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Abstract. Cloud service reliability assessment is a vital decision-making activity for companies and
individuals. In this assessment, the evaluation information can be represented by multi-valued neutro-
sophic numbers (MVNNs). MVNNs are regarded as an integration of single-valued neutrosophic numbers
(SVNNs) and hesitant fuzzy numbers (HFNs); therefore, considering the defects of entropy and cross-
entropy measures for SVNNs and HFNs, we first define a framework of entropy measures and a family
of cross-entropy measures for MVNNs in this paper. Second, a novel extended VIKOR (VlseKriterijumska
Optimizacija I Kompromisno Resenje) method based on entropy and cross-entropy measures is developed
to address the decision-making problems when information about criteria weights is absolutely unknown.
Finally, we apply the proposed method to evaluate cloud service reliability; also, a sensitivity analysis and
a comparative analysis are made to interpret the practicality and effectiveness of it. The results of analyses
verify that the proposed method based on cross-entropy is much better than the methods using general
distance measures.

1. Introduction

Cloud service is an important new technology that has been developed rapidly in recent years. In-
dividuals and companies struggle to make selections of a cloud service because of the rapid changes to
the new technology [1]. Thus, cloud service reliability assessment is a significant problem for individuals
and companies wanting to use this technology. Many different multi-criteria decision-making (MCDM)
methods have been studied to cope with cloud service reliability assessment problems [2]. In these studies,
some scholars have utilized fuzzy logic and fuzzy sets (FSs) to describe fuzzy, incomplete, and uncertain
evaluation information in cloud service reliability assessments [3]. FSs were first proposed by Zadeh [4],
and since then, many extensions of FSs have been proposed. For example, Atanassov [5] defined intuition-
istic fuzzy sets (IFSs), which simultaneously consider the membership degree and non-membership degree.
They are more flexible at expressing fuzziness, incompleteness, and uncertainty than FSs [5]. Besides, hes-
itancy may exist in the process of MCDM problems when decision makers (DMs) identify the membership
degree of one element in specific situations. Therefore, Torra [6, 7] introduced hesitant fuzzy sets (HFSs) to
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describe this hesitant information. However, FSs, IFSs, and HFSs cannot entirely depict inconsistent and
indeterminate information under most real-life circumstances [8]. For instance, when a specialist is asked
to give an attitude about a statement, the expert may say the probability that the statement is true is 0.5, the
possibility that the statement is false is 0.6, and the extent that he or she is not sure is 0.2 [8]. This type of
case cannot be handled by FSs, IFSs, or HFSs. Based on this, neutrosophic sets (NSs) were investigated by
Smarandache [9, 10] to express true, false, and indeterminate information. Simultaneously, the example can
be described by NSs as x (0.5, 0.2, 0.6). However, NSs are hard to apply to practical circumstances without
a certain description [8, 10]. Therefore, single-valued neutrosophic sets (SVNSs) have been developed as
particular cases of NSs [8, 10]. The truth-membership degree, indeterminacy-membership degree, and
falsity-membership degree are all single values ranging from 0 to 1 in SVNSs. Moreover, other instances
of NSs have also been proposed. Examples include multi-valued neutrosophic sets (MVNSs) [11], bipolar
neutrosophic sets [12], single-valued neutrosophic linguistic sets [13], single-valued trapezoidal neutro-
sophic number [14, 15], and interval neutrosophic linguistic sets [16]. Further, the NSs theories have been
proved to be useful in fields such as decision-making problems [17], physician selection problems [18, 19],
market segment selection problems [20], and e-commerce websites evaluation problems [21].

The unique properties of MVNSs allow them to perfectly represent the uncertain information found in
the cloud service reliability assessment process. MVNSs (also referred to as neutrosophic hesitant fuzzy sets
[22, 23]) were originally defined by Wang and Li [11]. As the particular instances of NSs, MVNSs integrate
the edges of SVNSs and HFSs [24]. There are three sets in MVNSs, and each set consists of different
values assigned in [0, 1], to describe the truth-membership degree, indeterminacy-membership degree, and
falsity-membership degree, respectively [11]. When we evaluate cloud service reliability, several experts
are usually needed to provide their preferences on satisfaction, indeterminacy, or dissatisfaction with a
real number between 0 and 1. For example, suppose two experts are invited to give their evaluation
information. One expert may consider the degree of satisfaction to be 0.7 while another expert may
think it is 0.6; meanwhile, both of two experts may feel dissatisfied and consider the degree is 0.3; in
addition, one expert may think the degree of his/her indeterminacy to be 0.1 while another expert may
consider it is 0.2. In this case, SVNSs can express the evaluation information of only one expert, such as
{〈x, 0.7, 0.1, 0.3〉} or {〈x, 0.6, 0.2, 0.3〉}. Thereafter, HFSs can describe the assessment information of merely
one type of preference, such as {〈x, {0.6, 0.7}〉}, {〈x, {0.1, 0.2}〉}, or {〈x, {0.3}〉}. Thus, evaluation information of
all experts cannot be represented by SVNSs or HFSs completely. Since a cloud service assessment problem
contains truth-membership degree, indeterminacy-membership degree, falsity-membership degree, and
every one of these membership degrees is a group of different values ranging from 0 to 1, MVNSs are better
at denoting the fuzziness and hesitancy in cloud service reliability assessment problems than HFSs and
SVNSs. The aforementioned example employs MVNSs to depict as {〈x, {0.6, 0.7} , {0.1, 0.2} , {0.3}〉}.

There have been a lot of researches involving multi-valued neutrosophic information. Biswas et al. [25,
26] defined some distance measures for MVNSs, meanwhile, Şahin and Liu [27] developed some distance
and similarity measures for multi-valued neutrosophic information. Then, Biswas et al. [25, 26] and Şahin
and Liu [27] established the decision-making methods using these measures, separately. Thereafter, Liu
and Zhang [28] defined Hamming distance of MVNSs, and constructed a new decision-making method.
In addition, traditional MCDM methods were extended to MVNSs, including the GRA (grey relational
analysis) method [26], ELECTRE (Elimination and Choice Translating Reality) method [29], TODIM (An
acronym in Portuguese of interactive and decision-making method named Tomada de decisao interativa e
multicritvio) [11, 24], and QUALIFLEX (qualitative flexible multiple criteria) method [30].

These methods are efficient and effective for multi-valued neutrosophic MCDM problems. However,
they have the following gaps:

(1) The criteria weights are artificially assigned [11, 24-30]. Nevertheless, under multi-valued neutro-
sophic environment, there are few studies about weight determination methods with completely unknown
information related to criteria weights.

(2) The MCDM methods [11, 25-28] evaluate and select alternatives using MVNSs discrimination in-
formation measures, such as Hamming distance [11, 27, 28], Normalized Hamming distance [26], and
generalized distance [25]. However, a large amount of information may be lost or distorted in the decision-
making process and the outcomes derived by these methods may be inaccurate and useless.
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(3) The MCDM methods [11, 25-28] are based on distance measures under multi-valued neutrosophic
environments. The results obtained by these methods usually have only one alternative for a solution.
However, in some real-life cases, there may be two, or more than two, alternatives to select for a compromise
solution under conflicting criteria.

Considering the drawbacks of the current researches, this study utilizes cross-entropy and entropy to
propose a novel MCDM method.

Entropy is a significant measure for the uncertainty of information and it can be utilized to identify the
criteria weights when information about criteria weights is absolutely unknown [31]. Burillo and Bustince
[32] first proposed the notion of entropy of IFSs in 1996. Since then, entropy has been greatly extended
into other fuzzy environments. For instance, Wei et al. [33] proposed entropy measures with hesitant
fuzzy information. Further, Majumdar and Samanta [34] developed the extensions of entropy under single-
valued neutrosophic environments. Meanwhile, cross-entropy is an effective tool for processing MCDM
problems. It describes the information differences between two numbers. One advantage of cross-entropy
is that it can express the information difference more easily and exactly than traditional distance measures
[35]. Because of this advantage, cross-entropy has been extended to various fuzzy environments, including
intuitionistic fuzzy environments [35], hesitant fuzzy environments [31], and single-valued neutrosophic
environments [36]. Since multi-valued neutrosophic numbers (MVNNs) can be viewed as the integration
of single-valued neutrosophic numbers (SVNNs) and hesitant fuzzy numbers (HFNs) [24]. Therefore, the
entropy and cross-entropy measures of MVNNs are derived from that of SVNNs and HFNs. Due to the
extant entropy and cross-entropy measures of SVNNs and HFNs have some issues in some circumstances,
we should address these issues at first.

