

Figure 5: The λ-point map in example 6.11 when λ = 1
3 . The self-intersection curve is emphasized by a

dark line.

7. Appendix

In this appendix we express the coefficients of the 5-jet of the λ-point map appear in Theorem (6.8) in
terms of the curvatures, torsions and their derivatives. Calculations show that the Taylor expansion of the
curvature and torsion of γ1 in terms of the arc-length are given by.

κ1(s) = 2a2
2 + 6a3s1 −

3(4a8
2−3b4

3−2a2
2a4)

a2
2

s2
1 −

27a3b4
3−36a2

2b2
3b4−20a4

2a5−76a8
2a3

a4
2

s3
1 + . . .

τ1(s) =
3b2

3

a2
2

+
6(2a2

2b4−3a3b2
3)

a4
2

s +
3(10a4

2b5−18b4a3a2
2−18a4b2

3a2
2+27a2

3b2
3−9b6

3)
a6

2
s2 + . . .

(8)

Also, Taylor expansion of the curvature and torsion of γ2 in terms of the arc-length are given by.
κ2(s2) = 2c2

2 + 6c3s2 +
3(4c2

2c4+3d4
3−4c8

2)
c2

2
s2

2 −
(76c8

2c3−20c4
2c5+36c2

2d2
3d4+27c3d4

3)
c4

2
s3

2 + . . .

τ2(s2) =
3d2

3

c2
2
−

6(2c2
2d4+3c3d2

3)
c4

2
s2 −

3(18c2
2c4d2

3−18c2
2c3d4+10c4

2d5+9d6
3−27c2

3d2
3)

c6
2

s2
2 + . . .

(9)

Using equation (8) we have the following expressions for the coefficients a2, a3, a4, a5, b3, b4 and b5. All values
are calculated at s1 = 0

a2
2 =

κ1

2
, a3 =

κ′1
6
, a4 =

κ′′1 − κ1τ2
1 + 3κ3

1

24
, a5 =

κ′′′1 + 19κ2
1κ
′

1 − 3κ1τ1τ′1 − 3κ′1τ
2
1

120
.

b2
3 =

κ1τ1

6
, b4 =

κ1τ′1 + 2κ′1τ1

24
, b5 =

κ1τ′′1 + 3κ′1τ
′

1 + 3κ′′1 τ1 + 9κ3
1τ1 − κ1τ3

1

120
.

(10)
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Also, from equation (9) at s2 = 0, we have
c2

2 =
κ2

2
, c3 =

κ′2
6
, c4 =

κ′′2 − κ2τ2
2 + 3κ3

2

24
, c5 =

κ′′′2 + 19κ2
2κ
′

2

120
−
κ2

2τ2τ′2 + κ′2τ
2
2

80
.

d2
3 =

κ2τ2

6
, d4 =

−κ2
2τ
′

2 − 4κ′2τ2

48
, d5 =

κ2τ3
2 − κ2τ′′2 − 3κ′′2 τ2 − 9κ3

2τ2

120
−
κ2κ′2τ

′

2

80
.

(11)

In calculating j5M we use the Maple, and the coefficients of j5M are given by



a21 = −3
(d3+b3)d3(a2

2d3−c2
2b3)

a2
2d3+c2

2b3
.

a13 = −
d3(−4 b4d3

2c2
2+4 a2

2d4b3
2+3 d3b3

3c3+3 d3
3b3a3)

b3
2(a2

2d3+c2
2b3)

.

a31 = − 1
2

(d3+b3)2d3(−9 a2
2c3c2

2b3
2+27 b3a2

4c3d3+27 b3a3c2
4d3+8 a2

6d4−9 a3d3
2c2

2a2
2
−8 b4c2

6)
(a2

2d3+c2
2b3)3 .

a05 =
d3(d5b3

4a2
2d3+d5b3

5c2
2+b5d3

5a2
2+b5d3

4c2
2b3−2 d4b3

5c3−2 d4b3
3a3d3

2
−2 b4d3

3c3b3
2
−2 b4d3

5a3)
b3

4(d3+b3)(a2
2d3+c2

2b3)
.

(12)

Calculations show that the coefficient a41 is a long equation, but when a21 = 0, then a41 can be simplified to

a41 =
1

64

(
c2

2 + a2
2
)3

a2
10c2

10 [27 a2
10c3

2d3
2 + 48 a2

10d3
2c4c2

2

+ 20 a2
10d5c2

4 + 162 c3a3d3
2c2

4a2
6

− 72 a2
4b4c3c2

8
− 48 a2

4a4d3
2c2

8

+ 135 a2
2a3

2d3
2c2

8 + 20 a2
2b5c2

12

− 72 b4c2
12a3].

(13)

Using equations (10) and (11), a21, a13, a31, a41 and a05 can be expressed in terms of κ1, κ2 τ1, τ2 and their
derivatives.
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