VIKOR was proposed by Opricovic and Tzeng in 1998 [37] to maximize “group utility” for the “majority”
and to minimize “individual regrets” for the “opponent” [38]. Since then, the VIKOR method has been
extended to numerous fuzzy environments [39, 40]. For example, Zhao et al. [39] used the VIKOR method to
solve the selection problem for a virtual enterprise under interval-based intuitionistic fuzzy environments.
Bausys and Zavadskas [40] extended the VIKOR method under interval neutrosophic environments. The
VIKOR method ranks several alternatives and obtains a compromise solution for issues with inconsistent
criteria; the resulting compromise solution is an acceptable result which is nearest to the ideal result
[41]. Typically, there are several conflicting criteria in the process of cloud service reliability assessment.
Therefore, this study extends the VIKOR method with multi-valued neutrosophic information.

This study offers a number of contributions. First, MVNNs are employed to depict fuzzy and hesitant
information in cloud service reliability assessments. Then, in view of the defects of single-valued neu-
trosophic entropies and hesitant fuzzy entropies, a general framework of entropy measures for MVNNs
is defined. The entropy method is also extended to multi-valued neutrosophic environments. Next, tak-
ing into account the shortcomings of cross-entropies within single-valued neutrosophic environment and
hesitant fuzzy environment, a family of cross-entropy measures for MVNNs is developed. Finally, for
situations where information about criteria weights is absolutely unknown, we propose a novel VIKOR
method based on entropy and cross-entropy measures for MCDM problems.

The rest of this paper is arranged as follows. In Section 2, the basic definitions related to MVNSs are
presented, SVNSs, HFSs, and their entropy and cross-entropy measures are reviewed. In Section 3, we
define an entropy measure for MVNNs and a general framework of entropies is developed. Meanwhile, a
family of cross-entropy measures for MVNNs is investigated. Section 4 proposes a novel extended VIKOR
method based on entropy and cross-entropy. In Section 5, an example of cloud service reliability assessment
is given and the results are analyzed and discussed. A conclusion is offered in Section 6.

2. Preliminaries

This section presents primary ideas and definitions related to SVNSs, HFSs, and MVNSs. The cross-
entropy and entropy measures for SVNNs and HFNs are also introduced. These concepts will be utilized
in subsequent analyses.
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2.1. SVNSs, HFSs, and MVNSs

Definition 1 [8]. Let X be a non-empty fixed set, with a generic element in X denoted by x. An SVNS α
in X is characterized by the truth-membership degree Tα (x), indeterminacy-membership degree Iα (x), and
falsity-membership degree Fα (x), where Tα (x) , Iα (x) , Fα (x) ∈ [0, 1], for any x ∈ X, as follows:

Aα = {〈x,Tα (x) , Iα (x) ,Fα (x)〉 |x ∈ X } . (1)

α is called a single-valued neutrosophic number (SVNN) if X has only one element, which can be defined
by α = 〈Tα, Iα,Fα〉. For convenience, let us denote the collection of SVNNs as SN.
Definition 2 [6, 7]. Let X be a non-empty fixed set, the hesitant set on X is with respect to a function that will
return a subset of values in [0, 1]. For convenience, an HFS can be represented as a mathematical symbol:

ᾱ =
{〈

x, h̃ᾱ (x)
〉
|x ∈ X

}
, (2)

where h̃ᾱ (x) is a group of real numbers within [0, 1], denoting a group of membership degrees for all x ∈ X.
ᾱ is called as a hesitant fuzzy number (HFN) if X has only one element, which can be denoted by ᾱ =

〈
h̃ᾱ

〉
for notational convenience. Further, H is denoted as the set of all HFNs.
Definition 3 [11, 24]. Let X be a non-empty fixed set with a generic element in X denoted by x. An MVNS A
in X is characterized by the truth-membership degree T̃A (x), indeterminacy-membership degree ĨA (x), and
falsity-membership degree F̃A (x). T̃A (x), ĨA (x), and F̃A (x) are three sets of precise values in [0, 1], satisfying
0 ≤ γ, η, ξ ≤ 1 and 0 ≤ γ+ +η+ +ξ+

≤ 3 where γ ∈ T̃A (x), η ∈ ĨA (x), ξ ∈ F̃A (x), γ+ = sup T̃A (x), η+ = sup ĨA (x),
ξ+ = sup F̃A (x). An MVNS can be defined as follows:

A =
{〈

x,∪γ∈T̃A

{
γ
}
,∪η∈ĨA

{
η
}
,∪ξ∈F̃A

{ξ}
〉
|x ∈ X

}
. (3)

A is called a multi-valued neutrosophic number (MVNN) if X has only one element, denoted by
〈
∪γ∈T̃A

{
γ
}
,

∪η∈ĨA

{
η
}
,∪ξ∈F̃A

{ξ}
〉
. Further, let us denote the sets of all MVNNs as MN.

MVNSs are degenerated to SVNSs if each of T̃A (x), ĨA (x), and F̃A (x) for any x has only one number, and
MVNSs are degenerated to HFSs if ĨA (x) = ∅ and F̃A (x) = ∅ for any x.
Definition 4 [24]. Let A ∈MN, the complement of A is denoted by Ac and defined as:

Ac =
〈
∪ξ∈F̃A

{ξ} ,∪η∈ĨA

{
1 − η

}
,∪γ∈T̃A

{
γ
}〉
. (4)

Definition 5 [42]. Let A,B ∈ MN. A is greater to or equal to B, denoted by A ≥ B, if and only if γA ≥ γB,
ηA ≤ ηB, and ξA ≤ ξB for every γA ∈ T̃A, γB ∈ T̃B, ηA ∈ ĨA, ηB ∈ ĨB, ξA ∈ F̃A, and ξB ∈ F̃B.

2.2. The entropy and cross-entropy measures for SVNNs

The entropy and cross-entropy measures for SVNNs are introduced in this subsection.
Definition 6 [34]. Let α ∈ SN and E : SN → [0, 1], then E (α) is called an entropy of α if these four axioms
can be satisfied:

(1) E (α) = 0 if α is a crisp number;
(2) E (α) = 1 if 〈Tα, Iα,Fα〉 = 〈0.5, 0.5, 0.5〉 ;
(3) E (α) = E (αc) , ∀α ∈ SN, where αc = 〈Fα, 1 − Iα,Tα〉;
(4) E (α) ≥ E

(
β
)

if α is more uncertain than β, i.e., Tα + Fα ≤ Tβ + Fβ and |Iα − Iαc | ≤

∣∣∣Iβ − Iβc

∣∣∣. And then
the entropy measure of SVNSs in Ref. [34] can be defined as follows:

E (α) = 1 − (Tα + Fα) · |Iα − Iαc | . (5)

Nevertheless, there is a limitation in the fourth axiom of Definition 6 and the entropy measure for
SVNNs, which is depicted in the following example.
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Example 1. Let α = 〈0.6, 0.3, 0.4〉 and β = 〈0.8, 0.3, 0.1〉 be two SVNNs. The data shows that α hovers
between truth and falseness while β is more inclined to truth. In other words, α is more uncertain than β.
i.e.,E (α) > E

(
β
)

. Meanwhile, it is easy to get an inequality Tα + Fα > Tβ + Fβ. However, the inequality
contradicts the fourth axiom of entropy for SVNNs which is Tα + Fα ≤ Tβ + Fβ. Further, E (α) = 0.6 and
E
(
β
)

= 0.64 are derived by Eq. (5). That is, E (α) < E
(
β
)
. The calculated results are counterintuitive. Thus,

the entropy measures defined in Ref. [34] cannot express the real uncertainty in certain extreme cases.
Similarly, there are some issues in the cross-entropy measures of SVNNs. Under single-valued neu-

trosophic environment, three cross-entropy measures are defined by Ye [43] and Wu et al. [36]. Ye [43]
developed a cross-entropy for SVNNs. However, Meng and Chen [44] pointed out that there is an issue
in the cross-entropy measure investigated by Ye [43]. That is, the cross-entropy [43] is an indefinite num-
ber when α and β are crisp numbers. Therefore, the cross-entropy defined by Ye [43] is unreasonable.
Meanwhile, the cross-entropy measures provided by Wu et al. [36] are also difficult to accept in some cases.
Definition 7 [36]. Let α, β ∈ SN, then two cross-entropies between α and β are summarized below::

CEk
(
α, β

)
= 1k (Tα) × 1k

(
Tα − Tβ

)
+ 1k (Iα) × 1k

(
Iα − Iβ

)
+ 1k (Fα) × 1k

(
Fα − Fβ

) , (6)

where k = 1, 2, 11 (z) = sin (z) and 12 (z) = tan (z) are two functions.
In order to make Eq. (6) symmetric, Wu et al. [36] modified the cross-entropy measures through the

following equation:

DEk
(
α, β

)
= CEk

(
α, β

)
+ CEk

(
β, α

)
, where k = 1, 2. (7)

However, these modified cross-entropy measures have one shortcoming as seen in Example 2.
Example 2. Let α1 = 〈0.1, 0.1, 0.1〉, α2 = 〈0.9, 0.9, 0.9〉, and α3 = 〈0.5, 0.5, 0.5〉 be three SVNNs. Theoretically,
the modified cross-entropies between α1 and α3 should be equal to that between α2 and α3. By Eqs. (6)
and (7), we can obtain that we can obtain that DE1 (α1, α3) = 0.4435, DE1 (α2, α3) = 0.3550, DE2 (α1, α3) =
0.5657, and DE2 (α2, α3) = 0.9054. That is, DE1 (α1, α3) , DE1 (α2, α3) and DE2 (α1, α3) , DE2 (α2, α3). Since
discrepancies exist between reality and theory, the cross-entropy measures defined by Wu et al. [36] cannot
be accepted.

2.3. The entropy and cross-entropy measures for HFNs

The details of entropy and cross-entropy measures for HFNs are also presented in the rest of this
subsection.
Definition 8 [33]. Let ᾱ ∈ H, the entropy measure for HFNs is developed as follows:

E (ᾱ) =
1 − |cos (θ (ᾱ) · π)| + τ (ᾱ)

1 + τ (ᾱ)
, (8)

where θ (ᾱ) = 1
lᾱ

lᾱ∑
i=1
ᾱi is interpreted as the score value of the HFN ᾱ and lᾱ is the length of the HFN ᾱ, also,

τ (ᾱ) = 2
lᾱ(lᾱ−1)

lᾱ−1∑
i=1

lᾱ∑
j=i+1

(
ᾱ j
− ᾱi

)
is the deviation value of the HFN ᾱ and ᾱi is the i-th smallest value for every

ᾱ ∈ H.
Wei et al. [33] only used two values, score value and deviation value, to describe an HFN as a set of

different values. Obviously, there is an issue in the entropy measures based on these two values as shown
in Example 3.
Example 3. Let ᾱ = 〈0.3, 0.7〉 and β̄ = 〈0.2, 0.5, 0.8〉 be two HFNs. It is clear that the uncertainty of ᾱ
is not equal to that of β̄. That is, E (ᾱ) , E

(
β̄
)
. Nevertheless, the score value θ (ᾱ) = θ

(
β̄
)

= 0.5 and
deviation value τ (ᾱ) = τ

(
β̄
)

= 0.4 can be obtained by their definitions. By Eq. (8), it can be calculated
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that E (ᾱ) = E
(
β̄
)

= 0.2860, which is counterintuitive. Therefore, the score value and deviation value may
lose a mass of hesitant fuzzy information in a HFN, and the entropy measures using these two values may
incompletely and inaccurately express the uncertainty of hesitant fuzzy information.
Definition 9 [31]. Let ᾱ, β̄ ∈ H and lᾱ = lβ̄ where lᾱ and lβ̄ are denoted as the number of elements in ᾱ and
β̄, respectively. Further, assume ᾱσ(i) is the i-th smallest values for every ᾱ ∈ H, and the elements in β̄ are
also arranged in ascending order. Then the cross-entropy measures between ᾱ and β̄ are defined in the
following formulas:

CE1
(
ᾱ, β̄

)
=

1
lT

l∑
i=1

(
(1+qᾱσ(i)) ln(1+qᾱσ(i))+(1+qβ̄σ(i)) ln(1+qβ̄σ(i))

2

−
2+qᾱσ(i)+qβ̄σ(i)

2 ln 2+qᾱσ(i)+qβ̄σ(i)

2

+
(1+q(1−ᾱσ(l−i+1))) ln(1+q(1−ᾱσ(l−i+1)))+(1+q(1−β̄σ(l−i+1))) ln(1+q(1−β̄σ(l−i+1)))

2

−
2+q(1−ᾱσ(l−i+1)+1−β̄σ(l−i+1))

2 ln
2+q(1−ᾱσ(l−i+1)+1−β̄σ(l−i+1))

2

)
,

, (9)

where q ≥ 0 and T =
(
1 + q

)
ln

(
1 + q

)
−

(
2 + q

) (
ln

(
2 + q

)
− ln 2

)
.

CE2
(
ᾱ, β̄

)
= 1

(1−21−p)l

l∑
i=1

(
ᾱ

p
σ(i)+β̄

p
σ(i)

2 +
(1−ᾱσ(l−i+1))p

+(1−β̄σ(l−i+1))p

2

−

(
ᾱσ(i)+β̄σ(i)

2

)p
−

(
1−ᾱσ(l−i+1)+1−β̄σ(l−i+1)

2

)p)
,

, (10)

where p > 1.
Both Eqs. (9) and (10) are studied under the same hypothesis that lᾱ = lβ̄. If the corresponding HFNs do

not have the same length, then the HFN, which has the fewest elements, needs to be changed by repeating
the smallest or maximum number in this HFN.
Example 4. Let p, q = 2, ᾱ = 〈0.1, 0.6〉 and β̄ = 〈0.2, 0.5, 0.9〉 be two HFNs. We should extend ᾱ until it has an
identical length to β̄. We can obtain ᾱ = 〈0.1, 0.1, 0.6〉 by repeating the smallest value in ᾱ. Based on Eqs. (9)
and (10), CE1

(
ᾱ, β̄

)
= 0.0879 and CE2

(
ᾱ, β̄

)
= 0.0867. Similarly, we can obtain ᾱ = 〈0.1, 0.6, 0.6〉 by repeating

the maximum value. And CE1
(
ᾱ, β̄

)
= 0.0376 and CE2

(
ᾱ, β̄

)
= 0.0367 by Eqs. (9) and (10). That is, when

different values are added to ᾱ, there may be different cross-entropies between ᾱ and β̄.
According to the above illustrations, there are some issues in the entropy and cross-entropy measures

for SVNNs and HFNs. Since MVNNs are the integration of SVNNs and HFNs [24], the entropy and
cross-entropy measures for MVNNs should handle the aforementioned problems.

3. Entropy and cross-entropy measures for multi-valued neutrosophic information

By analogy, we define the axioms of entropy and entropy measures for MVNNs in this section based
on their use in SVNNs and HFNs. Meanwhile, when the axioms of entropy and entropy measures for
MVNNs reduce to SVNNs or HFNs, the defects of entropies for SVNNs or HFNs shown in Section 2
are well covered. Then, according to the entropy measures for MVNNs, a general framework of entropy
measures for MVNNs is developed. Finally, similar to the proposal of entropy measures, we develop a
family of cross-entropy measures for MVNNs based on the cross-entropy measures of SVNNs and HFNs.

3.1. Entropy measures for MVNNs

Definition 10. Let A ∈MN, the two variables ∆i
A and σ j

A with respect to A are defined as follows:

∆i
A = ∪γA∈T̃A,ξA∈F̃A

∣∣∣γA − ξA

∣∣∣ , i = 1, 2, ..., lT̃ · lF̃, (11)

σ j
A = ∪η∈ĨA

∣∣∣ηA − ηAc

∣∣∣ , j = 1, 2, ..., lĨ, (12)
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where 0 ≤ ∆i
A, σ

j
A ≤ 1, and lT̃, lĨ, lF̃ denote the length of T̃A, ĨA, and F̃A, respectively.

The two variables ∆i
A and σ j

A concerning A are related to the uncertainties of multi-valued neutrosophic
information. The first variable ∆i

A means the difference between truth-membership degree and falsity-
membership degree. Moreover, the more significant the difference is, the smaller the uncertainties are
involved in MVNNs. For example, assume B = 〈{0.1}, {0.3, 0.4}, {0.7}〉 and C = 〈{0.3}, {0.3, 0.4}, {0.5}〉 be two
MVNNs. Obviously, B is more inclined to falsity while C is wandering between truth and falsity. We can
conclude that B is less uncertain than C. Simultaneously, it can be derived that ∆B = {0.6} and ∆C = {0.2},
which are consistent with our conclusions. Similarly, the second variable σ j

A means internal difference in
indeterminacy-membership degree, and there is also a negative correlation between the degree of difference
and uncertainties of MVNNs.
Definition 11. An entropy of MVNN A is a real-valued function E : MN → [0, 1], which satisfies the
following axiomatic conditions and is related to ∆i

A and σ j
A:

(1) E (A) = 0 if and only if ∆i
A = 1 for i = 1, 2, ..., lT̃ · lF̃ and σ j

A = 1 for j = 1, 2, ..., lĨ;
(2) E (A) = 1 if and only if ∆i

A = 0 for i = 1, 2, ..., lT̃ · lF̃ and σ j
A = 0 for j = 1, 2, ..., lĨ;

(3) E (A) = E (Ac);
(4) E decreases monotonically regarding ∆i

A for all i = 1, 2, ..., lT̃ · lF̃, and also monotonically decreases
regarding σ j

A for all j = 1, 2, ..., lĨ.
Definition 12. Let A ∈MN, an entropy measure for A is denoted by the following equation:

E (A) = 1 −
1

lT̃ · lĨ · lF̃

lT̃ ·lF̃∑
i=1

lĨ∑
j=1

∆i
A + σ j

A

2
. (13)

Proposition 1. The measure defined by Eq. (13) is a multi-valued neutrosophic entropy, and satisfies
conditions (1)-(4) given in Definition 11.

The proof of Proposition 1 is described concretely in the “Appendix A”.
The defects of single-valued neutrosophic entropy and hesitant fuzzy entropy mentioned in Section 2

can be covered by entropy of MVNNs. The single-valued neutrosophic entropy and its fourth axiom, which
are reduced from those of MVNNs, can be represented below:

E (α) = 1 −
|Tα − Fα| + |Iα − Iαc |

2
. (14)

(4) The inequality E (α) ≥ E
(
β
)

holds if α is more uncertain than β, i.e., |Tα − Fα| ≤
∣∣∣Tβ − Fβ

∣∣∣ and
|Iα − Iαc | ≤

∣∣∣Iβ − Iβc

∣∣∣.
Regarding the single-valued neutrosophic entropy developed by Majumdar and Samanta [34], the new

entropy measure and its axiom conquer the issues in Ref. [34]. Our intuitions consider E (α) ≥ E
(
β
)

when
the inequality |Tα − Fα| ≤

∣∣∣Tβ − Fβ
∣∣∣ holds, and the reduced axiomatic condition (4) are in accordance with

our intuitions. Meanwhile, using the data in Example 1, we can obtain that E (α) = 1 − |0.6−0.4|+|0.3−0.7|
2 = 0.7

and E
(
β
)

= 1 − |0.8−0.1|+|0.3−0.7|
2 = 0.45, i.e., E (α) > E

(
β
)

, which also confirms to our experience. As a result,
the reduced entropy and its axiom can address the problems of entropy measures in Ref. [34].

With regard to the hesitant fuzzy entropy investigated by Wei et al. [33], we substitute the original
multi-valued neutrosophic information into the entropy measure formulas while Wei et al. [33] used score
value and deviation value, which are processed hesitant fuzzy information. Therefore, the entropy of
MVNNs can express the fuzzy and hesitant information completely and accurately.

3.2. A general framework of entropy measures for MVNNs

A general framework of entropy measures for MVNNs is defined in this subsection. Subsequently, four
different entropy measures for MVNNs are derived based on the general framework of entropy measures.
Wei et al. [33] investigated a general form of entropy measures for HFNs and derived a family of concrete
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entropy formulas. Yao et al. [45] developed a general framework of type-2 fuzzy entropy measures. A
general framework of entropies can allow us to view uncertainties with a fresh perspective. Simultaneously,
we can obtain concrete entropy measures with simple function for MVNNs from the general form.
Theorem 1. For each A ∈MN, let

E f (A) =
1

lT̃ · lĨ · lF̃

lT̃ ·lF̃∑
i=1

lĨ∑
j=1

f
(
∆i

A, σ
j
A

)
. (15)

Then E f (A) is an entropy measure for an MVNN A, if and only if the function f : [0, 1] × [0, 1]→ [0, 1] has
the following properties:

(1) f
(
x, y

)
= 0 if and only if x = 1 and y = 1;

(2) f
(
x, y

)
= 1 if and only if x = 0 and y = 0;

(3) f decreases monotonically with respect to the first variable and the second variable, respectively.
The evidentiary procedure of Theorem 1 is offered in the “Appendix B”
If we change the function f in E f (A) defined by Eq. (15), and this function possesses the properties

listed in Theorem 1, we can obtain a series of entropy measures for MVNNs. For example, let f
(
x, y

)
=

(1−x)ρ+(1−y)ρ
2 , ρ > 0, f

(
x, y

)
= 1−

sin
(π

2 ·x
)
+sin

(π
2 ·y

)
2 , f

(
x, y

)
= 1−

tan
(π

4 ·x
)
+tan

(π
4 ·y

)
2 , and f

(
x, y

)
= 1−

log2(x+1)+log2(y+1)
2 ,

respectively.
Then, four different entropy measure formulas are obtained:

E f 1 (A) =
1

lT̃ · lĨ · lF̃

lT̃ ·lF̃∑
i=1

lĨ∑
j=1

(
1 − ∆i

A

)ρ
+

(
1 − σ j

A

)ρ
2

, ρ > 0, (16)

E f 2 (A) =
1

lT̃ · lĨ · lF̃

lT̃ ·lF̃∑
i=1

lĨ∑
j=1

1 −
sin

(
π
2 · ∆

i
A

)
+ sin

(
π
2 · σ

j
A

)
2

, (17)

E f 3 (A) =
1

lT̃ · lĨ · lF̃

lT̃ ·lF̃∑
i=1

lĨ∑
j=1

1 −
tan

(
π
4 · ∆

i
A

)
+ tan

(
π
4 · σ

j
A

)
2

, (18)

E f 4 (A) =
1

lT̃ · lĨ · lF̃

lT̃ ·lF̃∑
i=1

lĨ∑
j=1

1 −
log2

(
∆i

A + 1
)

+ log2

(
σ j

A + 1
)

2
, (19)

E (A) defined by Eq. (13) is equal to E f 1 (A) when ρ = 1.
Example 5. Let A = 〈{0.7} , {0.2, 0.3} , {0.1, 0.2}〉, B = 〈{0.4, 0.5, 0.6} , {0.2} , {0.3, 0.4}〉, and C = 〈{0.3, 0.4} , {0.2, 0.3}
, {0.4, 0.5}〉 be three MVNNs. Suppose ρ = 2, we can obtain the following results by Eqs. (16)-(19):

E f 1 (A) = 0.2325, E f 1 (B) = 0.4458, E f 1 (C) = 0.5375;
E f 2 (A) = 0.2718, E f 2 (B) = 0.4801, E f 2 (C) = 0.5731;
E f 3 (A) = 0.5605, E f 3 (B) = 0.6857, E f 3 (C) = 0.7519;
E f 4 (A) = 0.3934, E f 4 (B) = 0.5627, E f 4 (C) = 0.6419.

3.3. A family of cross-entropy measures for MVNNs
Definition 13. Let A,B,C ∈ MN, CE : MN ×MN → R+, then the cross-entropy CE (A,B) between A and B
should satisfy the following axiomatic conditions:

(1) CE (A,B) ≥ 0, and CE (A,B) = 0 if and only if A = B;
(2) CE (Ac,Bc) = CE (A,B) where Ac and Bc are the complement of A and B, respectively , as defined in

Definition 4.
(3) CE (A,B) = CE (B,A);
(4) If A ≤ B ≤ C, then CE (A,B) ≤ CE (A,C) and CE (B,C) ≤ CE (A,C).
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Definition 14. Let A,B ∈MN, then cross-entropies between A and B are defined below:

CEk (A,B) = max
γA∈T̃A

min
γB∈T̃B

[
1k

(
γA − γB

)
ln 2+γA−γB

2−γA+γB

]
+ max
γB∈T̃B

min
γA∈T̃A

[
1k

(
γB − γA

)
ln 2+γB−γA

2−γB+γA

]
+ max
ηA∈ĨA

min
ηB∈ĨB

[
1k

(
ηA − ηB

)
ln 2+ηA−ηB

2−ηA+ηB

]
+ max

ηB∈ĨB

min
ηA∈ĨA

[
1k

(
ηB − ηA

)
ln 2+ηB−ηA

2−ηB+ηA

]
+ max
ξA∈F̃A

min
ξB∈F̃B

[
1k (ξA − ξB) ln 2+ξA−ξB

2−ξA+ξB

]
+ max
ξB∈F̃B

min
ξA∈F̃A

[
1k (ξB − ξA) ln 2+ξB−ξA

2−ξB+ξA

]
,

(20)

where k = 1, 2, 3, 11 (z) = z, 12 (z) = sin (z), and 13 (z) = tan (z) are three functions.
Proposition 2. The measures defined by Eq. (20) are all multi-valued neutrosophic cross-entropies, and
meet conditions (1)-(4) in Definition 13.

We give the detailed verification for Proposition 2 in the “Appendix C”.
The cross-entropy measures for MVNNs cover the deficiencies of single-valued neutrosophic cross-

entropies and hesitant fuzzy cross-entropies shown in Section 2. The cross-entropy measures for SVNNs,
which are reduced from those for MVNNs defined above, are denoted below.

CEk (A,B) = 1k (TA − TB) ln
2 + TA − TB

2 − TA + TB
+ 1k (IA − IB) ln

2 + IA − IB

2 − IA + IB
+ 1k (FA − FB) ln

2 + FA − FB

2 − FA + FB
. (21)

where k = 1, 2, 3, 11 (z) = z, 12 (z) = sin (z), and 13 (z) = tan (z) are three functions.
With regard to the cross-entropies of SVNNs developed by Ye [43], the reduced cross-entropy measures

are not indefinite numbers when A and B are crisp numbers. Thus, the novel cross-entropy measures
for SVNNs overcome the defects in Ref. [43]. The reduced cross-entropy measures also conquer the
shortcomings in the modified cross-entropy measures defined by Wu et al. [36]. Using the data in
Example 2, we can obtain that CE1 (α1, α3) = CE1 (α2, α3) = 0.4866, CE2 (α1, α3) = CE2 (α2, α3) = 0.4737, and
CE3 (α1, α3) = CE3 (α2, α3) = 0.5143, which conforms to the theory. Therefore, the reduced cross-entropy
measures are superior to the modified cross-entropies developed by Wu et al. [36].

Regarding the cross-entropies for HFNs developed by Xu and Xia [31], the proposed cross-entropy
measures for MVNNs do not need to add a certain number into MVNNs to equalize the lengths of different
MVNNs, which can avoid different results when different numbers are added. Therefore, the cross-entropy
measures for MVNNs in this paper do not have the defects in the cross-entropy measures for HFNs.
Example 6. Let A = 〈{0.7} , {0.2, 0.3} , {0.1, 0.2}〉, B = 〈{0.4, 0.5, 0.6} , {0.2} , {0.3, 0.4}〉, and C = 〈{0.3, 0.4} , {0.2, 0.3}
, {0.4, 0.5}〉, then based on the cross-entropy measures denoted by Eq. (20), we can obtain the following
results:

CE1 (A,D) = 0.3130, CE1 (B,D) = 0.2010, CE1 (C,D) = 0.3845;
CE2 (A,D) = 0.3071, CE2 (B,D) = 0.1990, CE2 (C,D) = 0.3756;
CE3 (A,D) = 0.3257, CE3 (B,D) = 0.2050, CE3 (C,D) = 0.4036.

4. An extended VIKOR method for MCDM problems based on entropies and cross-entropies of MVNNs

In this section, an entropy weight method is constructed to identify the criteria weight vector. Then, we
propose an extended VIKOR approach, according to the cross-entropies and weight vector, to solve MCDM
problems when the information about criteria weights is completely unknown.

4.1. The determination of criteria weights based on entropies of MVNNs
Information about criteria weights is often completely unknown during the decision-making process.

There are many reasons that this information is unknown, including time pressure, limited resources,
and experts’ limited professional knowledge [31]. The entropy weight method is an important way to
obtain the criteria weight vector when their information is completely unknown [33]. However, there is
no research related to the entropy method within multi-valued neutrosophic environments. Therefore,
in this subsection, we investigate an extension of the entropy method under multi-valued neutrosophic
environments to identify the criteria weight vector when the weights information is completely unknown.
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For convenience, assume that there are m alternatives Ai (i = 1, 2, ...,m) with regard to n criteria C j(
j = 1, 2, ...,n

)
. Subsequently, the weight vector of decision criteria is assumed to be ω = (ω1, ω2, ..., ωn)T,

where 0 ≤ ω j ≤ 1 and
n∑

j=1
ω j = 1. Then the criteria weights can be obtained by the following equation:

ω j =

1 − 1
m

m∑
i=1

Ei j

n − 1
m

n∑
j=1

m∑
i=1

Ei j

, i = 1, 2, ...,m, j = 1, 2, ...,n, (22)

where Ei j is the entropy for the alternative Ai under the criterion C j and it can be calculated by any one of
the entropy measure formulas denoted by Eqs. (16)-(19).

4.2. The extended VIKOR method for MCDM problems

In this subsection, we establish an extended VIKOR approach on the basis of cross-entropies and
entropies with multi-valued neutrosophic information.

For an MCDM problem with multi-valued neutrosophic information, suppose that there is a group
of t DMs Dk (k = 1, 2, ..., t) who have to evaluate m alternatives Ai (i = 1, 2, ...,m) with respect to n cri-
teria C j

(
j = 1, 2, ...,n

)
. Assume that the weight vector of the decision criteria is ω = (ω1, ω2, ..., ωn)T,

where 0 ≤ ω j ≤ 1 and
n∑

j=1
ω j = 1. Let B =

[
bi j

]
m×n

be the decision matrix, and bi j =
〈
T̃i j, Ĩi j, F̃i j

〉
=〈{

γ1
i j, γ

2
i j, ..., γ

t
i j

}
,
{
η1

i j, η
2
i j, ..., η

t
i j

}
,
{
ξ1

i j, ξ
2
i j, ..., ξ

t
i j

}〉
is evaluation information for the alternative Ai regarding the

criterion C j by all DMs in the form of MVNNs.
The main procedures of the improved VIKOR method based on entropies and cross-entropies are studied

in the remainder of this subsection.
Step 1. Normalize the decision matrix.

Since there are usually both cost and benefit criteria in an MCDM problem, the decision matrix should be
normalized. bi j does not need to be normalized when C j is a benefit criterion while bi j should be normalized
to its complement when C j is a cost criterion. The formula of the normalized transformation is defined as:

ui j =

{
bi j , if C j is a benefit criterion
bc

i j , if C j is a cost criterion . (23)

Step 2. Determine the weight vector.
Using Eq. (22) to derive the weight vector of the decision criteria ω = (ω1, ω2, ..., ωn)T.

Step 3. Determine the best alternative and the worst alternative.
In this paper, the absolute positive ideal point and absolute negative ideal point are regarded as the best

and the worst alternatives.
Step 4. Compute the values Si and Ri.

According to the cross-entropies of MVNNs in Definition 14, Si and Ri can be calculated using the
following equations:

Si =

n∑
j=1

ω j

CE
(

f ∗j ,ui j

)
CE

(
f ∗j , f−j

) for i = 1, 2, ...,m, (24)

Ri = max
j
ω j

CE
(

f ∗j ,ui j

)
CE

(
f ∗j , f−j

) for i = 1, 2, ...,m, (25)

where ω j is the weight of criterion C j for j = 1, 2, ...,n.
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Table 1: Decision criteria and their descriptions
Criterion Description

Flexibility
Flexibility is the resource allocation and de-allocation ability, including data
exchange rate and system responsiveness.

Stability
Stability is the service control and monitor ability, including systematic error
count and service state measure.

Security
Security is the data projection and management ability, including data
permission control and data confidentiality.

Step 5. Calculate the values Qi.
We can obtain Qi for i = 1, 2, ...,m by

Qi = v
Si − S∗

S− − S∗
+ (1 − v)

Ri − R∗

R− − R∗
for i = 1, 2, ...,m, (26)

where S∗ = min
i

Si, S− = max
i

Si, R∗ = min
i

Ri, and R− = max
i

Ri. Particularly, v is the group utility weight,

while (1 − v) is the individual regret weight. Commonly, v = 0.5 [39].
Step 6. Sort the alternatives.

In this step, we rank the alternatives by the values S, R, and Q in decreasing order. It should be noted
that the results are three ranking lists.
Step 7. Determine the compromise solution. The alternative A′, which is ranked the optimal (minimum)
by the measure Q, is the compromise solution if it satisfies the following two conditions:

Condition 1: Acceptable advantage: Q (A′′) − Q (A′) ≥ 1/(m − 1), where A′′ is the alternative which is
ranked the second by Q and m is the amount of the alternatives.

Condition 2: Acceptable stability in decision-making: If A′ is also ranked the optimal in S and R, it can
be regarded that A′ is stable in the process of decision-making, which could be voted on through majority-
rule voting (when v > 0.5 is needed), or by consensus (v ≈ 0.5), or with veto (v < 0.5). It should be noted
that when either of the conditions cannot be met, a group of alternatives are obtained as a compromise
solution based on the following rules:

Rule 1: If only Condition 1 is not met, all the alternatives A′,A′′, ...,A(a) are regarded as a compromise
solution and A(a) is determined by Q

(
A(a)

)
−Q (A′) < 1/(m − 1).

Rule 2: If only Condition 2 is not met, both of the alternatives A′ and A′′ are considered as the a
compromise solution.

Based on the above analyses, we can give a conceptual model of the new VIKOR method on the basis
of entropy and cross-entropy measures in Figure 1.

5. Cloud service reliability assessment using the novel VIKOR method

In this section, the extended VIKOR method is applied to assess cloud service reliability and the
applicability of the proposed method is demonstrated.

With the rapid development of information technology, more and more firms and individuals can
access cloud computing and storage services through the internet without owning the actual technology
infrastructures. However, until now, the cloud services provided by various providers has been varied
reliabilities, which often affects the degree of satisfaction experienced by companies and individuals.
Therefore, assessing cloud service reliability is an important issue for consumers. During the process of
assessment, alternatives are evaluated by several experts on certain criteria. MVNNs are effective when
they are used to denote the fuzziness and hesitancy in the evaluation process.

5.1. information collection
Three criteria in Table 1 are employed in cloud service reliability assessment.
Generally, the criteria in Table 1 are evaluated by a group of experts in cloud service reliability assess-

ments. Suppose there are four cloud service providers (A1,A2,A3,A4) needing to be assessed regarding
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Figure 1: A flow chart of the new VIKOR method

Table 2: Questionnaire for expert ek

Number Criterion Attitude Evaluation values
A1 A2 A3 A4

C1 Flexibility
Satisfaction γk

11 γk
21 γk

31 γk
41

Neutrality ηk
11 ηk

21 ηk
31 ηk

41
Dissatisfaction ξk

11 ξk
21 ξk

31 ξk
41

C2 Stability
Satisfaction γk

12 γk
22 γk

32 γk
42

Neutrality ηk
12 ηk

22 ηk
32 ηk

42
Dissatisfaction ξk

12 ξk
22 ξk

32 ξk
42

C3 Security
Satisfaction γk

13 γk
23 γk

33 γk
43

Neutrality ηk
13 ηk

23 ηk
33 ηk

43
Dissatisfaction ξk

13 ξk
23 ξk

33 ξk
43

three criteria (C1,C2,C3) by a group of three experts (e1, e2, e3). To obtain the evaluation of the experts, Table 2
is designed and given to the expert ek where k = 1, 2, 3. Experts need to evaluate the cloud service providers
with respect to each criterion with a number in the set {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. The
greater the evaluation value is, the higher the degree of satisfied, neutral, or dissatisfied attitude is. Sub-
sequently, we transform the evaluation information of experts into a decision matrix with multi-valued
neutrosophic information. For example, the experts evaluate the cloud service provider A1 regarding the
criterion C1, and the assessment information is presented in Table 3. In this situation, the comprehensive
evaluation information can be expressed by an MVNN 〈{0.6, 0.7, 0.8} , {0.1} , {0.1, 0.2}〉. Likewise, all the eval-
uation information of the alternatives with regard to the criteria from the three experts can be expressed in
terms of multi-valued neutrosophic information, which is shown in Table 4.
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Table 3: Evaluation information of the cloud service provider A1 regarding the criterion C1
Experts e1 e2 e3

Satisfaction 0.6 0.8 0.7
Neutrality 0.1 0.1 0.1

Dissatisfaction 0.2 0.1 0.2

Table 4: Decision-making matrix with multi-valued neutrosophic information
C1 C2 C3

A1 〈{0.6, 0.7, 0.8} , {0.1} , {0.1, 0.2}〉 〈{0.6, 0.7} , {0.2, 0.3} , {0.2, 0.3}〉 〈{0.3, 0.4} , {0.2, 0.3} , {0.4, 0.5}〉
A2 〈{0.8} , {0.2, 0.3} , {0.1, 0.2}〉 〈{0.6, 0.7} , {0.1} , {0.3}〉 〈{0.7, 0.8} , {0.1, 0.2} , {0.2, 0.3}〉
A3 〈{0.9} , {0.1, 0.2} , {0.2, 0.3}〉 〈{0.7} , {0.3} , {0.4}〉 〈{0.6, 0.7} , {0.2} , {0.3}〉
A4 〈{0.7} , {0.1} , {0.1, 0.3}〉 〈{0.7, 0.8} , {0.3} , {0.3}〉 〈{0.4, 0.6} , {0.3} , {0.1, 0.2, 0.3}〉

5.2. Decision-making procedures based on MVNNs
In this subsection, the main procedures of an extended VIKOR method are introduced and the compro-

mise solution is obtained under multi-valued neutrosophic environments.
Step 1. Normalize the decision matrix.

Since every criterion is a benefit one, we do not need to normalize the decision-making matrix.
Step 2. Determine the weight vector.

Using Eqs. (19) and (22), the weight vector of criteria can be calculated as ω = (0.41, 0.30, 0.29).
Step 3. Determine the best alternative and the worst alternative.

According to the absolute positive ideal point and absolute negative ideal point, the best and the worst
alternatives can be defined as:

f ∗j = {〈1, 0, 0〉 , 〈1, 0, 0〉 , 〈1, 0, 0〉} ; (27)

f−j = {〈0, 1, 1〉 , 〈0, 1, 1〉 , 〈0, 1, 1〉} . (28)

Step 4. Compute Si and Ri.
Based on the first cross-entropy measure for MVNNs denoted by CE1 (A,B), Si and Ri can be obtained:
S1 = 0.1032, S2 = 0.0507, S3 = 0.0666, S4 = 0.0771;
R1 = 0.0627, R2 = 0.0209, R3 = 0.0316, R4 = 0.0357.

Step 5. Calculate Qi.
According to Si and Ri calculated above, Qi can be obtained as follows:
Q1 = 1.0000, Q2 = 0, Q3 = 0.2790, Q4 = 0.4289.

Step 6. Sort the alternatives.
We can get three ranking lists of alternatives by listing the values S, R, and Q in decreasing order; the

ranking results are shown in Table 5.
Step 7. Determine the compromise solution.

Since Condition 2 is satisfied by the results and Condition 1 is not met, a group of alternatives A2 and
A3 is the compromise solution in this cloud service assessment problem.

5.3. Analysis and discussion
To further demonstrate the effectiveness of the new VIKOR method, we first analyze how the results

change according to different entropy and cross-entropy measures for MVNNs. Thereafter, a comparative

Table 5: Ranking results and the compromise solution for all alternatives
A1 A2 A3 A4 Ranking orders Compromise solution

S 0.1032 0.0507 0.0666 0.0771 A2 � A3 � A4 � A1
A2, A3R 0.0627 0.0209 0.0316 0.0357 A2 � A3 � A4 � A1

Q (v = 0.5) 1.0000 0 0.2790 0.4289 A2 � A3 � A4 � A1
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Table 6: The results based on cross-entropy CE1

Ranking list-S Ranking list-R Q values Ranking list-Q ResultsA1 A2 A3 A4
E f 1 A2 � A3 � A4 � A1 A2 � A3 � A4 � A1 1 0 0.2822 0.4271 A2 � A3 � A4 � A1 A2, A3
E f 2 A2 � A3 � A4 � A1 A2 � A3 � A4 � A1 1 0 0.2795 0.4286 A2 � A3 � A4 � A1 A2, A3
E f 3 A2 � A3 � A4 � A1 A2 � A3 � A4 � A1 1 0 0.2731 0.4321 A2 � A3 � A4 � A1 A2, A3
E f 4 A2 � A3 � A4 � A1 A2 � A3 � A4 � A1 1 0 0.2790 0.4289 A2 � A3 � A4 � A1 A2, A3

Table 7: The results based on cross-entropy CE2

Ranking list-S Ranking list-R Q values Ranking list-Q ResultsA1 A2 A3 A4
E f 1 A2 � A3 � A4 � A1 A2 � A3 � A4 � A1 1 0 0.2953 0.4345 A2 � A3 � A4 � A1 A2, A3
E f 2 A2 � A3 � A4 � A1 A2 � A3 � A4 � A1 1 0 0.2924 0.4361 A2 � A3 � A4 � A1 A2, A3
E f 3 A2 � A3 � A4 � A1 A2 � A3 � A4 � A1 1 0 0.2858 0.4397 A2 � A3 � A4 � A1 A2, A3
E f 4 A2 � A3 � A4 � A1 A2 � A3 � A4 � A1 1 0 0.2919 0.4364 A2 � A3 � A4 � A1 A2, A3

study is conducted with other MCDM methods in multi-valued neutrosophic environment.

5.3.1. Sensitive analysis
Suppose ρ = 2 and v = 0.5. The results, which are calculated by the proposed method based on different

entropies and cross-entropies, are provided in Table 6-Table 8. It can be seen that A2 is first and A1 is
last in the ranking list of the values S, R, and Q, no matter what the entropies and cross-entropies are.
Simultaneously, A2 and A3 are the compromise solution for the alternatives regardless of the entropy and
cross-entropy measures utilized. With the comprehensive analyses above, the results calculated by different
cross-entropy and entropy measures have great stability. Therefore, the entropies and cross-entropies of
MVNNs are valid and valuable.

5.3.2. Comparative analysis
In order to verify the effectiveness and the advantages of the proposed method, a comparative analysis

is made with other actual multi-valued neutrosophic MCDM methods in the rest of this subsection.
A brief introduction of existing methods with MVNNs is presented in Table 9. Since criteria weights

are all artificially specified in these MCDM methods, we utilize the extended entropy weight method in
this study to determine criteria weights in the above methods for comparative convenience. The results
obtained by the different methods are given in Table 10. Moreover, Figure 2 is provided to visualize the
comparative results.

As we can see in Table 10 and Figure 2, alternative A3 ranks the first in Biswas et al.’s method [25] and A2
in the other existing methods [11, 26-28]. Moreover, the proposed method derives a compromise solution
which includes both A2 and A3. Thereafter, the alternative A1 is the worst one in all the multi-valued
neutrosophic methods. In addition, the ranking orders by the proposed method are the same as the results
by methods in Refs. [11, 26, 27], while they are inconsistent with the ranking results calculated by methods
in Refs. [25, 28].

The decision-making results obtained by extant multi-valued neutrosophic MCDM methods [11, 25-
28] are always one alternative merely, which is A2 or A3. However, the proposed method can derive a
compromise solution including both A2 and A3. In some practical circumstances, the proposed method

Table 8: The results based on cross-entropy CE3

Ranking list-S Ranking list-R Q values Ranking list-Q ResultsA1 A2 A3 A4
E f 1 A2 � A3 � A4 � A1 A2 � A3 � A4 � A1 1 0 0.2549 0.4108 A2 � A3 � A4 � A1 A2, A3
E f 2 A2 � A3 � A4 � A1 A2 � A3 � A4 � A1 1 0 0.2524 0.4121 A2 � A3 � A4 � A1 A2, A3
E f 3 A2 � A3 � A4 � A1 A2 � A3 � A4 � A1 1 0 0.2469 0.4152 A2 � A3 � A4 � A1 A2, A3
E f 4 A2 � A3 � A4 � A1 A2 � A3 � A4 � A1 1 0 0.2520 0.4124 A2 � A3 � A4 � A1 A2, A3
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Table 9: The comparative analysis with existing method based on distances
Literature Method

Biswas et al. [25] Weighted generalized distance-based method
Şahin and Liu [27] Weighted Hamming distance-based method
Biswas et al. [26] Normalized Hamming distance-based GRA method
Wang and Li [11] Hamming distance-based TODIM method
Liu and Zhang [28] Hamming distance-based VIKOR method

Table 10: The ranking results of the six methods
Methods Ranking results Compromise solution

Biswas et al.’s method (λ = 1) [25] A3 � A2 � A4 � A1 None
Şahin and Liu’s method [27] A2 � A3 � A4 � A1 None
Biswas et al.’s method (ρ = 1) [26] A2 � A3 � A4 � A1 None
Wang and Li’s method (t = 1) [11] A2 � A3 � A4 � A1 None
Liu and Zhang’s method (v = 0.5) [28] A2 � A4 � A3 � A1 None
The proposed method (v = 0.5) A2 � A3 � A4 � A1 A2,A3

takes maximum “group utility” and minimum “individual regret” into accounts at the same time. Therefore,
the compromise solution can be more easily accepted by decision makers. To some extent, the comparative
results prove the effectiveness and practicability of the proposed methods in this paper.

Simultaneously, though the ranking orders of proposed method are consistent with that calculated by
the multi-valued neutrosophic methods in Refs. [11, 26, 27], as well as have only slight difference from that
with other extant methods in Refs. [25, 28], the computational processes of these methods have several
dissimilarities:

(1) The measurements employed in the proposed method are different from that utilized in existing
MCDM methods. The distances investigated in Refs. [11, 25-28] may cause loss and distortion of the
preference information during the process of decision-making. For instance, let A = 〈{0.6} , {0.1, 0.3} , {0.5}〉,
B = 〈{0.8} , {0.1, 0.3} , {0.5}〉, and C = 〈{0.5} , {0.1, 0.3} , {0.4}〉 be three MVNNs, then the comparative results
are obtained in Table 11. As is seen to us, whichever distances in Refs. [11, 25-28] are used, the same results
d (A,B) = d (A,C) are computed. Subsequently, if we use the first proposed cross-entropy in this paper, we
derive CE1 (A,B) , CE1 (A,C). Thus, the distances developed in Refs. [11, 25-28] cannot distinguish two

Figure 2: The comparative analyses with extant method
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Table 11: The comparative analysis between distances and cross-entropy
Literatures Measurements A→ B A→ C Results

Biswas et al. (λ = 1) [25] Weighted generalized distance 0.1000 0.1000 Equality
Şahin and Liu [27] Weighted Hamming distance 0.1000 0.1000 Equality
Biswas et al. [26] Normalized Hamming distance 0.0667 0.0667 Equality
Wang and Li [11] Hamming distance 0.2000 0.2000 Equality
Liu and Zhang [28] Hamming distance 0.1000 0.1000 Equality
This study Cross-entropy 0.0401 0.0200 Inequality

MVNNs completely and accurately. By contrast, the cross-entropies defined in this study can differentiate
one MVNN from another easily. In view of this, the methods based on cross-entropies can keep the
DMs’ preference information as completely as possible in decision-making processes. Further, the results
acquired by the proposed method are more reasonable than extant methods on the basis of distances under
multi-valued neutrosophic environment.

(2) The proposed multi-valued neutrosophic VIKOR method can rank alternatives better than existing
methods, and get a compromise solution with one or more alternatives. The MCDM methods in Refs. [11,
25-27] only consider the similarities or grey relational coefficients to ideal solution. In contrast with these
methods, this study takes maximum “group utility” and minimum “individual regret” into considerations
under conflicting criteria, which are often involved during the evaluation process in some real-life cases.
Thus, the proposed method is more likely to be applied in practical circumstances. Subsequently, Liu and
Zhang [28] also extended VIKOR method into multi-valued neutrosophic environment. However, only the
alternative A2 is selected as the optimal alternative while a compromise solution is provided with both A2
and A3 in this study. This reveals the cross-entropies are more superior than distance defined in Liu and
Zhang [28] from another perspective.

(3) In addition, the determination approaches of criteria weights are distinct between the proposed
method and the existing MCDM methods. The criteria weights are all designated in the Refs. [11, 25-
28]. However, in most actual situations, experts are hard to give an exact weight vector in view of the
complexities of decision-making environment. The proposed method based on entropy measures can
calculate criteria weights when the weight information is completely unknown. Accordingly, the proposed
method can have useful and efficient applications for real life.

In summary, the proposed method employs cross-entropy measures so that the initial information can
be kept and used well. The results obtained based on cross-entropies may be more accurate than the results
derived by methods that use distances. Meanwhile, the proposed VIKOR method on the basis of entropy
weight method can get an appropriate result validly and objectively in real-life decision-making activities.

6. Conclusions

This paper presents a multi-valued neutrosophic MCDM method for cloud service reliability assessment
problems. A general framework of entropy measures is proposed by considering the weakness of entropies
of SVNNs and HFNs. Meanwhile, a family of cross-entropy measures is developed in the analogous way.
Further, an extended VIKOR method is proposed on the basis of entropy and cross-entropy measures.
Different from the classical VIKOR method, the proposed VIKOR method can consider the evaluation
information adequately under conflicting criteria with absolutely unknown weight information. Moreover,
the influences of different entropy and cross-entropy formulas are discussed, and a comparative analysis
between the proposed method and existing methods with MVNNs is also conducted.

The proposed approach can depict the evaluation information effectively in cloud service reliability
assessment with MVNNs. What’s more, compared with the researches using general distance measures,
this paper can keep the multi-valued neutrosophic information unbroken and the results may be more
accurate than in previous methods. Also, this study enables DMs to select the compromise solution when
the information about criteria weights is completely unknown.

In future studies, at the beginning, multi-valued neutrosophic entropy and cross-entropy measures can
be extended to other neutrosophic environments, such as n-valued refined neutrosophic environments,
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interval-valued neutrosophic environments, and n-valued interval neutrosophic environments. Then,
many other criteria should be comprehensively considered in cloud service reliability assessments to make
the outcomes more reasonable and applicable. Finally, the novel extended VIKOR method based on entropy
and cross-entropy measures can be employed in other fields, such as medical diagnosis, pattern recognition,
decision-making problems, and third-party logistic evaluation.
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Appendix A
Proof of Proposition 1

It can be easily verified that the entropy of MVNNs satisfies principles (1) and (2) in Definition 11. Next,
the proof of principles (3) and (4) is given below.

(3) Assume A ∈ MN, then Ac =
〈
∪ξ∈F̃A

{ξ} ,∪η∈ĨA

{
1 − η

}
,∪γ∈T̃A

{
γ
}〉

can be acquired based on Definition

4. The two variables ∆i
Ac and σ j

Ac with regard to Ac are calculated below:
∆i

Ac = ∪ξA∈T̃A,γA∈F̃A

∣∣∣ξA − γA

∣∣∣ = ∪γA∈T̃A,ξA∈F̃A

∣∣∣γA − ξA

∣∣∣ = ∆i
A for all i = 1, 2, ..., lT̃ · lF̃,

σ j
Ac = ∪η∈ĨA

∣∣∣ηAc − ηA

∣∣∣ = ∪η∈ĨA

∣∣∣ηA − ηAc

∣∣∣ = σ j
A for all j = 1, 2, ..., lĨ.

The variables ∆i
Ac and σ j

Ac with respect to Ac are equal to ∆i
A and σ j

A regarding A. Thus, the entropy
E (A), which is based on variables ∆i

A and σ j
A, is identical to E (Ac).

(4) Obviously, Eq. (13) satisfies principle (4) in Definition 11 if we can demonstrate that the function

1 −
∆i

A+σ
j
A

2 , where 0 ≤ ∆i
A, σ

j
A ≤ 1, decreases monotonically with regard to ∆i

A and σ j
A, separately.

Assume 1(x, y) = 1 − x+y
2 , where 0 ≤ x, y ≤ 1. Then we take the partial derivative with x and y,

respectively.
∂1(x,y)
∂x =

∂1(x,y)
∂y = − 1

2 < 0 can be derived. That is, 1(x, y) decrease monotonically regarding x
and y, respectively. Therefore, Eq. (13) satisfies principle (4) in Definition 11.

Appendix B
Proof of Theorem 1

Assume that E f (A) meets axiomatic conditions (1)-(4) defined in Definition 11. We can demonstrate that
the function f has the properties (1)-(3) defined in Theorem 1 below.

(1) Suppose that f
(
x, y

)
= 0 where 0 ≤ x, y ≤ 1, then for the MVNN A with ∆i

A = x for i = 1, 2, ..., lT̃ · lF̃ and

σ j
A = y for j = 1, 2, ..., lĨ, we have E f (A) = 1

lT̃ ·lĨ ·lF̃

lT̃ ·lF̃∑
i=1

lĨ∑
j=1

f
(
∆i

A, σ
j
A

)
= 0. By condition (1) defined in Definition

11, because E f (A) = 0, we obtain ∆i
A = 1 for i = 1, 2, ..., lT̃ · lF̃ and σ j

A = 1 for j = 1, 2, ..., lĨ, i.e. x = 1 and y = 1.
(2) Suppose that f

(
x, y

)
= 1 where 0 ≤ x, y ≤ 1, then for the MVNN A with ∆i

A = x for i = 1, 2, ..., lT̃ · lF̃ and

σ j
A = y for j = 1, 2, ..., lĨ, we have E f (A) = 1

lT̃ ·lĨ ·lF̃

lT̃ ·lF̃∑
i=1

lĨ∑
j=1

f
(
∆i

A, σ
j
A

)
= 1. By condition (2) defined in Definition

11, since E f (A) = 1, we obtain ∆i
A = 0 for i = 1, 2, ..., lT̃ · lF̃ and σ j

A = 0 for j = 1, 2, ..., lĨ, i.e. x = 0 and y = 0.
(3) Suppose there is x1 ≤ x2 and f

(
x1, y

)
≥ f

(
x2, y

)
, where 0 ≤ x1, x2, y ≤ 1. Considering the MVNN

A1 with ∆i
A1

= x1 for i = 1, 2, ..., lT̃ · lF̃ and σ j
A1

= y for j = 1, 2, ..., lĨ, and the MVNN A1 with ∆i
A2

= x2 for

i = 1, 2, ..., lT̃ · lF̃ and σ j
A2

= y for j = 1, 2, ..., lĨ. We obtain: E f (A1) = 1
lT̃ ·lĨ ·lF̃

lT̃ ·lF̃∑
i=1

lĨ∑
j=1

f
(
∆i

A1
, σ j

A1

)
= f

(
x1, y

)
≥

f
(
x2, y

)
= 1

lT̃ ·lĨ ·lF̃

lT̃ ·lF̃∑
i=1

lĨ∑
j=1

f
(
∆i

A2
, σ j

A2

)
= E f (A2), which corresponds to condition (4) defined in Definition 11.

Therefore, f decreases monotonically with respect to x. Similarly, we can also prove that f decreases
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monotonically with respect to y.

Appendix C
Proof of Proposition 2

It can be easily demonstrated that the axiomatic conditions (2) and (3) hold. The evidentiary process for
conditions (1) and (4) is shown below.

(1) Let us consider the function f
(
x, y

)
=

(
x − y

)
ln 2+x−y

2−x+y where x, y ∈ [0, 1].

If x ≥ y, then x − y ≥ 0. We obtain 2 ≤ 2 + x − y ≤ 3 and 1 ≤ 2 − x + y ≤ 2. Therefore, 1 ≤ 2+x−y
2−x+y ≤ 3. That

is, 0 ≤ ln 2+x−y
2−x+y ≤ ln 3, since x − y ≥ 0, f

(
x, y

)
=

(
x − y

)
ln 2+x−y

2−x+y ≥ 0. We can similarly prove that f
(
x, y

)
≥ 0

when x ≤ y. As a result, the function f
(
x, y

)
≥ 0 always holds. Moreover, the equality f

(
x, y

)
= 0 holds if

and only if x = y.
For Eq. (20), since ∀γA, γB, ηA, ηB, ξA, ξB ∈ [0, 1] where γA ∈ T̃A, γB ∈ T̃B, ηA ∈ ĨA, ηB ∈ ĨB, ξA ∈ F̃A, and

ξB ∈ F̃B, CE1 (A,B) ≥ 0 holds. CE1 (A,B) = 0 holds if and only if T̃A = T̃B, ĨA = ĨB, and F̃A = F̃B, namely
A = B.

The proof above can demonstrate that cross-entropy measures CE2 (A,B) and CE3 (A,B) also meet con-
dition (1).

(4) When A ≤ B ≤ C, by Definition 5, the inequalities γA ≤ γB ≤ γC, ηA ≥ ηB ≥ ηC, and ξA ≥ ξB ≥ ξC
hold for every γA ∈ T̃A, γB ∈ T̃B, γC ∈ T̃C, ηA ∈ ĨA, ηB ∈ ĨB, ηC ∈ ĨC, ξA ∈ F̃A, ξB ∈ F̃B, and ξC ∈ F̃C. Then the
following inequalities can be obtained:

γA ≤ γB ≤ γC
⇒ 0 ≤ γB − γA ≤ γC − γA
⇒ 2 ≤ 2 + γB − γA ≤ 2 + γC − γA
⇒ ln 2 ≤ ln

(
2 + γB − γA

)
≤ ln

(
2 + γC − γA

)
⇒

(
γB − γA

)
ln

(
2 + γB − γA

)
≤

(
γC − γA

)
ln

(
2 + γC − γA

)
and

γA ≤ γB ≤ γC
⇒ −1 ≤ γA − γC ≤ γA − γB ≤ 0
⇒ 1 ≤ 2 + γA − γC ≤ 2 + γA − γB ≤ 2
⇒ 0 ≤ ln

(
2 + γA − γC

)
≤ ln

(
2 + γA − γB

)
≤ ln 2

⇒
(
γA − γB

)
ln

(
2 + γA − γB

)
≥

(
γA − γC

)
ln

(
2 + γA − γC

)
⇒

(
γB − γA

)
ln

(
2 + γA − γB

)
≤

(
γC − γA

)
ln

(
2 + γA − γC

)
.

Then,
(
γB − γA

)
ln

(
2 + γB − γA

)
−

(
γB − γA

)
ln

(
2 + γA − γB

)
≤

(
γC − γA

)
ln

(
2 + γC − γA

)
−

(
γC − γA

)
ln

(
2 + γA − γC

)
,

namely:
(
γA − γB

)
ln 2+γA−γB

2+γB−γA
≤

(
γA − γC

)
ln 2+γA−γC

2+γC−γA
.

Consequently, max
γA∈T̃A

min
γB∈T̃B

(
γA − γB

)
ln 2+γA−γB

2+γB−γA
≤ max
γA∈T̃A

min
γC∈T̃C

(
γA − γC

)
ln 2+γA−γC

2+γC−γA
.

In the same way, it can be also obtained that max
ηA∈ĨA

min
ηB∈ĨB

(
ηA − ηB

)
ln 2+ηA−ηB

2+ηB−ηA
≤ max

ηA∈ĨA

min
ηC∈ĨC

(
ηA − ηC

)
ln 2+ηA−ηC

2+ηC−ηA

and max
ξA∈F̃A

min
ξB∈F̃B

(ξA − ξB) ln 2+ξA−ξB
2+ξB−ξA

≤ max
ξA∈F̃A

min
ξC∈F̃C

(ξA − ξC) ln 2+ξA−ξC
2+ξC−ξA

.

Therefore, CE1 (A,B) ≤ CE1 (A,C) holds. In the previously shown analogical method, it can be proven
that the inequality CE1 (B,C) ≤ CE1 (A,C) holds too.

Similarly, we can prove that the cross-entropies CE2 (A,B) and CE3 (A,B) also meet condition (4).
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[23] R. Şahin, P. Liu, Correlation coefficient of single-valued neutrosophic hesitant fuzzy sets and its
applications in decision making, Neural Computing and Applications, 28 (2017) 1387-1395.
[24] P. Ji, H.-y. Zhang, J.-q. Wang, A projection-based TODIM method under multi-valued neutrosophic
environments and its application in personnel selection, Neural Computing and Applications, 29 (2018)
221–234.
[25] P. Biswas, S. Pramanik, B.C. Giri, Some distance measures of single valued neutrosophic hesitant fuzzy
sets and their applications to multiple attribute decision making, in: F. Smarandache, S. Pramanik (Eds.)
New trends in neutrosophic theory and applications Brussels: Pons Editions, 2016, pp. 27-34.
[26] P. Biswas, S. Pramanik, B.C. Giri, GRA method of multiple attribute decision making with single
valued neutrosophic hesitant fuzzy set information, in: F. Smarandache, S. Pramanik (Eds.) New trends in



Y. Wang et al. / Filomat 32:8 (2018), 2793–2812 2812

neutrosophic theory and applications Brussels:Pons Editions, 2016, pp. 55-63.
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